首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Information on the effects of soil physical properties on plantain yield is rare. A factorial trial was conducted in three southern Cameroonian villages comparing four cropping systems comprising: two planted legumes, (1) Flemingia macrophylla and (2) Pueraria phaseoloides; a crop, (3) hot pepper; and (4) natural regrowth, all planted to plantain established in old forest versus young bush fallow. Initially, bush fallow had significantly higher sand content, mean weight diameter (MWD) and proportion of macroaggregates, but lower clay content and lower proportions of mesoaggregates and microaggregates than forest soil. Between 2002 and 2006, clay and silt content, MWD, geometric mean diameter and the proportion of macroaggregates increased, whereas sand content, bulk density, and the proportions of mesoaggregates and microaggregates decreased in all villages, fallows and cropping systems. Changes in aggregate stability parameters were greater in forest than in bush fallow at Ngoumou and Mfou, and greater in the F. macrophylla and natural regrowth systems than in the pepper and Pueraria systems. In Ngoumou and Nkometou, available water capacity increased. Plantain fresh-bunch yield was unaffected by village, fallow and cropping systems, and was not correlated with soil physical properties or their changes.  相似文献   

2.
选取中国出口大蒜主产区山东省济宁市嘉祥县连作5年大蒜田、金乡县连作25年大蒜田和连作40年大蒜田进行大蒜鳞茎产量及各生长时期根际土壤、非根际土壤理化性质研究。结果显示:大蒜随着连作年限的增加,产量出现先下降后回升的现象;随着大蒜连作年限的增加,根际土壤全磷、速效钾含量呈现富集趋势,而有机质含量随着连作年限增加而逐渐降低;全氮、全磷、有效磷、有机质含量受生长时期的影响大于连作年限,而速效钾含量受连作年限的影响大于生长时期;连作年限与全氮、有机质含量呈极显著的负相关关系。  相似文献   

3.
Different positions within soil macroaggregates, and macroaggregates of different sizes, have different chemical and physical properties which could affect microbial growth and interactions among taxa. The hypothesis that these soil aggregate fractions contain different eubacterial communities was tested using terminal restriction fragment length polymorphism (T-RFLP) of the 16S ribosomal gene. Communities were characterized from two field experiments, located at the Kellogg Biological Station (KBS), MI, USA and the Ohio Agricultural Research and Development Center (OARDC), Wooster, OH, USA. Three soil management regimes at each site were sampled and management was found to significantly affect T-RFLP profiles. The soil aggregate erosion (SAE) method was used to isolate aggregate regions (external and internal regions). Differences between eubacterial T-RFLP profiles of aggregate exteriors and interiors were marginally significant at KBS (accounting for 12.5% of total profile variance), and not significant at OARDC. There were no significant differences among macroaggregate size classes at either site. These results are in general agreement with previous studies using molecular methods to examine microbial communities among different soil macroaggregate size fractions, although further study of communities within different aggregate regions is warranted. Analysis of individual macroaggregates revealed large inter-aggregate variability in community structure. Hence the tertiary components of soil structure, e.g. arrangement of aggregates in relation to shoot residue, roots, macropores, etc., may be more important than aggregate size or intra-aggregate regions in the determination of the types of microbial communities present in aggregates. Direct microscopic counts were also used to examine the bacterial population size in aggregate regions at KBS. The proportion of bacterial cells with biovolumes >0.18 μm3 was higher in aggregate interiors than in exteriors, indicating potentially higher activity in that environment. This proportion was significantly related to percent C of the samples, while total bacterial cell counts were not.  相似文献   

4.
Abstract. The aggregate stabilities of a soil restored after opencast mining and an undisturbed soil were measured over a complete cropping year from the time of ploughing a grass ley in autumn. This was to examine the effects of various post-restoration cropping regimes on soil aggregate stability and soil porosity. A wet sieving technique and a mild dispersion method were used to determine indices of soil macro- and micro-aggregate stability, respectively. Air filled porosity at field capacity and crumb porosity were also determined. Removal, storage and restoration decreased macro- and micro-aggregate stability. After restoration, the different grass managements i.e. cutting for silage and grazing, had similar effects on soil aggregate stability and maintained greater aggregate stability than the arable regimes. The pattern of fluctuation in soil macro-aggregate stability over the year was similar under all crops at both sites, but at the restored site there was a decline in stability, and differences in the air filled porosity at field capacity developed between cropping regimes. Micro-aggregate stability was less at the restored than at the undisturbed site and showed no seasonal variation or difference between cropping regimes. However, a difference in crumb porosity between cropping regimes did develop.  相似文献   

5.
对大庆地区具有代表性的温室进行调查研究,了解不同种植年限对番茄温室土壤微生物及土壤理化性状的影响,为解决温室土壤连作障碍问题奠定理论依据。结果表明,随着种植年限增加,细菌、真菌的数量及土壤速效钾、有效磷、碱解氮、有机质、盐分的含量呈增加趋势,种植年限为10年分别是对照(露地菜田)的2.14、1.33、2.18、2.09、1.96、2.86、9.5倍,土壤p H值相反,种植年限为10年比对照下降了0.64,但放线菌数量与B/F值[(细菌+放线菌)/真菌]在第5年与第7年达到最高,呈现先增高再降低的趋势,分别比对照增加了34.12%、44.26%;随着土壤深度的增加,土壤微生物数量及土壤速效钾、有效磷、碱解氮、有机质、盐分含量降低,土壤含水量、p H值增加。综合分析番茄连作对土壤微生物和土壤理化性状的影响,番茄连作6年后出现一定程度的连作障碍问题。  相似文献   

6.
三种不同种植模式对土壤细菌群落多样性的影响   总被引:2,自引:0,他引:2  
采用变性梯度凝胶电泳(DGGE )技术,研究了不同种植模式对土壤细菌群落多样性的影响。结果表明,不同种植模式下DGGE图谱条带的数量及亮度有较大区别,且有几条特征性条带发生了明显的变化。0—15 cm土层细菌群落的丰富度、多样性指数及均匀度指数均表现为:“菜稻菜模式”(RVCs) “休闲轮作模式”(FRCs) “蔬菜连作模式”(VCCs);15—30 cm土层细菌群落的丰富度、多样性指数及均匀度指数均表现为:FRCs RVCs VCCs。UPGMC聚类分析表明,RVCs 处理的细菌群落结构相似性较低。主成分分析表明,对各主成分起分异作用的主要是 RVCs和FRCs;与主成分因子1 正相关程度较高的种植模式为:RVCs和VCCs,与主成分因子2 正相关程度较高的是 FRCs。可见,水稻土细菌群落多样性与种植模式密切相关,这些变化对土壤细菌群落有重要的调节作用。  相似文献   

7.
Cropping activities may affect soil microbial activities and biomass,which would affect C and N cycling in soil and thus the crop yields and quality.In the present study,a combination of microcalorimetric,enzyme activity(sucrase,urease,catalase,and fluorescein diacetate hydrolysis),and real-time polymerase chain reaction(RT-PCR) analyses was used to investigate microbial status of farmland soils,collected from 5 different sites in Huazhong Agriculture University,China.Our results showed that among the 5sites,both positive and negative impacts of cropping activities on soil microbial activity were observed.Enzyme activity analysis showed that cropping activities reduced soil sucrase and urease activities,which would influence the C and N cycles in soil.Much more attentions should be given to microbial status affected by cropping activities in future.According to the correlation analysis,fluorescein diacetate hydrolysis showed a significantly(P 0.05) negative correlation with the time to reach the maximum power output(R ——0.898),but a significantly(P 0.05) positive correlation with bacterial gene copy number(R = 0.817).Soil catalase activity also showed a significantly(P 0.05) positive correlation with bacterial gene copy number(R = 0.965).Using combined methods would provide virtual information of soil microbial status.  相似文献   

8.
No-tillage (NT) has revolutionized agricultural systems because it has potential benefits including soil conservation and reduced production costs though saving in fuel, equipment, and labor. Soil quality is of great importance in determining the sustainability of land management systems, and soil microbial properties are becoming increasingly used to assess the effect of farming practices on soil quality due to their quick response, high sensitivity, ecological relevance, and capacity to provide information that integrates many environmental factors. In China, research and application of NT have developed quickly since 1970s. Numerous studies have been conducted in this country to evaluate the effect of NT on soil microbial properties. From these studies, it is evident that NT can lead to an increase in soil microbial size or activity or both and a consequent increase in soil microbial biomass in upland cropping systems. However, there are still several issues that remain unaddressed or inadequately specified. Further investigations are needed (1) to determine the effect of NT on soil microbial diversity by using molecular biological techniques in both upland and rice-based cropping systems; (2) to fully understand the changes of soil microbial properties with NT in rice-based cropping systems, especially for double rice cropping systems; and (3) to clarify the relationship between rhizosphere microbial properties and crop growth in NT rice cropping systems.  相似文献   

9.
冬小麦-夏玉米一年两熟是华北平原粮食作物的主要种植制度,存在氮肥利用率低、土壤氮素过量累积问题。为探索华北平原氮素高效利用的适宜种植制度,采用15N示踪技术,基于3 a田间定位试验,对一年两熟冬小麦-夏玉米的常规水氮和优化水氮、两年三熟冬小麦-夏玉米-春玉米与冬小麦-夏大豆-春玉米及一年一熟春玉米3种种植制度的作物产量、15N利用率、氮素去向和土壤氮库表观平衡进行研究。结果表明,两年三熟的冬小麦-夏玉米-春玉米产量为32 248.52 kg/hm2,分别比一年两熟和一年一熟提高22.16%和52.88%;15N利用率为33.36%,比一年一熟提高26.12%。3种种植制度的氮肥去向最高为土壤残留,其次为作物吸收和损失,两年三熟冬小麦-夏玉米-春玉米的作物吸氮量最高为151.82 kg/hm2,土壤氮库表观盈余量为21.22 kg/hm2,显著低于其他种植制度。综合分析,冬小麦-夏玉米-春玉米两年三熟在稳产高产和提高氮素利用率上具有可持续的潜力,是华北平原未来较为理想的种植制度。  相似文献   

10.
黄土高原旱地不同种植模式土壤碳特征评价   总被引:4,自引:3,他引:4  
增强农田土壤碳固持能力、增加碳贮量是减少温室效应气体排放,提高土壤生产力的重要措施。利用黄土高原23 a的定位试验,分层采集休闲、苜蓿连作、玉米连作、小麦连作、豌豆-小麦-小麦-糜子(豆禾)及玉米-小麦-小麦-糜子(禾谷)轮作条件下0~40 cm土层的土样,研究了作物种类和种植模式对土壤不同形态碳的影响。结果表明:与休闲相比,不同作物长期连作或轮作显著提高0~40 cm土层各种形态碳的质量分数,总碳提高35%~74%,有机碳提高47%~139%,无机碳提高20%~26%,轻质有机碳提高的幅度最大,是休闲的  相似文献   

11.
Combined application of manures and fertilizers played a pivotal role in the improvement in soil physico-chemical properties, macro and micronutrients distribution and their transformations under different cropping systems. Based on a cropping system, the different levels of manures and fertilizers were used to study improvement in physico-chemical properties of soil. The aim was to explore the appropriate application of organic manures and inorganic fertilizers for improved sustainable yields of a cropping system. Intensive cropping systems lead to N, P, K, Zn, Cu, Fe, and Mn deficiencies in surface and subsurface soil, which could be refreshed with combined application of manures and fertilizers. The application of manures and fertilizers controls the pH and electrical conductivity of soil. Moreover, manures and fertilizers showed improvement is soil physical conditions viz. bulk density, particle density, porosity, and water holding capacity etc. Manuring coupled with fertilization helped to great extent for macro and micronutrient transformations in the soil. Under these transformations, the soil solution and water soluble component (fractions/pools) of soil is enriched with macro and micronutrients. There was a consistent declining trend of DTPA-extractable Zn, Cu, Fe, and Mn in the sub-surface soil in comparison to the surface layer, which may be ascribed to increase in pH with increase in depth and decrease of organic matter with depth. Similarly, manures reduced the concentration of residual macro and micronutrients in soil. Recently, integrated nutrient management system (INMS) is gaining importance vis-a-vis maintaining the soil fertility with conjunctive use of chemical fertilizers plus organic manures.  相似文献   

12.
Abstract

A common belief is that no‐till systems with adequate fertility will improve soil quality over other tillage systems. The objectives of this study were to determine if crop phase, tillage systems, and n rate in a long‐term rotation affected soil chemical analyses in the surface 15 cm of soil and to evaluate the trend in chemical analyses. To test this hypothesis, surface soil samples were taken from a long‐term (30‐year) cropping and tillage study. This study was initiated in 1965 on a Harney silt loam soil in Central Kansas with every phase of the wheat‐sorghum‐fallow (WDF) rotation included each year. Tillage systems included clear‐till (CT), reduced‐till (RT), and no‐till (NT). In 1975, four nitrogen (N) rates (0, 22, 45, 67 kg N ha1) were incorporated by subdividing the tillage plots. Topdressed N, as ammonium nitrate, was the only fertilizer added throughout the duration of the study. Soil samples were taken at depths of 0 to 7.5 and 7.5 to 15 cm in all plots in 1965 and in 1995. In 1998, soils on 1997 sorghum plots were samples in 2.5‐cm increments to 15 cm. Samples from all dates were analyzed for pH, available phosphorus (AP), and organic matter (OM), and deviations from the controls from 1965 to 1995 were assessed by subtracting 1995 results from 1965 results. The change in soil pH showed a crop phase by sample depth interaction. In the wheat phase, pH in the top 7.5 cm increased by 0.19 and increased by 0.28 in the 7.5–15 cm layer. In the fallow phase, pH increased by 0.04 and 0.35 in the top 7.5 cm and 7.5–15 cm layers, respectively. The pH change for sorghum was intermediate for both depths. The increase in overall pH from 1965 to 1995 was unexpected and contrary to normal expectations of a decrease over time. Soil OM was not changed significantly over the 30 years of the study, suggesting that OM buildup or depletion is very slow under this cropping system on a nearly level soil with minimal soil erosion. Increasing the rate of N application significantly reduced pH in the upper increment samples, but had little effect on pH below 10 cm. The NT system had the lowest surface increment in pH, but differences among tillage systems were minimal below 7.6 cm. The AP was highest for NT in the surface increment, but for CT at deeper depths. Likewise, OM was highest for NT in the 2.5 cm increment and the CT at deeper increments. Under the present N management, pH may reach levels where herbicide effectiveness and phosphorus availability could be affected adversely. Deep tillage by one‐way or mold‐board plowing might be an interim solution to raise the pH before liming is implemented or P fertilizer is added to maintain adequate AP throughout the top 15 cm. Nitrogen management may need to be changed to some form of band‐type placement to reduce the total N applied. Under the conditions of this study (WSF, reduced tillage, and 57 cm annual precipitation), soil OM increased very slowly.  相似文献   

13.
Abstract. To determine the effects of low-input agriculture on soil properties, we compared several forms of arable land management in a rotation experiment lasting 8 years on a Cambisol in Lithuania. Conventional arable cropping with applications of inorganic fertilizers increased the potassium (K) status of the soil, but resulted in losses of nitrogen (N) from the soil by mineralization and leaching. With ley–arable integrated cropping, a similar fertilizer regime based on farmyard manure (FYM) augmented with inorganic fertilizers increased the phosphorus (P), K, organic matter and N in the soil, as well as increasing N loss by leaching. These two high-input regimes were compared to three systems with less or no input. A reference treatment with no input, which produced small crop yields, maintained its nutrient status and organic matter. An organic regime receiving FYM and green manure lost only P, but maintained its K and N status, while a second organic regime in which the FYM was replaced by composted sewage maintained its fertility. The microbial activity varied somewhat from treatment to treatment, with the largest numbers of almost all groups of microorganisms in the reference treatment. All treatments led to decreases in fulvic acid, and the soil managed conventionally lost humic acid, too. The content of humic acid increased in the treatments where FYM was applied and in the reference soil, and the fraction bound to calcium increased in the integrated and the first organic treatments. The soil structures under the integrated cropping and second organic regime were the most stable. Of the low-input systems, the second organic regime seemed the most sustainable.  相似文献   

14.
马铃薯连作栽培的土壤水分效应研究   总被引:3,自引:0,他引:3  
以宁南山区连作1年、3年、6年、10年的马铃薯地块为研究对象,利用定位观测数据,对不同连作年限下马铃薯生长特性及土壤水分变化规律进行研究。结果表明:马铃薯植株高度、叶面积和日净光合速率随连作年限的增加而降低;开花前后是马铃薯需水的高峰期,各连作年限马铃薯地块土壤水分的季节变化趋势一致,但连作6年、10年土壤含水量明显低于连作1年、3年;开花期不同连作年限土壤水分均在40~60cm层出现水分含量较低的干土层,干化程度随连作年限的增加而加重;连作6年的马铃薯地块在40~60cm处土壤水分含量降至11.63%,开始出现轻度干层迹象,连作10年40~60cm处土壤含水量为10.54%,逐步向中度干层过渡;且连作年限超过3年土壤水分利用效率明显降低。由于宁南山区土层深厚,土壤表层水分可通过降雨得到恢复,而连作超过3年深层土壤水分难以恢复,并对土壤水分环境产生深刻的负面影响。  相似文献   

15.
为了揭示耕作措施对东北玉米田土壤物理性质的影响,本研究进行了连续4年的田间定位试验,探明了深松(ST)、免耕(NT)以及传统耕作(CT)对东北玉米田土壤物理指标(土壤容重、土壤三相比、土壤结构指数以及颗粒组成)的影响。结果表明:与传统耕作相比,深松处理能够显著降低0~20 cm土层的土壤容重(P<0.05),下层土壤(20~40 cm)各处理间差异不显著,其中免耕处理土壤容重最大;同时,深松处理降低了0~40 cm土层的土壤固相比例,显著增加气相比例(P<0.05),而免耕处理增加了下层土壤(20~40 cm)的固相比例,降低了液相比例;深松处理可以显著提高下层土壤的结构指数,平均增加28.3%(P<0.05),另外,深松处理的土壤三相结构距离为15.0,显著低于其他两个处理(18.4和17.7)(P<0.05),使得耕层土壤物理结构更加接近理想状态,免耕与常规耕作处理间的差异不显著;深松可以增加0.002~0.2 mm粒级的比例,0~40 cm土层中土壤颗粒0.002~0.2 mm等级中所占比例大小依次为深松>免耕>传统耕作。种植玉米后,深松耕作措...  相似文献   

16.
Effects of cropping systems on soil organic matter (SOM) in a pair of conventional and biodynamic mixed cropping farms were investigated. Soil samples (0–75 and 75–150-mm depths) were analysed for total carbon (TC), total nitrogen (TN), microbial biomass C (BC) and microbial biomass N (BN), and sequentially extracted for labile and stable SOM using cold water, hot water, acid mixtures and alkalis. In the biodynamic farm, TC and TN decreased with increasing period of cropping but the reverse occurred under pastures. These were not shown in soils from the conventional farm, probably due to N fertilizer additions. Under pastures, increases in SOM were attributed to greater biological N2 fixation and the return of plant residues and excreta from grazing animals. Overall, sensitive SOM quality indicators found for labile SOM were BN, BN:TN and HC:TC, and for stable SOM were HCl/HFC, HCl/HFC:TC, humin C, humin N, humin C:TC and humin N:TN. The BN and BN:TN were better indicators than BC and BC:TC. The humin fraction was strongly related to both labile and stable SOM fractions suggesting that humin contained non-extractable strongly complexed SOM components with mineral matter and also non-extractable plant and microbial residual components. Received: 10 October 1996  相似文献   

17.
【目的】反硝化作用导致农田土壤氮素损失和温室气体N2O的排放。研究不同作物茬口对土壤反硝化细菌群落结构的影响,旨在揭示作物茬口影响N2O排放的相关机制。【方法】定位试验位于黑龙江省海伦市前进乡光荣村(47°23′N,126°51′E),种植方式包括玉米连作(CC)、大豆连作(SS)以及玉米–大豆轮作,每年一季。取样时,轮作体系玉米已倒茬三次、大豆两次。采集CC、SS以及轮作体系中的大豆茬口(SSC)和玉米茬口(CSC)的表层土壤(0—15 cm)样品,利用实时定量PCR (qPCR)和高通量测序技术,分析土壤中的nirS和nirK型反硝化细菌丰度和群落组成。【结果】在4个作物茬口土壤中,CC处理的反硝化速率最高,玉米–大豆轮作体系中SSC和CSC处理的反硝化速率显著高于SS处理。轮作体系两个茬口SSC和CSC处理的nirS和nirK型反硝化细菌基因丰度多显著高于SS处理,而与CC处理多差异不显著。PCoA结果显示,SSC和CSC处理的nirS型反硝化细菌群落间差异显著,而CC和SS处理的nirK型反硝化细菌群落间存在显著差异。RDA分析结果表明,NO3~–-N和C...  相似文献   

18.
在陕西关中地区研究了有限灌溉与旱地蓄水保墒栽培相结合的不同栽培模式和施氮量对冬小麦夏玉米轮作体系中硝态氮残留的影响。结果表明,种植五季作物后不同栽培模式0200.cm土壤剖面残留硝态氮平均在2183~29.kg/hm2之间,且残留的硝态氮主要集中在100200.cm土层。不同栽培模式相比,垄沟模式0200.cm土层的硝态氮残留量最高。随着种植年限和施氮量的增加,0200.cm土层硝态氮残留量随之显著增加。施用240kg/hm2氮肥,第五季作物收获后0200.cm土层硝态氮的残留量达477.kg/hm2;从第三季作物收获到第五季作物收获,残留硝态氮的增加量占这一时期氮肥施用量的比例高达51.6%。种植作物五季后,常规、节水和覆草模式在080.cm土层硝态氮残留量相对较低,而80.cm以下土层硝态氮残留量随着施氮量的增加明显增加。垄沟栽培模式在0200.cm土壤剖面残留硝态氮的量随施氮量增加显著增加,且在0120.cm土层硝态氮残留量明显高于其它模式。  相似文献   

19.
紫色土坡地不同种植模式下水土和养分流失动态特征   总被引:9,自引:0,他引:9  
以径流小区定位监测为基础,研究了紫色土坡地不同种植模式对水、土及养分流失特征的影响。种植试验结果表明:紫花苜蓿+青蒿模式和连翘+紫苏种植模式能较好地保持水土。各小区养分流失表现为:玉米/红苕模式小区地表径流全氮和有效氮含量高于其他小区,玉米/红苕模式和连翘+紫苏模式的小区流失泥沙全氮养分富集度高于其他小区,传统农作模式玉米/红苕通过地表径流和泥沙迁移的全氮流失总量最大,可能造成土壤耕作层肥力下降。观测期间,除由于较强的生物固氮作用,紫花苜蓿+青蒿模式增加了土壤全氮含量外,各种植模式下土壤养分均呈下降趋势,表明各小区均出现较明显的养分流失。试验证明:由于传统农作方式水土流失量最大,导致养分流失量大,对环境有较大影响。因此应注意减少传统农作方式中的地面扰动,并提高雨季地表覆盖率,从而保证农业生产的可持续发展。  相似文献   

20.
The effects of up to 23 years of agricultural cropping of a boreal forest soil on soil organic carbon (SOC) and N, P, and K pools were studied. The cropping systems studied were: (a) continuous barley, (b) continuous forage bromegrass, (c) continuous forage legume, and (d) barley/grass-legume forage rotation. Continuous bromegrass increased while other cropping systems decreased SOC in the surface soil. Kjeldahl N in soil approximately followed the trend in SOC. The net gain in N under continuous grass was attributed mostly to nonsymbiotic N fixation. Changes in SOC content appeared to be also influenced by cropping and tillage frequencies. Changes in fixed (intercalary) ammonium were small. There was no measurable change in total P, in part, because input was only slightly higher than crop offtake. Organic P increased under continuous bromegrass, and tended to decrease under continuous legume. The C/N and C/P ratios of soil organic matter decreased slightly with cropping. Exchangeable K (Kex) was decreased by cropping systems containing a legume crop to a greater extent than those without a legume crop. Most of the decrease occurred in the 0–15 cm depth. Nitric acid extractable K was not affected by cropping. Since net loss of Kex to 30 cm depth was substantially less than crop offtake, it is suggested that subsoil K reserves and matrix K were supplying a major portion of the crops' K requirement. It is concluded that the effects of cropping systems on SOC, N, P and K are influenced by crop type, and cropping and tillage frequencies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号