首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lime, gypsum and various gypsum‐like by‐products have long been applied to soil surfaces as ameliorants of soil acidity and aluminium and manganese toxicity. We examined changes in chemical and mineralogical properties at two different depths in two acid soils one year after the application of gypsum, phosphogypsum + dolomitic residue, red gypsum + dolomitic residue, sugar foam, and sugar foam + mined gypsum. All treatments were found to increase the proportion of Ca2+ and decrease those of Al3+ and Mn2+ in the exchange complex of the surface and subsurface horizons, thus reducing its effective Al and Mn saturation. However, the mined gypsum treatment resulted in losses of Mg2+ from the Ap horizon of the soils, and the sugar foam treatment was not so effective with the AB horizons as the other treatments. The combined application of both gypsum‐like by‐products and the dolomitic residue proved the most effective choice with a view to reducing the effective Al and Mn saturation of the exchange complex in the Ap and AB horizons. In addition, both treatments reduced Mg2+ losses at both depths. Finally, all treatments resulted in the formation and retention on mineral and organic surfaces of a large fraction of the Al3+ released by exchange with Ca2+ as Al polymers. This is quite consistent with the observed changes in the CuCl2‐, oxalate‐ and DTPA‐extractable Al contents as well as by SEM and EDS analyses. Based on these results, the use of the appropriate mixtures of these by‐products is an effective alternative to that of mined gypsum and lime to alleviate soil acidity and reduce toxic concentrations of Al3+ and Mn2+ in agricultural acid soils.  相似文献   

2.
Abstract

Gypsum (CaSO4 · 2H2O) is used in agriculture both as a source of calcium (Ca) and sulphate (SO4 2?) and as an amendment to improve soil structure. The effect of gypsum on the adsorption of SO4 2? in irrigated and nonirrigated soils was examined. Almost all of the indigenous sulphate (SO4) in a range of Golesthan and North Khorasan soils with moderate pH values (>6) was found to be present in the soil solution and, as a consequence, was highly susceptible to leaching. The adsorption of sulphate to the soils receiving no gypsum was greater with correlation coefficient of r=0.91 at 0 kg S ha?1 as compared to the soils received 40 kg ha?1 of gypsum as fertilizer with the value of r=0.88 in Golesthan Province. The same trend was observed in Khorasan Province with r=0.79 and r=0.75 with soils receiving 0 and 40 kg S ha?1, respectively. The results were more pronounced in irrigated fields for both provinces. The amount of sulphate adsorption in Golesthan Province soils was comparatively greater than soils of Khorasan Province. The results raise questions regarding the efficiency of SO4‐containing fertilizers in correcting and preventing S deficiency in situations where leaching is a concern.  相似文献   

3.
In view of growing concern about sulfur (S) deficiency, we attempted to study the effect of soil characteristics on the adsorption and translocation of S in soils. Laboratory experiments were conducted with five surface soils collected from three regions in the state of Orissa (Eastern India). In an adsorption study, all the soils were equilibrated with graded doses of potassium sulfate (K2SO4). Freundlich adsorption isotherms provided good fit to S adsorption data. Free Fe2O3 and Al2O3 in the soils were primarily responsible for retaining added S in soils. Further, studies on the movement of sulfate‐S in 30‐cm plexiglass columns, where radio‐labeled S along with water (5 cm) was applied as gypsum and K2SO4, showed that K2SO4‐S migrated deeper than gypsum‐S. Sulfur moved deeper in case of initially water‐saturated soils than in initially air‐dry soils.  相似文献   

4.
Abstract

Sulfate (SO4 2‐) is present in soils as salts of various metals, and the different metals associated with sulfate may influence adsorption of SO4 2‐by soils. The analytical method used for determination of SO4 2‐could be affected by the type of metal associated with the SO4 2‐. Four analytical methods based on different principles were evaluated for determination of SO4 2‐in different metal salts and in soil extracts obtained with three extractants {0.1M lithium chloride (LiCl), 0.15% calcium chloride (CaCl2), and 500 mg P/L as calcium phosphate [Ca(H2PO4)2]}. The analytical methods were: (i) a methylene blue (MB) colorimetric method after the reduction of SO4 2‐to hyrogen sulfide (H2S), (ii) an ion Chromatographie (IC) method, (iii) a turbidimetric (TD) method, and (iv) an indirect barium (Ba) atomic absorption spectrophotometric (SP) method. The recovery of SO4 2‐associated with various mono‐, di‐, and tri‐valent metals was quantitative by the MB method. But, trivalent metals, such as aluminum (Al), indium (In), lanthanum (La), and scandium (IC), decreased the recovery of SO4 2‐by the other three methods. The MB and IC methods gave similar values for SO4 2‐in soils by using the three extractants. The TD and SP methods gave variable results and, in general, underestimated the amounts of SO4 2‐in soils. Among the four methods, the MB and IC methods were the most accurate and precise.  相似文献   

5.
本文利用模拟土柱试验研究了施用石灰和石膏对第四纪红粘土发育的红壤中元素淋溶过程的影响。结果表明,施用石灰后10cm土层中除Ca^2+以外的阳离子元素的淋失量减少,而SO4^2-和HCO3^-的淋失量增加;施用石膏后10cm土层中所有阳离子元素,特别是AI^3+的淋失量增加。红壤中Ca^2+的淋失以自由态为主,施用石膏后与SO4^2-结合的比例增加,不同处理中30cm土层处铝的淋失以自由态为离,10  相似文献   

6.
Abstract

Growing evidence of positive crop responses to gypsum or phosphogypsum (PG) application in acid soils strongly support the use of these amendments as an ameliorant of subsoil acidity. Although gypsum improves Ca availability in subsoils, its role in alleviation of Al toxicity needs careful attention. In the current study, either PG, CaSO4.2H2O or CaCl2.2H2O was added (to supply 12 mM Ca) to solutions containing 40 μM Al at pH 4.1 + 0.1. Solution pH was gradually raised to 4.5, 4.8 and then to 5.3 at various time intervals during 25 d aging of the solutions at 25 + 1OC.

Concentration of Al measured by aluminon method without preacidification and preheating, referred to as “reactive Al”; in this paper, was 16 μM in 2 g L‐1PG solution without added Al. This accounted 38% of total soluble Al in PG solution. Addition of 2 g L‐1PG to solution containing 40 μM Al, resulted in only 42% of total Al in solution present in forms reactive with aluminon. According to MINTEQ speciation model, Al in solution was present as an entirely complexed form with F. An increase in solution pH up to 5.3 had no effect on measured concentration of reactive Al or predicted distribution of Al species.

Addition of CaSO4.2H2O to 40 μMAl solutions had no effect on the concentration of reactive Al within pH 4.1 ‐4.8, however, up to 62% of total Al was in a form complexed with SO4 2‐, as predicted by MINTEQ model. The concentration of reactive Al decreased by 60% at pH 5.3. Addition of CaCl2.2H2O also had no effect on the concentration of reactive Al within pH 4.1 ‐ 4.8. Nearly 73 ‐ 94% of total Al was present in Al3+form. An increase in pH to 5.3, decreased the concentration of reactive Al by 27%. The results suggest that ion‐pairing of Al with Fwould appear to be a possible mechanism for alleviation of Al toxicity by PG at pH range 4.1 ‐ 5.3. With regard to CaSO4.2H2O, at pH 4.1 ‐ 4.8 ion‐pairing with SO.4 2‐appears to be possible mechanism for the alleviation of Al toxicity. In addition, at pH 5.3 a considerable decrease in reactive Al was evident which would further alleviate Al toxicity.  相似文献   

7.
Abstract

Nitrogen (N) dynamics in the agriculturally important alluvial soils of the southern Mississippi Delta are not well understood, and little information is available regarding the amounts of various forms of N present in these soils. Profiles of nine alluvial soils were selected to represent the principal agricultural acreage in the southern Mississippi Delta. Soils were sampled by horizon to a depth of 150 cm and the distribution of various N fractions were characterized. Forty‐one additional chemical, physical and mineralogical properties were measured, and regression techniques were used to determine if these soil properties were related to N distribution in the highly heterogeneous soils typical of this region. These profiles contained 11.6 to 26.5 Mt N/ha (average 18.8 Mt N/ha). The surface 15 cm contained an average of 4.8 Mt N/ha and accounted for about 26% of the profile N. Most of N in the surface 15 cm was recovered as organic N (78.4–87.4%), and the balance recovered primarily as nonexchangeable ("clay‐fixed") NH4+. In subsurface horizons, nonexchangeable NH4 + represented a substantially larger fraction of total N (average 35.6 %). The amounts of exchangeable NH4 + and NO3‐ were very low in most samples and accounted for only 0.2–0.7% of surface N and 0.3–2.5% (average 0.7%) of the total N accumulated within horizons. The proportion of total N recovered as organic N was most closely related to organic carbon (C) content and the amounts of 2: 1 type of clay minerals present in the horizon. Even though subsurface horizons contained an appreciable portion of their N as inorganic nonexchangeable NH4 +, organic C content was the best single indicator of total N content (r2= 0.931) within the 52 horizons studied.  相似文献   

8.
The aim of this study was to verify if the application of silicate or lime, in association with gypsum, on sugarcane residue can lead to amendment of subsurface soil acidity, increasing sugarcane yield and profitability. The treatments were: 1 – control (without application of amendments), 2 – gypsum, 3 – dolomitic limestone, 4 – silicate, 5 – dolomitic limestone + gypsum, and 6 – silicate + gypsum. The surface application of gypsum led to reduction in Al (aluminum) contents and Al saturation, and increase in Mg+2, Ca+2, K+, S–SO4?, and base saturation in deeper soil layers, as well as increased yield of stalks, sugar, trash, bagasse, and energy, and greater profit. The application of limestone and silicate, alone or in association with gypsum, amend soil acidity throughout the soil profile. It likewise leads to an increase in stalk, sugar, trash, bagasse, and energy yield, however, application of silicate in association with gypsum leads to the greatest profitability.  相似文献   

9.
To investigate the potential of synchrotron‐based X‐ray Absorption Near‐Edge Structure spectroscopy (XANES) at the sulphur (S) K‐edge for a discrimination of adsorbed and precipitated sulphate in soils and soil particles, XANES spectra of ionic sulphate compounds and Al/Fe hydroxy sulphate minerals were compared with spectra of SO42? adsorbed to ferrihydrite, goethite, haematite, gibbsite or allophane. Ionic sulphate and hydroxy sulphate precipitates had broader white‐lines (WL) at 2482.5 eV (full width at half maximum (FWHM) of edge‐normalized spectra, 2.4–4.2 eV; Al hydroxy sulphates, 3.0 eV) than SO42? adsorbed to Al/Fe oxyhydroxides or allophane (FWHM, 1.8–2.4 eV). The ratio of the white‐line (WL) height to the height of the post‐edge feature at 2499 eV (WL/PEF) was larger for SO42? adsorbed to Al/Fe oxyhydroxides or allophane (8.1–11.9) than for Al/Fe hydroxy sulphates and ionic sulphates (3.9–5.7). The WL/PEF ratio of edge‐normalized S K‐edge XANES spectra can be used to distinguish adsorbed from precipitated SO42? in soils and also at microsites of soil particles. The contribution of adsorbed and precipitated SO42? to the total SO42? pool can be roughly quantified. Adsorbed ester sulphate may result in overestimation of precipitated SO42?. The spectra of most soils could be fitted by linear combination fitting (LCF), yielding a similar partitioning between adsorbed and precipitated SO42? as an evaluation of the WL/PEF ratio. The SO42? pool of German forest soils on silicate parent material in most cases was strongly dominated by adsorbed SO42?; however, in three German forest soils subject to elevated atmospheric S deposition, a considerable portion of the SO42? pool was precipitated SO42?, most likely Al hydroxy sulphate. The same is true for Nicaraguan Eutric and Vitric Andosols subject to high volcanogenic S input. In the subsoil of the Vitric Andosol, adsorbed SO42? and Al hydroxy sulphate coexist on a micron scale.  相似文献   

10.
Biological, chemical and bio‐chemical strategies have been tested in the past for reclamation of saline‐sodic and sodic soils. The efficiency of two crop rotations (rice‐wheat and Sesbania‐wheat) alone or in combination with either gypsum (CaSO4.2H2O) or sulfuric acid (H2SO4) was tested for ionic displacement from four saline‐sodic soils. Pure gypsum was applied at 50 per cent of soil gypsum requirement at the time of planting rice and Sesbania, whereas 95 per cent pure sulfuric acid was added at 50 per cent soil gypsum requirement as one‐third applications by mixing with the first three irrigations. The rice crop biomass decreased at a soil saturation extract electrical conductivity (ECe) of 8 dS m−1, whereas wheat and Sesbania were influenced at a sodium adsorption ratio (SAR) of ≥40. Gypsum treatment helped the crops flourish well at these ECe and SAR levels. The infiltrated volume of water dropped with decrease in ECe : SAR ratio of soils and increase in crop biomass production. Crops rotation treatments alone helped leach sodium (Na+) and other ions successfully at SAR ≤ 21 but were less effective at SAR ≥ 40 at which point plants growth was also curtailed. Gypsum and H2SO4 treatments significantly aided leaching of Na+ and other ions with water at SAR ≥ 40 under both the crop rotations. Hence, crops effectively reclaimed soil at low sodicity level, whereas at high SAR, chemical amendments are obligatory in order to reclaim soils. This study also suggests that the required dose of H2SO4 should be applied with pre‐planting irrigation for better yield of the first crop. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
Retention of S04 2? was investigated in Galician soils throughout an intense regime of acidification. Experiments consisted of the addition of an H2SO4 solution (pH 2.7) to columns of 6 soils of contrasting properties over 1, 2, or 5 months. Leachates were obtained continuously throughout the experiment for analysis, and analysis made of the solid fractions after 1, 2 or 5 months. The greatest capacities for retention of S04 2? were found in soil developed from serpentine and micaschist; the lowest in soils from granite, slate and sandy sediments. The surface horizons, especially those rich in organic matter, displayed low retention of 5042-. The amount of S04 2? adsorbed throughout the experiment depended on the content of crystalline forms of Fe and with the Fe and Al extracted with dithionite-citrate.The low retention of S04 2? in the organic horizons and the slightly negative relation with the organic matter suggest an inhibitory effect of the organic matter on the S04 2? retention process. Results of the study show, that under conditions of moderate acidity, SO4 2? retention occurs in the form of adsorption; in strongly acidic conditions, the precipitation of aluminium-sulphate minerals may provide an additional retention mechanism.  相似文献   

12.
Abstract

The influence of soil organic matter on selenite sorption was investigated in the selenite adsorption capacity and the surface particle charge change by ligand exchange reaction using the hydrogen peroxide (H2O2) treatment and the ignition treatment of two Andosols. The removal of organic carbon (C) in soils accelerated selenite sorption, implying that organic matter of soils had negative influence on the selenite adsorption on the soils. Positive charge decrease on soil particles, concomitant proton consumption, and release of silicon (Si), sulfate (SO4 2‐), and organic C were observed in selenite sorption by the soils. The development of surface particle negative charge with selenite sorption was smaller in the H2O2‐treated soil than in the original soils and was scarcely observed in the ignition‐treated soil. It can be assumed that the increase of negative charge by selenite sorption was attributed to new negative sites borne by released insoluble organic matter and negative charge development directly by selenite sorption was small.  相似文献   

13.
The dynamics of biological denitrification in riparian soil is still poorly understood. We studied the spring‐time pattern of denitrifying enzyme activity (DEA) and the rate of denitrification (DNT) in two hydromorphic riparian soils, one a mollic Gleysol and the other a terric Histosol. The average DEA ranged from 73 to 1232 ng N g?1 hour?1, and DNT ranged from 4 to 36 ng N g?1 hour?1. Both DEA and DNT diminished with increasing depth in both soil types. This decrease corresponded to a decrease in total and K2SO4‐extractable organic carbon and K2SO4‐extractable mineral nitrogen. The DEA and DNT differed in their dynamics. The former had no evident pattern in subsurface horizons but increased with temperature at the end of spring in surface and structural horizons. The DNT diminished as the soil dried in the mollic Gleysol when the water table fell. In the terric Histosol, the water table was still too high at the end of spring to affect the DNT. The results suggest that the vertical pattern of denitrification is related to that of organic carbon content. This organic carbon content determines biological activity and the supply of carbon and nitrous oxides. In biologically active horizons temperature drives the dynamics of DEA, whereas soil moisture drives the dynamics of DNT. Our results show the importance of the dynamic soil–water relationship in controlling denitrification within the riparian zone.  相似文献   

14.
Acidic groundwaters and soils in Halland County (Hailands län), southwest Sweden, have been investigated with respect to conditions of soluble aluminium (Al) and sulphate (SO4 2?. Basic Al-sulphate, Fe-oxide, Al-oxide, Al-hydroxide and clay minerals, are discussed and evaluated in their roles for governing Al and SO4 2? in the groundwaters. Based on this investigation, it is suggested that Al3+ solubility is controlled by amorphous Al-hydroxide. The SO4 2? in the groundwaters will depend primarily on the H2SO4 input. The H2SO4 load enhances soil mineral weathering which enhances the production of Fe-oxides, i.e. anion exchange surface sites, to which groundwater SO4 2? attain adsorption equilibra. The factors that control solubility of Al and SO4 2? are both influenced by the acidity in the soil catenas which in the area largely depend on the H2SO4 input. Clay minerals such as illite, smectites, halloysite, and variable composition Al-silicates do not exert strong control on Al in the groundwaters investigated.  相似文献   

15.
Abstract

A great deal of information on the efficiency of gypsum or phosphogypsum to ameliorate acidity in highly weathered soils is available, but only limited information is available on the efficiency in acid Andosols, which possess large amounts of active aluminum (Al). We examined the effectiveness of gypsum application to non-allophanic Andosols (one humus-rich A horizon and two B horizons poor in humus) using extractable soil Al analyses (batch and continuous extraction methods) and a cultivation test using burdock (Arctium lappa). With gypsum amendment, pH(H2O) values of the soil decreased from 4.5–4.7 to 4.2–4.4, whereas the treatment made almost no difference to the values of pH(KCl). Total active Al (acid oxalate-extractable Al) was hardly affected by gypsum for all samples. Potassium chloride-extractable Al definitely decreased with the addition of gypsum in all soils; however, the decrease was small (0.1–1.4 cmolc kg?1) and the values still exceeded “the threshold of 2 cmolc kg?1” for inducing Al toxicity in sensitive plants (4.4–8.6 cmolc Al kg?1). The change in Al solubility with gypsum application represented by Al release rates from soils using continuous extraction methods with a dilute acetate buffer solution (10?3 mol L?1, pH 3.5) differed greatly among the soil samples: The release rate of one of the B horizon samples decreased by 71%, certainly showing the insolubilization of Al compounds, whereas the release rates of the A horizon sample showed almost no change. These changes in Al solubility were well correlated with the plant root growth. Root growth was improved with gypsum in the B horizon sample, whereas improvement was not observed in the A horizon soil. The decrease in the rate of Al release of another B horizon soil with gypsum treatment was smaller (by 20–34%), possibly because of lower pH values after gypsum application (pH[H2O] of 4.2–4.3). In the B horizon soil, root growth improved only slightly. Thus, the effectiveness of gypsum application to acid Andosols appeared to be largely influenced by soil humus contents and slight differences in soil pH values, and corresponded to a decrease in Al release rates using the continuous extraction method.  相似文献   

16.
Sulphate sorption on to the surface of short‐range ordered minerals and precipitation of Al‐hydroxy sulphate contribute to the acid neutralizing capacity of soils. The correct measurement of total inorganic sulphate is thus essential in soils that are accumulating SO42– anions. We extracted SO42– by various solutions, namely 0.005 m Ca(NO3)2, 0.016 m KH2PO4, 0.5 m NH4F and 0.2 m acidic NH4‐oxalate (pH 3), from Vitric and Eutric Andosols exposed to prolonged deposition of acid and SO2 from an active volcano (Masaya, Nicaragua). We attributed sulphate extractable by KH2PO4 (20–3030 mg kg?1) to anion‐exchangeable SO42–, which was much smaller than NH4F‐ and oxalate‐extractable SO42– (400–9680 and 410–10 480 mg kg?1, respectively). Our results suggest the occurrence of a sparingly soluble Al‐hydroxy‐mineral phase extractable by both NH4F and oxalate. The formation of Al‐hydroxy minerals would result from the combination of enhanced weathering caused by strong acid loading and simultaneous occurrence of large SO42– concentrations in soil solution. Oxalate extracted slightly more inorganic SO42– than did NH4F, this additional amount of SO42– correlating strongly with oxalate‐extractable Si and Fe contents. Preferential occlusion of SO42– by short‐range ordered minerals, especially ferrihydrite, explains this behaviour. If we exclude the contribution of occluded sulphate then oxalate and NH4F mobilize similar amounts of SO42– and are believed to mobilize all of the inorganic SO42– pool.  相似文献   

17.
Abstract

A rapid and precise method for determination of SO4 2‐‐S in soils is described. It involves the extraction of SO4 2‐ from soils and its reduction to H2S by a reagent containing Sn and H3PO4 and subsequent determination as methylene blue. The results agreed closely with those obtained by reduction with the a reagent containing HI, H3PO2, and HCOOH and by ion chromatrography. Tests indicated that, in addition to SO4 2‐, the Sn‐H3PO4 reagent reduces certain organic S and reduced inorganic S compounds, but these S compounds are not present in extracts of agricultural soils. By using a bank of 10 distillation units, a single operator can perform 60 analyses in a normal working day.  相似文献   

18.
Abstract

Soil salinization and sodication affect large areas of agricultural land in the world. Amelioration of these soils to make them suitable for agricultural production depends on understanding sodium dynamics and chemical interactions governing nutrient availability. Three locations in eastern Croatia were characterized to the 5‐m depth. The two solonetz‐solonchak soils were alkaline, whereas the solonetz soil had near‐neutral A/E horizon and alkaline deeper horizons. Electrical conductivity of the saturated extract (ECe) was greater than 4 dS m?1 in the top horizons in the solonetz‐solonchak soils. The solonetz soil had 2.8–4.7 dS m?1 in shallow A/E, CG, and G horizons and up to 6.3 dS m?1 below 1.5 m. Highly alkalinized sodic horizons (exchangeable sodium percentage, ESP >20) had 24–47% Ca2+ and 27–33% Mg2+ on the cation exchange complex. Sodium adsorption ratio (SAR) was high (18–26) in the P horizon and even more so in Bt,na horizon (35–36) of solonetz‐solonchak soils. A strong negative exponential relationship existed between soluble Ca2+ and SAR (SAR increased greatly when Ca2+ dropped to around 3 mg dm?3). An increase in pH to greater than 8.4 resulted in an exponential increase in SAR. Leaching of Na+ with successive volumes of water was similarly effective for the P and Bt,na horizons in the solonetz‐solonchak soils, but SAR remained greater than 15 even after six successive cycles of leaching. In conclusion, extensive amelioration of tested soils with gypsum and leaching will be required to overcome poor physical and chemical characteristics caused by various degrees of alkalization and sodication to bring these soils into production.  相似文献   

19.
Abstract

Turbidimetric methods, using Ba ions to precipitate SO4, are frequently used to determine soil sulfates extracted with phosphate solutions. These methods, as routinely performed, seriously underestimate SO4 in some soils of the tropics because phosphate is removed from the extractant by soil adsorption and because many extracts fail to yield satisfactory precipitate even if the extracting procedure is adequate. Decolorizing the extracts with carbon black, treating extracts with strong oxidizing agents, adding SO4 spikes, and seeding the extracts with BaCl2 seed‐crystals improve precision, but some extracts, especially those from soils derived from volcanic ash, do not yield reliable precipitates even though these procedures are employed. This paper presents a method that consistanlty yielded more SO4 than other turbidimetric procedures with which it was compared. The proposed method was further validated against an ion‐chromatographic method for SO4 determination. The two methods yielded virtually identical results.

The proposed method consists of extracting SO4 with 0.04 M Ca(H2PO4)2 pH 4, at a soil‐to‐solution ratio of 1: 10. Repeated extraction is necessary for phosphate‐retentive soils. (A. single extraction was approximately 40% effective for removing indigenous SO4 from a Hydric Dystrandept subsoil, approximately 78% effective for an Eutrustox.) Organic materials are removed from the extracts by adsorption on charcoal; SO4 is concentrated in the extract by volume reduction; a SO4 spike is added; BaCl2seed crystal is added, after which volume is increased by adding BaCl2 solution. Optical density is read at 600 nm.  相似文献   

20.
Land use and mineral characteristics affect the ability of surface as well as subsurface soils to sequester organic carbon and their contribution to mitigation of the greenhouse effect. There is less information about the effects of land use and soil properties on the amount and composition of organic matter (OM) for subsurface soils as compared with surface soils. Here we aimed to analyse the long‐term (≥ 100 years) impact of arable and forest land use and soil mineral characteristics on subsurface soil organic carbon (SOC) contents, as well as on amount and composition of OM sequentially separated by Na pyrophosphate solution (OM(PY)) from subsurface soil samples. Seven soils with different mineral characteristics (Albic and Haplic Luvisol, Colluvic and Haplic Regosol, Haplic and Vertic Cambisol, Haplic Stagnosol) were selected from within Germany. Soil samples were taken from subsurface horizons of forest and adjacent arable sites continuously used for >100 years. The OM(PY) fractions were analysed for their OC content (OCPY) and characterized by Fourier transform infrared spectroscopy. Multiple regression analyses for the arable subsurface soils indicated significant positive relationships between the SOC contents and combined effects of the (i) exchangeable Ca (Caex) and oxalate‐soluble Fe (Feox) and (ii) the Caex and Alox contents. For these soils the increase in OC (OCPY multiplied by the relative C=O content of OM(PY)) and increasing contents of Caex indicated that OM(PY) mainly interacts with Ca2+. For the forest subsurface soils (pH < 5), the OCPY contents were related to the contents of Na‐pyrophosphate‐soluble Fe and Al. The long‐term arable and forest land use seems to result in different OM(PY)‐mineral interactions in subsurface soils. On the basis of this, we hypothesize that a long‐term land‐use change from arable to forest may lead to a shift from mainly OM(PY)‐Ca2+ to mainly OM(PY)‐Fe3+ and ‐Al3+ interactions if the pH of subsurface soils significantly decreases to <5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号