共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract The in vitro organic matter digestibility (IVOMD), crude protein (CP) content, and mineral composition of 11 grasses were compared between seasons in Puerto Rico and evaluated in relation to grazing ruminant requirements. Digitaria eriantha was the highest in IVOMD for both seasons, being higher (P<0.05) than 6 of 10 forages in the long‐day season and 4 of 10 in the shortday season. No differences (P>0.05) in CP content were observed among accessions at both seasons. Mean macroelement content of the accessions was generally adequate in relation to grazing ruminant requirements with the exception of sodium (Na) and magnesium (Mg). Forage microelement concentrations of cobalt (Co), copper (Cu), and zinc (Zn) were generally under the grazing ruminant requirements for the accessions evaluated during both seasons. Iron (Fe) and manganese (Mn) content were high in relation to requirements, especially during the short‐day season. Molybdenum (Mo) was not in excess for the accessions evaluated. The Zn concentrations were similar to the results reported from other experiments with higher fertilization levels. The selenium (Se) concentrations presented an apparent seasonal variation higher in the short‐day season, which is similar to other experiments with high fertilization levels. 相似文献
2.
Abstract The in vitro organic matter digestibility (IVOMD), crude protein (CP) content and mineral composition of ten Panicum maximum accessions were compared between seasons in Puerto Rico and evaluated in relation to grazing ruminants requirements. On short days, PRPI 13605 was superior (P<0.05) in IVOMD to all the other accessions. In terms of the CP content, accession PRPI 3634 was above 11% in both seasons, however, without differing (P>0.05) from most accessions. The mean macroelement content of the accessions was generally adequate in relation to grazing ruminant requirements with the exception of Na and Mg. Phosphorus was less than the critical concentration (0.25%) for one‐half of the accessions in the short day season and 2 of 10 for the long day season. For all samples, Mn was high and Fe was generally adequate in relation to ruminant requirements. Most all samples contained deficient concentrations of Co, Cu, Se, and Zn. Forage Mo concentrations, therefore, did not result in conditioned Cu deficiencies. In this context, it is probable that Na, Se, Cu, Co, Zn, and perhaps Mg, will be needed even if intensive fertilization is practiced in the humid tropical region of Puerto Rico. 相似文献
3.
Abstract Dry matter (DM) yield, in vitro organic matter digestibility (IVOMD), crude protein (CP) and mineral composition of eight Digitaria accessions were compared between long‐ and short‐day seasons in the semiarid southern region of Puerto Rico and evaluated in relation to grazing ruminant requirements. Digitaria milanjiana 6416 was consistently among the highest DM yielding accessions in both seasons. The mean IVOMD was similar in both seasons for most accessions. Concentrations of CP, magnesium (Mg), copper (Cu), zinc (Zn), cobalt (Co), and selenium (Se) were below the recommended levels for grazing ruminants in both seasons. This study suggests the need for livestock mineral supplementation, even under conditions of high pasture fertilization (NPK) and forage‐growing conditions in the semiarid southern region of Puerto Rico. 相似文献
4.
Abstract Macromineral composition of different forage species and soils and forage in vitro organic matter digestibility (IVOMD) and crude protein concentrations in three agricultural zones of Benue State were studied. The zones consisted of Tiv zone (Zone A), Igala zone (Zone B), and Idoma zone (Zone C), each of which was made up of three sites. Site I was Fulani cattle migration routes across the state, site II represented grazing sites within home proximity, and site III were grazing reserves. Grazing animals were followed and forages corresponding to that consumed by them, and the corresponding soil samples were collected during the peak of the dry season (December‐January) and analyzed for nutrient composition. Forage IVOMD ranged from 21% to 79%, with values obtained in grass being lowest due to pronounced overmaturity. Only 10% of forage samples (exclusively from grasses), showed protein levels below the critical value of 7%. Most forage samples, as well as their corresponding soil samples were sufficient in calcium (Ca), magnesium (Mg), and potassium (K) concentrations. Soil concentrations of Ca, Mg, and K were particularly high compared to critical requirements in all the zones studied. Approximately 94% and 76% of forages were deficient in phosphorus (P) and sodium (Na), respectively, and the deficiencies were similar in all classes of forage and sites of study for each of the zones investigated. Results of forage‐soil relationships indicated low and nonexisting correlations; therefore soil analyzes are not of great importance in the assessment of available macromineral supplies to grazing livestock. The macrominerals most needed for supplementation of grazing livestock during the dry season are P, Na, and K. 相似文献
5.
PurposeThe carbon (C), nitrogen (N), and phosphorus (P) concentrations of leaves can reflect soil nutrient supply conditions and changes in soil. An understanding of species adaptability and nutrient use efficiency in extreme ecosystems can help land managers choose effective methods to improve management and community structure of introduced plants which may induce biological invasion and limit the regeneration of native species. Materials and methodsWe selected the Leucaena leucocephala forests in three ages (9, 15, and 26 years old) in the Jiangjiagou Gully to study the relationships between (i) soil factors and forest age and (ii) leaf nutrient concentrations. Soil factors and leaf nutrients were measured in nine sampling quadrats of 10?×?10 m of each plot. We used ANOVA to examine differences in leaf variables and soil factors at different ages of L. leucocephala forest. Pearson’s correlation analysis and linear regression analysis were conducted to identify the relationships between soil factors and leaf variables. Then, we used analysis of covariance to examine combined effects of forest ages and soil factors on leaf variables. Results and discussionLeaf N was significantly correlated with available P, while leaf P was significantly correlated with both available P and available N. Leaf N and P had no significant relationship with soil total N and P. Leaf C:N:P stoichiometries had a higher significant correlation with total N, available N, and soil water content. ConclusionsOur findings illustrate that available N and available P are the main limitations for L. leucocephala, though available P imposed a stronger limitation than available N. Moreover, soil water content played an indispensable role on nutrient accumulation and the soil ecological environment. Our results provide useful information to improve L. leucocephala community structure and reduce soil degradation in a dry-hot valley. 相似文献
6.
The study was undertaken to quantify the distribution of soil in different size fractions of water-stable aggregates, and organic C, total N, and total P associated with these aggregates, along a gradient of forest-savanna-cropland in the Indian dry tropics. The effect of residue (wheat straw) amendment under dryland cultivation was also investigated. Proportions of macroaggregates (>0.3 mm) were highest in the forest and lowest in the cropland soil and ranged from 58–66% in forest, to 55% in savanna and 25–36% in cropland. In contrast, microaggregates (<0.3 mm) were highest in cropland (64–75%), followed by savanna (45%), and lowest in forest soil (34–42%). Organic C, total N, and total P associated with the macroaggregates ranged from 6.52–29.56, to 0.62–2.44 and 0.06–0.15 g kg -1 soil, respectively, while the respective values in microaggregates were 4.99–22.11, 0.42–2.01, and 0.07–0.19 g kg -1 soil. This study indicates that land-use changes (conversion of forest into savanna and cropland) reduce the organic matter input to the soil and the proportion of macroaggregates. The application of wheat straw did not significantly influence the organic C and total N levels ( P>0.05) in the short term, although the proportion of macroaggregates increased, indicating an improvement in soil structure. Thus soil degradation after conversion of natural systems to cropland can be arrested up to some extent by residue input to the soil. 相似文献
7.
Abstract A total of 71 forage samples were analyzed for trace mineral and crude protein concentrations in three Agricultural zones of Benue State, Nigeria. The zones consisted of the Northern, Eastern, and Central zones, each of which was made up of four Local Government Areas. In each Local Government Area, grazing animals were followed and forages corresponding to those consumed were collected during the peak of the wet season (June) and analyzed for the nutrient composition. Deficiencies were observed in copper (Cu) and cobalt (Co) concentrations in all classes of forage, and in forage Cu and zinc (Zn) in all Local Government Areas in the Northern zone. A higher (P<0.05) forage Cu concentration was observed in legumes compared to other classes of forage in the Eastern zone. Concentrations of iron (Fe) and manganese (Mn) were considered adequate and their contents were not affected (P>0.05) by class of forage or Local Government Areas. In the Eastern zone, the contents of selenium (Se) in grass and tree leaf hay were higher compared to leguminous forage, which in turn was higher compared to Se concentrations in crop wastes. Only about 18% of total forage samples showed protein concentrations below the critical value of 7%. Supplementation of Cu, Zn, and Co would seem to be necessary in the Northern zone, and to a lesser extent in the Eastern zone for optimum productivity of grazing animals. 相似文献
8.
Temporal and spatial variations in litterfall, leaf litter decomposition and nutrient release were quantified along an air pollution gradient around an industrial area in a dry tropical region of India. Significant differences were found in litterfall between the sites. Litter decomposition rates also significantly varied among the study sites. Litter decomposition was faster at sites away from the industrial region with coal-fired power plants. The concentrations of N and P increased, whereas that of Ca and SO 4-S decreased in decomposing litter over time. The nutrient release pattern was also modified by atmospheric deposition. Concentrations of SO 2 and NO 2 were negatively correlated with relative mass loss. Turnover time of nutrients, except SO 4-S in decomposing litter was maximal at the site receiving highest atmospheric depositions. The study documents that industrial emissions significantly modified nutrient cycling in adjacent terrestrial ecosystems. 相似文献
9.
The dynamics of nodulation, N 2-fixation and N use in Leucaena leucocephala cv. K28 over time was investigated in a screenhouse at 4, 8, 12 and 16 months after planting (MAP) using the 15N-labelling method. Leucaena had a consistently increasing pattern of nodulation, dry biomass and nitrogen yield. A sharp rise in nodulation was observed between 12 and 16 MAP, whereas for biomass, N accumulation and N 2-fixation, and N 2-fixation, an upward surge occurred between 4 and 12 months. Nodulation, N accumulation, N 2-fixation and biomass yield all peaked at 16 MAP. Along with the steady increase in N 2-fixation throughout the 16-month growth period, the % N derived from the atmosphere rose from 17.9% to 61.5%, 70.1% and 74%, equivalent to 191, 1623, 2395 and 3385 mg N 2 fixed plant -1 at 4, 8, 12 and 16 MAP, respectively. Nitrogen assimilation from soil and fertilizer decreased inversely to the increase in symbiotic nitrogen fixation with time. 相似文献
10.
Inputs of wet and dry deposition were monitored at the Huntington Forest in the Adirondack Mountains of New York for two years in the open and beneath the canopy of a northern hardwood forest. In the open, ion flux estimates were similar using wet-only weekly (NADP protocol) and event collections, but bulk collections were higher for all ions except H +, which was much lower. These differences were due to the contribution of dry deposition and possible biotic alterations in bulk collectors. Dry deposition was estimated using air concentrations and ion-specific depositional velocities modeled with meteorological data, and contributed substantially to the input of all ions [H + (45%), Na + (24%), K + (22%), NH 4 + (12%), Ca 2+ (58%), Mg 2+(43%), NO 3 ? (55%), Cl ? (27%) and SO 4 ?2 (26%)]. Dry input of base cations was dominated by coarse particles, whereas gaseous inputs were more important for S and NO 3 ?. Atmospheric concentrations of SO 2 and inputs of SO 4 2? and H + were lower at this site than sites closer to point sources of S gas emission. The importance of estimating atmospheric inputs was examined using examples of elemental budgets. For example, different estimates of the contribution of dry deposition of SO 4 2? (9–21 meq m ?2 y ?1) resulted in conclusions ranging from no net retention to a net loss of this element. Such differences have important implications in assessing the current and future role of atmospheric inputs in affecting elemental cycling. 相似文献
11.
Reduction of aggregate size in the upper, tilled soil layer as a result of one wet/dry cycle was observed for sandy soil and clay soils. Bulk density of aggregates tended to increase as their size diminished for the clay after the wet/dry cycle, whereas similar changes in bulk density for the loam were observed only for aggregates smaller than 5.6 cm. Slaking and water-drop impact seem to be the major factors in reducing the aggregate size of the sandy loam, while swelling and shrinkage affect clay aggregates of all size groups, but only aggregates smaller than 4.0 mm for the sandy loam. Tensile strength of the sandy loam aggregates was related to the axis along which the stresses were applied. A definite directional dependence of tensile strength was observed, e.g. the shorter the axis, the larger the tensile strength. The directional strength dependence was apparently not affected by one wet/dry cycle. 相似文献
12.
Summary Three dry tropical forest soils along a topographic sequence were examined to determine the seasonal dynamics of microbial C, N, and P. The lowest microbial biomass was found in forest soils at the foot of the hill followed by midslope forest soils. The hilltop soil, which had the most fine particles, water-holding capacity, organic C, and total N, reflected the presence of greater amounts of microbial C, N, and P. Mean annual microbial C, N, and P ranges were 466–662, 48–72 to 21–30 g g -1, respectively. The seasonal pattern of microbial biomass, C, N, and P was similar at all sites, the values being greatest during the dry season and lowest during the wet season. The seasonal values for microbial biomass C, N, and P were positively correlated with each other and a negative correlation was found between microbial biomass and the fine root mass in these forest soils. 相似文献
13.
In tropical cropping systems with few external inputs, efficient management of mineral N derived from added organic residues is essential for the proper functioning of the system. We studied the dynamics of mineral nitrogen (N) in the top 100 cm of soil with a system of tensiometers and suction cups after applying 15N-labelled Leucaena leucocephala and Dactyladenia barteri residues to bare and cropped microplots installed in the respective alley cropping systems, and followed the fate of the N for two maize-cowpea rotations (1992 and 1993). Fifty days after applying the residues (DDA), 20% of the added residue N was found in the soil profile of the bare Leucaena treatment, and 5% under Dactyladenia, compared with 5% and 1%, respectively, where cropped. All values decreased to about 1% after 505 days. In the cropped soil, no mineral N derived from the residues was lost by leaching during the first 6 weeks. As the maize grew, the soil profile was gradually depleted of nitrate to near Zero in the Dactyladenia treatment, whereas during the cowpea season the amount of nitrate N increased to 36 kg N ha ?1 for the Leucaena treatment, and 26 kg N ha ?1 for the Dactyladenia treatment. The soil of the bare microplots contained substantially more nitrate N (98 and 47 kg N ha -1 during the first year on average, under Leucaena and Dactyladenia, respetively) than that of the cropped microplots, except during the 1993 cowpea season. Nitrate residing in the subsoil (80–100 cm) in the bare treatments was not readily leached to deeper soil. The risk of losses of native mineral N was greatest during the first 50 DAA and to a lesser extent during the cowpea seasons. Improved management of the hedgerows could increase the potential of the hedgerow trees to recycle mineral N. 相似文献
14.
Abstract In a plant pot experiment with non-inoculated seed stock of narrow-leaf lupin ( Lupinus angustifolius, L.) of the variety ‘Prima’ we explored the effects of nitrogen compounds applied in the form of NH 4NO 3 on different dates (before sowing, after emergence and during flowering) and at various levels (0–0.5–2–3 g N per pot) on changes in the number of pods per plant, the 1000-seed weight, seed yields and the content of crude protein in seeds. The experiment included four treatments; the first was a control treatment not fertilized with nitrogen. In the other treatments we applied nitrogen either as a single application before sowing or in three split applications. In all the nitrogen-fertilized variants the number of pods per plant, total seed yields per plant and the concentration of crude protein all increased compared to the unfertilized control variant. The highest levels of nitrogen (3 g N per pot) reduced the 1000-seed weight compared to the unfertilized control variant. The total application of 2 g N per pot split into application before sowing (0.5 g N), after emergence (0.5 g N) and during flowering (1 g N) resulted in a highly significant increase in the number of pods per plant (+78%), the 1000-seed weight (+20.1%) and therefore higher seed yields per plant (+139.8%) compared to the control treatment not fertilized with nitrogen. Increasing levels of nitrogen linearly increased the content of crude protein in seeds during harvest from 24.2% to 40.6%, thus increasing the nutritional quality of the seeds. 相似文献
15.
Abstract An experiment was conducted in a semi‐arid region located in the State of Zulia, western part of Venezuela (10°32'N and 71°42'W, 600 mm average annual rainfall), to evaluate dry matter (DM) yield and in vitro organic matter digestibility (IVOMD), and crude protein (CP) content of Andropogon gayanus Kunth as affected by three frequencies of defoliation (every 42, 63, and 84 days) and fertilization with three levels of nitrogen (N) (0, 100, and 200 kg N ha ‐1‐year ‐1) and two levels of phosphorus (P) (0 and 75 kg P 2O 5 ha ‐1.year ‐1) in a factorial array using a split‐split‐plot experimental design with frequencies in the main plots, N in the sub‐plots, and P in the sub‐subplots with three replications. Soil was a sandy loam Aridisol with a pH of 5.5. Average soil calcium (Ca), magnesium (Mg), sodium (Na), potassium (K), and P contents were 0.6, 0.3, 0.1 and 0.17 meq‐100g ‐1 soil, and 6 ppm, respectively. Data from six, four, and three cuttings for the frequencies of 42, 63, and 84 days were analyzed over the total duration of the study (252 days) as well as separately for periods with high (168 days, 384 mm) and low rainfall (84 days, 69 mm). Frequency of defoliation was the only factor that influenced (P≤0.05) the variables studied. In the overall analyses, the highest (P≤0.05) DM yield (3,656 kg#lbha ‐1.cutting ‐1) was obtained with harvests every 63 days. Mean IVOMD decreased (P≤0.05) from 54.2 to 51.7% with increasing harvest interval from 63 to 84 days, respectively. The average CP content was 7.9%. With low rainfall, mean DM yield was 2,209 kg#lbha ‐1, CP content declined (P≤0.05) from 7.5 to 3.9% as the cutting interval increased, and IVOMD decreased (P≤0.05) between 42 and 63 days. With high rainfall, the highest (P≤0.05) DM yield (4,872 kg#lbha ‐1) and IVOMD (56.5%) were found at 63 days of age. Mean CP content was 9.3%. These results confirm that A. gayanus is a highly productive forage grass. Lack of response to N and P fertilizers may be attributed partly to relatively low rainfall during the experiment, adaptation of the grass to low fertility soils, and long intervals between N applications and the next harvest. 相似文献
16.
Aggregates of a fine textured (61% clay, 33% silt) soil with a high coefficient of linear expansion (20%) were exposed to successive wet/dry cycles in their natural state and after mechanical reworking. In both cases aggregate size decreased; the reworked sample initially consisted of larger aggregates, but their size fell more rapidly, and after four cycles both the reworked and natural aggregates had a similar size distribution. A model was developed which successfully predicts the proportion of aggregates in each size grade at the n th cycle from that present at the outset. The rate of decrease in aggregates size declined with aggregate size and on both reworked and natural samples the dispersion ratio was low (≤5%). 相似文献
17.
We compared total C, N and P, available forms of N and P and dehydrogenase, urease and acid phosphatase activities in soils from primary forests, 26‐year‐old pastures and 26‐year‐old secondary forests in the tropical dry forest region of Chamela, Jalisco, Mexico. We hypothesized that, because of their natural regeneration and greater plant diversity, secondary forest soils would have higher fertility and enzyme activities than pasture soils and would be more similar to primary forest soils. We predicted also that enzymes would be better indicators of land‐use effects on soil fertility than nutrients. Only one nutrient, available phosphorus, and one enzyme, acid phosphatase, were significantly and consistently affected by land use. As expected, these parameters were greater in primary and secondary forests than in pastures. Principal components analysis using all variables placed secondary forests intermediate between primary forests and pastures, as predicted, and total C, N and P, available P, ammonium, phosphatase, urease and the C:P ratio were the variables associated with this spatial arrangement of land uses. We conclude that secondary forest soils showed improved fertility and were overall closer to primary forests than to pastures in most variables measured. 相似文献
18.
Summary Decomposition and changes in nutrient content of six litter types (leaves, sheaths, roots, twigs, and wood of bamboo, and grass shoots) were studied in nylon net bags for 2 years. The annual weight loss was (% of initial) bamboo leaves 56.5, bamboo sheaths 79.5, bamboo roots 65.8, bamboo twigs 49.6, bamboo wood 31.2, and grass shoots 74.9. Elemental mobility followed the order K>Na>C>P>Ca>N in all components except wood. Generally, an initial increase was followed by a consistent decrease in the contents of N (leaves), P (leaves, roots, wood) and Ca (leaves, roots, grass), and Na (wood). Most of the nutrients were immobilized in the rainy season. C and K contents showed a constant decrease throughout the decomposition period. Materials with a greater C:N ratio (>50) tended to accumulate more nutrients and retain them for longer, except for the bamboo twigs. The critical C:N ratio (at which a net release of N occured) for the leaf material was 25. Litter components with more initial N (sheaths) showed greater weight loss than those with less N (leaves, twigs, and wood). Overall, N and P were lost at the slowest rates while C and K were lost at faster rates. Initial lignin, lignin: N, C:N and C concentrations had a better predictive value for annual weight loss and nutrient release in bivariate relationships. A combination of the initial lignin value and the C: N ratio explained 93% of the variation in annual weight loss. A significant relationship was also observed between the annual weight loss rate and the nutrient mineralization/release rate. 相似文献
19.
A study was carried out to determine the effect of germination and drying temperature on the in vitro protein digestibility and physicochemical properties of dry red bean flours. A 2 x 3 factorial experiment with two treatments (germination and nongermination) and three drying temperatures was used for this purpose. The effect of particle size on water absorption capacity of bean flour was investigated. In addition, the effect of incorporating soybean and cowpea into the red bean flour on functional properties was equally investigated. Results reveal that protein digestibility increased with germination and also with drying temperature. Drying at 60 degrees C produced flours of optimum functional characteristics, although the hydrophilic/lipophilic index was high and the solubility index reduced. Germination and particle size as well as drying temperature all affected the water uptake properties of bean flours. Incorporation of soybean and cowpea flour into germinated bean flour at levels of 10 and 30%, respectively, produced a composite with higher functional properties. 相似文献
20.
Development of a fine tilth in Vertisols increases infiltration, plant-available water and ease of cultivation and produces a fine seed bed. The tilth-mellowing properties of a strongly self-mulching Vertisol from Zimbabwe were investigated by applying different types of wetting to a worked soil and examining macromorphological features, size, density, strength and friability of the resulting clods/aggregates, developed through successive wet/dry cycles. Wetting regimes were chosen to simulate likely field conditions and included rapid flood-, slow and fast capillary-, simulated rainfall- and vapour-wetting. Tilth development was compared to that of field soils. All wetting treatments in the liquid phase resulted in decreases in aggregate density. Fast capillary wetting rapidly reduced size and strength of aggregates to below that of field soils whereas slow capillary wetting similarly rapidly decreased size but reduced strength more slowly. Flood wetting caused little change in size but aggregates showed a small decrease in strength. Rainfall wetting resulted in changes intermediate between these extremes. There was a significant linear relationship between strength and porosity of aggregates! For rainfall- and flood-wetting, friabilities were at a maximum after one wet/dry cycle but subsequently decreased. Vapour wet/dry cycles reduced strength but not density of worked soils, implying changes in internal microstructure without measurable porosity change. Hypotheses to explain these changes are put forward. 相似文献
|