首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

Hot water, water and 2M DTPA (room temperature), all at 1:1.5 volume ratio, and saturation extracts with and without added DTPA, were compared for their ability to assess the availability of B in pottting media. In three experiments, B concentrations in the extractants were highly linearly correlated with one another, although medium components and pH affected the slopes of the relationships. Hot water extracted between 38 and 77% of the B in Pinus radiata‐based media and 58 to 97% of that in peat. The proportion was little affected by the pH of the medium. The solutions at room temperature extracted considerably less B than did hot water and the proportion extracted decreased with increasing pH. B in extracts at room temperature was more highly correlated ( r2 = 0.90–0.97) with B uptake by a range of plants with widely differing tolerance of high concentrations of B than was hot water soluble B (r2 = 0.79–0.94). No symptoms typical of B deficiency were observed at the lowest concentrations of extractable B attained in these experiments, which were 0.08 and 0.27 mg/L B in 2 mM DTPA (1:1.5 by volume) and saturation extracts containing DTPA respectively. Other evidence suggests that concentrations at the detection limit (about 0.03 mg/L) of the analytical technique used are adequate for normal flowering of Chrysanthemum morifolium cv. Yellow Mandalay. For absence of foliar toxicity symptoms in horticultural plants sensitive to B, 2 mM DTPA (1:1.5 by volume) and saturation extracts containing DTPA should not contain more than about 0.6 and 1 mg B/L, respectively. Tolerant species can remain symptom‐free in media giving up to about 5 and 8.3 mg B/L in the two extracts, respectively. These results will be particularly useful for checking for potential B toxicity in potting media containing composted waste materials.  相似文献   

2.
Abstract

Alfisols, Vertisols, Inceptisols, Aridisols, Mollisols, and Entisols were sampled (0–30 cm) from 32 locations across Ethiopia. The soils were analyzed for copper (Cu), zinc (Zn), manganese (Mn), and iron (Fe) contents using 0.005 M diethylene triamine pentaacetic acid (DTPA), 0.05 M hydrochloric acid (HC1), and 0.02 M ethylene diamine tetraacetic acid (EDTA) extractants. EDTA extracted more of each micronutrient than DTPA, which extracted greater amounts than HC1. The quantities of EDTA and DTPA‐extractable micronutrients were significantly correlated, and were in the order: Mn>Fe>Cu>Zn. The order of HCl‐extractable micronutrients was Mn>Fe>Zn>Cu. Micronutrient contents of Mollisols, Vertisols, and Alfisols were usually greater than those of the other soils, and Entisols usually had the lowest micronutrient contents. The contents were mostly positively correlated with clay and Fe2O3 contents, but negatively correlated with soil pH and A12O3contents. While comparison of DTPA‐ and EDTA‐extractable micronutrients with critical levels showed that most soils had adequate amounts of the micronutrients for crops, the amounts extracted by HC1 were below critical levels in most soils. Since the critical levels that were used in the comparisons were not established in Ethiopia, calibration of the soil contents of these micronutrients with crops grown in Ethiopia is required to identify the most suitable extractant(s).  相似文献   

3.
Abstract

The changes in availability and uptake of boron (B) by M.26 apple rootstocks as affected by applications of different forms and rates of nitrogen (N) were examined. The study was carried out in a greenhouse using soil with low contents of organic matter, clay, calcium carbonate, NH4‐oxalate soluble aluminum (Al) and iron (Fe), NH2OH·HCl extractable manganese (Mn), poor cation exchange capacity and low pH. Soil N application was in the form of urea, calcium nitrate, ammonium sulphate, or ammonium nitrate at rates of 0, 17, 34, and 51 mg N kg?1. After 1, 3, and 5 days of N application, soil B fractions were determined: B in soil solution, B specifically and non‐specifically adsorbed on soil surfaces, B occluded in Mn oxyhydroxides, and B occluded in crystalline Al and Fe oxides. The results showed that N as calcium nitrate and ammonium nitrate increased B both in soil solution and non‐specifically adsorbed on soil surface and decreased B concentration on Al and Fe oxides. This indicates that N‐NO3 inhibited B sorption on Fe and Al oxides. Maximum B desorption from Fe and Al oxides was obtained within one day after N‐NO3 was supplied. Nitrogen application as calcium nitrate and ammonium nitrate increased availability and uptake of B by plant roots. Thus, it was concluded that apple trees planted on coarse‐textured soils where risk of B deficiency is high, calcium nitrate or ammonium nitrates would be appropriately to apply to keep B more available.  相似文献   

4.
Abstract

Field and greenhouse studies were conducted in Prince Edward Island (P.E.I.) on soybean (Glycine max (L.) Merr.), red clover (Trifolium pratense L.), alfalfa (Medicago sativa L.), and rutabaga (Brassica napobrassica, Mill). Plant B concentrations were compared to soil B extracted by hot water, 0.05M HCl, 1.5M CH3COOH, and 0.01M CaCl2. The r values for extractable soil B versus plant B were: hot water (0.67), 0.05M HCl (0.82), 1.5M CH3COOH (0.78), and hot 0.01M CaCl2(0.61). Results of soil B from the 0.05M HCl extracts were generally found to give the best correlation and linear regression among the four extractants tested for predicting the B availability to plants. Overall, the 0.05M HCl proved to be the best extractant and is recommended for predicting the available B status of acid soils. The probability of error with 0.05M HCl is less since it is shaken for a fixed period of time as opposed to subjective error which could be introduced in monitoring the boiling time using hot water. Since HCl is the cheapest among the chemical extractants used it would be most suited for determining soil B in countries with poor economic resources.  相似文献   

5.
Abstract

Six‐month‐old coffee plants were grown in the greenhouse in pots containing a Dark Red Latosol (Orthox), to study the effect of boron (B) and zinc (Zn) on growth and leaf content of these micronutrients. Boron was added at levels of 0, 1, 3, and 5 mg kg‐1, whereas Zn was added in proportions of 0, 5, 10, and 20 mg kg‐1. Boron application affected total dry matter, height and diameter of stem, length and number of plagiotropic branches, number of leaves, ratio between total leaf area and number of leaves (ULA), ratio between total leaf area and total dry matter (LAR), leaf moisture, and index of potential yield (IPY). The IPY, defined as the ratio of dry matter of developed flowering buds plus flowers to the dry matter of underdeveloped flower buds and flowers, proved to be the an excellent parameter to assess B levels. Leaf B, well correlated with IPY, varied from 50 to 60 mg kg‐1. Available B in soils, in nig kg‐1, ranged from (with the critical levels between parentheses): 0.2 to 0.3 (0.2), as determined in a saturation paste, 0.6 to 1.0 (0.9), as determined in a hot water extract, 0.9 to 1.3 (1.2), with monocalcium phosphate in acetic acid, 1.1 to 1.4 (1.3), by Mehlich 1 method, 2.1 to 2.4 (2.4), by 0.05N HC1, 2.2 to 2.4 (2.4), by 0.1N HCl. Zinc additions caused a decrease in growth when B supply was limiting. On the other hand, B had no effect on dry matter yield when Zn was not added. Adequate Zn soil levels in mg kg‐1 were 4.4, as determined by 0.05N HCl extraction, 4.2, by 0.1N HC1, 3.9, by Mehlich 1, 2.7, by EDTA extraction, and 2.1, in DTPA extracts. Leaf Zn, not affected by Zn additions, was between 12–14 mg kg‐1.  相似文献   

6.
Abstract

Extractants employed for routine soil analysis vary from one laboratory to another. Lack of a universal soil extractant is a serious limitation for interpretation of analytical results from various laboratories on nutritional status of a given soil. This limitation can be overcome by developing functional relationships for concentrations of a given nutrient extractable by various extradants. In this study, extractability of Ca, Mg, P, and K in a wide range of soils (0–15 cm) from citrus groves in Florida representing 21 soil series, with varying cultural operations, were compared using Mehlich 3 (M3), Mehlich 1 (M1), ammonium acetate (NH4AOc), pH = 7.0 (AA), 0.2M ammonium chloride (NH4Cl), and ammonium bicarbonate‐DTPA (AB‐DTPA) extractants. Soil pH (0.01M CaCl2) varied from 3.57 to 7.28. The concentrations of Ca or Mg extractable by M3, M1, AA, and NH4Cl were strongly correlated with soil pH (r2 = 0.381–0.482). Weak but significant correlations were also found between AB‐DTPA extractable Ca or Mg and soil pH (r2 = 0.235–0.278). Soil pH relationships with extractable K were rather weak (r2 = < 0.131) for M1 and NH4Cl but non‐significant for M3, AB‐DTPA, and AA. Concentrations of Ca, Mg, and K extractable by M3 were significantly correlated with those by either M1, AA, or NH4Cl extractants. Mehlich 3‐P was significantly correlated with P extractable by M1 extractant only. Mehlich 3 versus AB‐DTPA relationship was strong for K (r2 = 0.964), weaker for Mg and P (r2 = 0.180–0.319), and non‐significant for Ca. With the increasing emphasis on possible use of M3 as an universal soil extractant, data from this study support the hypothesis that M3 can be adapted as a suitable extractant for routine soil analysis.  相似文献   

7.
Abstract

A 2‐year study failed to show a significant yield response from soil applications of boron to eight‐year‐old muscadine grape vines; however, a definite trend toward yield response was evident from linear regression models. No difference in B levels of tissue occurred the initial year but in the second year, the tissue from the highest B rate was significantly higher than other treatments. Boron content of the soil correlated well with B treatment levels (r = .88). Fruit soluble solids were not related to B treatments.  相似文献   

8.
Abstract

Boron soil tests often do not adequately reflect B plant uptake or deficiency levels in the Eastern United States. In an attempt to develop a better test, the following systems were studied: Silicic acid replacement of boron; B soil buffering power; and the addition of small quantities of boron (0.175 ugB/g‐soil) to each soil sample to overcome some of the stronger boron fixing sites prior to hot water extraction.

Boron extracted with B spiked hot water (r=0.80 for plant tissue B vs. extractable B, opposed to r=0.76 for nonspiked hot water) was the only new test that showed promise.

The results appear to explain why hot water extractable B correlates well with plant uptake for soils previously treated with boron fertilizer (e.g. alfalfa fields); but why, on the other hand, hot water extractable B fails to correlate well with plant boron uptake for soils not having a recent history of boron fertilization. . . in which some fixing sites apparently have to be satisfied before the hot water test will work well.  相似文献   

9.
Abstract

A relatively small range between deficiency and toxic limits of boron (B) necessitates precise evaluation of the availability of extractable boron before applying B in deficient soils. Keeping this in view, laboratory and greenhouse experiments were conducted to assess the availability of native B in soils. For this purpose, 25 acid soils with diverse properties and varying hot water extractable B content, were selected from lateritic and alluvial tracts of Southern West Bengal. A greenhouse pot experiment with four rates of B (0, 0.5, 1.0, and 2.0 mg kg‐1) was conducted in completely randomized design to study the response of soybean (Glycine max L.) to native and applied B in all 25 soils. The suitability of nine extractants for determining available soil B was assessed by correlating the amount of extractable B in untreated soils with Bray's percent yield, uptake, and tissue B concentration of soybean plants. Optimization of salicylic acid concentration is described and the advantages of this extractant are discussed. The interference of amethyst color (produced by iron and salicylic acid) with the colorimetric estimation of B is studied. Hot CaCl2 was found to be the most suitable extractant for the determination of available B in these soils, followed by hot water, salicylic acid, and ammonium acetate. However, salicylic acid appeared to be the most efficient extractant for routine soil analysis for available B, where a large number of samples are analyzed. The critical values in respect to sufficiency of extractable B for soybean plants were 0.51 for hot water, 0.61 for hot CaCl2, 0.27 for ammonium acetate and 0.45 mg kg‐1 for salicylic acid. The critical B concentration in soybean plants was 18 mg kg‐1 on dry weight basis. Multiple regression equations relating soil properties to native soil B extracted by various extractante were developed. It was observed that organic carbon and clay contributed positively to B extracted by hot water, hot CaCl2, and ammonium acetate, while salicylic acid extractable B showed positive relationships with cation exchange capacity (CEC) and clay. The CEC and Fe2O3 were found to have positive influence on tartaric acid extractable B. Implications of the influences of soil properties on the extractable B content of soils are discussed.  相似文献   

10.
Abstract

Ion exchange resin methods were applied to 78 different soils to assess their phosphorus (P) status for predicting their response to P fertilization. The techniques used were anion exchange resin membranes eluted with hydrochloric acid (HCl) (AEM) and cation‐anion exchange resin membranes eluted with HCl (CAEM‐HC1), sodium chloride (NaCl) (CAEM‐NaCl) or water with directly color development (CAEM‐H2O). Greenhouse studies were conducted with the same soils in order to validate laboratory data. Ryegrass was grown with two levels of P: nil and 150 mg P kg‐1 of soil. Results indicate that soil P levels are significantly correlated (p<0.001) if extracted with AEM or CAEM, both eluted with HCl, although the CAEM technique had extracted larger amounts of P. Concerning the type of elution, results did not show significant differences (p<0.05) between CAEM‐HC1 and CAEM‐NaCl, but both were significantly correlated (p<0.001) with the results obtained with CAEM‐H2O. All the techniques used to measure extractable P correlated significantly with relative yield and P uptake by ryegrass, showing their ability to predict soil P availability. Nevertheless, CAEM extraction had higher values of r2. Among the three techniques for elution, the levels of correlation with the biological parameters were equivalent. From these results, it was concluded that: (i) exchange resins, specially CAEM, is an accurate method to assess the P fertility status of soils, and (ii) the traditional step of elution can be avoided, allowing the process to be less time consuming, thus more suitable for routine use.  相似文献   

11.
Abstract

Soil nutrient extraction methods, which are currently being used in Malawi, are time consuming and require too many resources. The use of a universal soil extractant would greatly reduce resource requirements. The objectives of the study were to (i) compare the universal soil extractants, Mehlich 3 (M3) and Modified Olsen (MO) with ammonium acetate (AA), Bray P1 (BPl), and diethylene triamine penta acetic acid (DTPA) in the amount of nutrients extracted, (ii) determine the relationship among the extractants for the nutrients they extract, and (iii) determine the critical soil‐test levels of phosphorus (P), potassium (K), and zinc (Zn) for a maize crop. Missing nutrient trials involving P, K, and Zn were conducted on thirty sites across Malawi using maize (Zea mays L.). Phosphorus application rates ranged from 40 to 207 kg P2O5 ha‐1. Potassium and Zn were applied at 75 kg K2O and 10 kg Zn ha‐1, respectively. Procedures of Cate and Nelson were used to identify soil nutrient critical levels. Results showed that the correlations between M3 and BP1, and MO and BPl were highly significant (r=0.93, 0.94, respectively). Mehlich 3 extractable K and AA extractable K (r=0.90), MO and AA extractable K (r=0.94) were highly significant (P<0.01) and the correlations between M3 and AA and MO and AA extractable calcium (Ca) (r=0.92, 0.90, and 0.94, respectively) were also highly significant (P<0.01). The correlations between M3, MO, and AA extractable magnesium (Mg) (r=0.99) were highly significant (P<0.01). Zinc, copper (Cu), and manganese (Mn) extracted with M3 and DTPA were significantly correlated (r=0.89, 0.87, and 0.95, respectively). Correlations between MO and DTPA extractable Zn, Cu, and Mn were also highly correlated (r=0.89,0.85, and 0.95, respectively). Maize grain yields ranged from 730 to 9,400 kg ha‐1. Mehlich 3‐P and MO‐P critical levels were 31.5 and 28.0 μg g‐1, respectively. Mehlich 3 and MO gave a similar critical level of 0.2 cmol kg‐1 for K while Zn critical levels were 2.5, and 0.8 μg g‐1 for M3 and MO, respectively. Mehlich 3 and MO were equally effective in separating responsive to none responsive soils for maize in Malawi.  相似文献   

12.
Abstract

Two soil tests commonly used to characterize the availability of soil phosphorus (P) are Bray P1 (B1) and Mehlich 3 (M3) extradants. The objective of this investigation was to compare M3‐ and B1‐extractable P levels in a Starr clay loam (fine‐loamy mixed thermic Fluventic Dystrochrepts) amended with relatively low to high surface applications of poultry litter (PL). The following eight treatments were applied to the soil for pasture renovation in 1991 and 1992: 1) a control, 2) P application as monocalcium phosphate [Ca(H2PO4)2‐H2O], 3) P application as Ca(H2PO4)2‐H2O and nitrogen (N) application as ammonium nitrate (NH4NO3) and urea, and 4) five levels of poultry litter (PL) based on N content. The five P levels as PL were 56.6, 113.2, 169.8, 226.4, and 283.0 kg ha‐1 in 1991, and 49.2, 98.5, 147.7, 196.9, and 246.1 kg ha‐1 in 1992, respectively. Soil samples were obtained from the 0‐ to 5‐cm layer in the spring of 1992 and 1993 for extractable P determination. Levels of P extracted from all treatments by the M3 and B1 extractants were linearly correlated both years (r2=0.96 in 1991 and r2=0.99 in 1992). However, M3 extracted more P from the PL treatments, whereas B1 extracted more P from the control, P application, and N and P application treatments. Curvilinear relationships were obtained between P uptake and levels of either M3‐ or B1‐extractable P for the PL treatments (r2=0.713 for M3 and 0.663 for B1 in 1991 and r2=0.925 for M3 and 0.933 for B1 in 1992). These close relationships in 1992 between extractable P and uptake of P for the PL‐ treated soils indicate that both the B1 and M3 extractants could be used to evaluate excess P in PL‐amended soils.  相似文献   

13.
We attempted to modify and evaluate existing sequential fractionation schemes for B involving the use of chemicals, which subsequently do not interfere with the measurement of B by colorimetry. Also evaluated was the contribution of various soil B fractions to the amount of B extracted by hot CaCl2, CaCl2‐mannitol, salicylic acid, ammonium acetate, HCl, and tartaric acid. For this purpose, 17 soils with diverse properties were used. The extraction scheme proposed here partitioned B into five pools, (i) readily soluble, (ii) specifically adsorbed, (iii) oxide bound, (iv) organically bound, and (v) residual boron, respectively extracted with 0.01 M CaCl2, 0.05 M KH2PO4, 0.175 M NH4‐oxalate (pH 3.25), 0.5 M NaOH, and HF + H2SO4 + HClO4. The procedure of elimination of color from extracts of oxide bound, organically bound, and residual B fractions was also evolved. Relationships of individual B fractions with physicochemical properties of the experimental soils confirmed the general validity of the proposed fractionation scheme. The relationships of different B fractions with extractable B in soils suggest that hot CaCl2 and salicylic acid may be better extractants for available B in soils.  相似文献   

14.
Abstract

Five soil extractants, namely, 0.005 M diethylene triamine pentaacetic acid (DTPA) (pH 7.3), 0.005 M DTPA+1 M ammonium bicarbonate (pH 7.6), Mehlich 3, 0.01 M ethylene diamine tetraacetic acid (EDTA)+0.05 M ammonium carbonate (pH 8.6), and 1 M magnesium chloride (MgCl2) (pH 6.0), were evaluated to predict the response of wheat to zinc (Zn) application in Mollisols. These extractants could be arranged in the following decreasing order of their Zn extracting power: Mehlich 3>0.005 M DTPA+1 M ammonium bicarbonate>0.01 M EDTA+0.05 M ammonium carbonate>0.005 M DTPA>1 M MgCl2. The critical limits of Zn in soil, below which the yield response to late sown wheat (var. UP‐2338) to Zn application could be expected, were 0.57 mg 0.005 M DTPA (pH 7.3) extractable and 1.72 mg Mehlich 3–extractable Zn kg?1 soil. The critical limit of Zn in whole shoot at 60 days after emergence was found to be 26.1 mg Zn kg?1 plant tissue. The DTPA and Mehlich 3–extractable soil Zn also correlated significantly and positively with Zn concentration in whole shoot at 60 days after emergence and total Zn uptake by wheat at harvest.  相似文献   

15.
Abstract

A method is proposed for determination of hot‐water‐soluble boron in acid soils from western Oregon. The soil sample is boiled in 0.02 M CaCl2, filtered, and B determined using azomethine‐H. Soils extracted in this way yielded extracts with little color in them and the predicted error due to this color was 0.00–0.07 ppm B. The use of charcoal as a decolorizing agent resulted in comparatively high predicted errors.

Inductively‐coupled plasma emission spectroscopic (ICP) analysis of distilled water and 0.02 M CaCl2 extracts indicated that the extractable B level was not affected by the presence of CaCl2. Azomethine‐H yielded comparable values to ICP but the curcumin method tended to give high values for hot‐water‐soluble B.  相似文献   

16.
Abstract

Fifty soil samples (0–20 cm) with corresponding numbers of grain, potatoes, cabbage, and cauliflower crops were collected from soils developed on alum shale materials in Southeastern Norway to investigate the availability of [cadmium (Cd), copper (Cu), zinc (Zn), lead (Pb), nickel (Ni), and manganese (Mn)] in the soil and the uptake of the metals by these crops. Both total (aqua regia soluble) and extractable [ammonium nitrate (NH4NO3) and DTPA] concentrations of metals in the soils were studied. The total concentration of all the heavy metals in the soils were higher compared to other soils found in this region. Forty‐four percent of the soil samples had higher Cd concentration than the limit for application of sewage sludge, whereas the corresponding values for Ni, Cu, and Zn were 60%, 38%, and 16%, respectively. About 70% the soil samples had a too high concentration of one or more of the heavy metals in relation to the limit for application of sewage sludge. Cadmium was the most soluble of the heavy metals, implying that it is more bioavailable than the other non‐essential metals, Pb and Ni. The total (aqua regia soluble) concentrations of Cd, Cu, Zn, and Ni and the concentrations of DTPA‐extractable Cd and Ni were significantly higher in the loam soils than in the sandy loam soils. The amount of NH4NCyextractable metals did not differ between the texture classes. The concentrations of DTPA‐extractable metals were positively and significantly correlated with the total concentrations of the same metals. Ammonium nitrate‐extractable metals, on the other hand, were not related to their total concentrations, but they were negatively and significantly correlated to soil pH. The average concentration of Cd (0.1 mg kg‐1 d.w.) in the plants was relatively high compared to the concentration previously found in plants grown on the other soils. The concentrations of the other heavy metals Cu, Zn, Mn, Ni, and Pb in the plants were considered to be within the normal range, except for some samples with relatively high concentrations of Ni and Mn (0–11.1 and 3.5 to 167 mg kg‘1 d.w., respectively). The concentrations of Cd, Cu, Zn, Ni, and Mn in grain were positively correlated to the concentrations of these respective metals in the soil extracted by NH4NO3. The plant concentrations were negatively correlated to pH. The DTPA‐extractable levels were not correlated with plant concentration and hence DTPA would not be a good extractant for determining plant availability in these soils.  相似文献   

17.
Abstract

Rice (Oryza sativaL. CV. Lemont) was grown on 19 soils, and eight extractants were evaluated for determining the availability of Cu to rice plants. Correlation analyses were employed as criteria for evaluating methods that would provide the best index of Cu availability. The order of removal of Cu from soils was: 0.5NHC1 + 0.05NA1C13> 0.5NHNO3> 0.5 N HC1 > EDTA + NH4OAc > 0.1NHC1 > EDTA + (NH4)2CO3? DTPA‐TEA, pH 7.3 >>> 1 N NH40Ac, pH 4.8.

Uptake of Cu by rice plants was significantly correlated with soil Cu. Among the eight extractants evaluated, Cu extracted with DTPA‐TEA, pH 7.3 was better related to the concentration (r = 0.563 ) and uptake (r = 0.673 ) of Cu by rice plants grown on the soils with different chemical and physical properties.

A significant negative correlation was found between the concentration of Cu in rice plants and the organic matter content of the soils. Each one percent increase in the organic matter of the soils resulted in a corresponding decrease of approximately one mg/kg in the concentration of Cu in the rice‐plant tissue. Multiple regressions of extractable Cu by eight methods with soil organic matter content accounted for from 53.4 to 70.0% of the variations in the prediction of the concentration of Cu in the rice plants. Combinations of other soil chemical properties measured with extractable Cu did not significantly improve the predictability  相似文献   

18.
Abstract

Water treatment residuals (WTR) can adsorb tremendous amounts of phosphorus (P). A soil that had biosolids applied eight times over 16 years at a rate of 6.7 Mg ha?1 y?1 contained 28 mg kg?1 ammonium–bicarbonate diethylenetriaminepentaacetic acid (AB‐DTPA), 57 mg kg?1 Olsen, 95 mg kg?1 Bray‐1, and 53 mg kg?1 Mehlich‐III extractable P. To 10 g of soil, WTRs were added at rates of 0, 0.1, 1, 2, 4, 6, 8, and 10 g, then 20 mL of distilled deionized H20 (DI) were added and the mixtures were shaken for 1 week, filtered, and analyzed for soluble (ortho‐P) and total soluble P. The soil–WTR mixtures were dried and P extracted using DI, AB‐DTPA, Olsen, Bray‐1, and Mehlich‐III. Results indicated that all methods except AB‐DTPA showed reduced extractable‐P concentrations with increasing WTR. The AB‐DTPA extractable P increased with increasing WTR rate. The water‐extractable method predicted P reduction best, followed by Bray‐1 and Mehlich‐III, and finally Olsen.  相似文献   

19.
Abstract

Three techniques were evaluated as soil P tests for western Canadian soils: anion‐exchange membrane (AEM), water, and bicarbonate extraction. The AEM, water, and bicarbonate‐extractable total P represented novel approaches to compare to the widely used bicarbonate‐extractable inorganic P (traditional Olsen) soil test. In a range of Saskatchewan soils, similar trends in predicted relative P availability were observed for AEM, water extraction, bicarbonate‐extractable total P, and bicarbonate‐extractable organic P. Correlations between soil test values revealed AEM and water‐extractable P to be most closely correlated, consistent with the similar manner of P removal in the two tests.

Phosphorus availability, as predicted by the tests, was compared to actual P uptake by canola and wheat grown on 14 soils in a growth chamber experiment. P uptake by canola was highly correlated with AEM (r2 = 0.86–0.90), water (0.87 ‐0.94), and bicarbonate‐extractable total (0.91) and inorganic (0.92) P. Uptake of P by wheat was not quite as highly correlated with test‐predicted values: AEM (r2 = ‐0.73–0.78), water (0.72–0.77), bicarbonate total (0.82), bicarbonate‐inorganic P (0.75).

The similarity in coefficients of determination among test methods indicated nearly identical abilities of the tests to predict soil P availability in the range of soils examined. The AEM and water extractions, unlike bicarbonate, are largely independent of soil type and may prove superior when a wider range of soils is being tested. Bicarbonate‐extractable total P and water‐extractable P suffer limitations in analytical simplicity and cost. In testing for P alone, AEM was considered superior to the other methods due to low cost, simplicity, independence of soil type, and high correlation with plant uptake.  相似文献   

20.
Abstract

Serious challenges associated with hot water extraction, the standard extraction method for water‐soluble boron (B), limit its use in commercial soil‐testing laboratories. Several alternatives to make B testing more practical have been proposed and studied; none of the alternatives have readily replaced the hot water method. Two relatively new, promising B extraction methods are pressurized hot water and DTPA‐Sorbitol. Very little reported work compares B extraction values obtained from the standard hot water extraction method and these two alternative methods. This study was conducted to complete an initial step in validating new procedures—extracting the designated nutrient from fertilized, incubated soils by using standard and alternative extraction methods and comparing the resulting values. The three extraction methods were used to extract B from samples of calcareous sand and silt loam soils and limed, loamy fine sand, all which had been treated with 10 levels of B (0–8 mg kg?1) and incubated for 7 and 28 days. The amount of B extracted increased as the rate of B application increased with all three soil‐extraction methods. High correlations (r 0.977–0.999) were observed between extractable B and rate of B application with all three procedures. Correlations between the amount of extractable B using hot water extraction and the value obtained with an alternative extraction method were similar for both methods (r=0.89). Hot water generally extracted the least and pressurized hot water the most B regardless of soil type, rate of application, or duration of incubation. This study suggests the more easily used methods of pressurized hot water and DTPA‐Sorbitol could be recommended as replacements to the cumbersome hot water extraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号