首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

Alkaline‐treated wastewater sludges with varying doses of fly ash were added to a clay soil at rates equivalent to 100 t (dry weight) raw sludge ha?1 soil, and the variations in ammonium, nitrate, and total nitrogen contents were monitored throughout an incubation period of 360 days at 28°C. The results showed that inhibition of organic nitrogen mineralization occurred in soil amended with fly ash–containing sludge during the first 90 days of incubation. After the total incubation period of 360 days, the inhibition effects of alkaline sludge amendments totally disappeared. In fact, mineralization was enhanced in alkaline pasteurized sludges containing 80% and 120% fly ash. The overall results indicated that application of sludges amended with fly ash may prolong the use (3 to 6 months) of nitrogen from the organic nitrogen pool in sludge.  相似文献   

2.
Abstract

Fly ash from the coal‐burning industry may be a potential inorganic soil amendment to increase rice productivity and to restore the soil nutrient balance in paddy soil. In this study, fly ash was applied at rates of 0, 40, 80, and 120 Mg ha?1 in two paddy soils (silt loam in Yehari and loamy sand in Daegok). During rice cultivation, available phosphorus (P) increased significantly with fly ash application, as there was high content of P (786 mg kg?1) in the applied fly ash. In addition, high content of silicon (Si) and high pH of fly ash contributed to increased available‐P content by ion competition between phosphate and silicate and by neutralization of soil acidity, respectively. With fly‐ash application, water‐soluble P (W‐P) content increased significantly together with increasing aluminum‐bound P (Al‐P) and calcium‐bound P (Ca‐P) fractions. By contrast, iron‐bound P (Fe‐P) decreased significantly because of reduction of iron under the flooded paddy soil during rice cultivation. The present experiment indicated that addition of fly ash had a positive benefit on increasing the P availability.  相似文献   

3.
Abstract

The produced vinasse from molasses of sugar beets contains high amounts of nitrogen, potassium, and sodium (Na‐vinasse). In a pot experiment involving plant species of different tolerance to soil salts (cotton, corn, and beans), applications up to 10 t vinasse ha‐1 did not significantly affect the seed germination, and had a positive effect on plant growth of all species. Increasing the vinasse application to 20 t ha‐1 had no effect on seed germination of cotton and increased its growth. In contrast, a 20 t ha‐1 application delayed the time of germination and inhibited corn and bean growth up to one month. Subsequently, plant growth increased and plant height 52 days after sowing was similar to that with the 10 t ha‐1 treatment. For the bean plants, the negative effect of the 20 t ha‐1 application continued and resulted in a higher dry matter in leaves, but lower dry matter in stems and fruits compared to the untreated soil. A replacement of potassium by sodium in cotton and corn plants was also observed at this vinasse application. Very high application of vinasse (100 t ha‐1) resulted in a damage of cotton and bean seeds, while a higher portion of corn seeds germinated (64%). However, corn seeds that germinated collapsed after a few days. Among the three species studied, cotton plants absorbed the highest amount of sodium, corn plants the highest amount of potassium and those of bean the highest amount of nitrogen.  相似文献   

4.
ABSTRACT

Organic matter levels combined with drought periods during the growing season have adverse impacts on rain-fed potato production in coarse textured soils of eastern Canada. Using pulp fiber residues (PFR) may build up soil organic matter, improve crops yield and nutrient uptake, and reduce the need for supplemental irrigation in this region. A box experiment with 3 rates of PFR [0, 45, and 90 Mg ha? 1 dry mater carbon (C) basis] with or without supplementary drip irrigation was established in a sandy loam soil in New Brunswick, Canada. Red clover, barley, and potato were cultivated as three crops of the rotation in 1999, 2000, and 2001, respectively. The PFR only applied before red clover in fall 1998. Selected soil chemical and physical properties were measured before planting and after harvest. Crops yield and nitrogen (N), phosphorus (P), and potassium (K) accumulation were determined at harvest. Soil organic-C content, bulk density and water holding capacity were improved by PFR application. Red clover and barley biomass production were significantly increased by PFR application. This effect was promoted by supplemental irrigation. Potato tuber yield was not affected by PFR and it was higher in rain-fed compared to supplementary irrigated system. Although, there was some initial evidence of N immobilization but generally PFR application increased N, P, and K bioavailability. This research has demonstrated that PFR can successfully be used as soil amendment in coarse textured soils without any adverse effect.  相似文献   

5.
Abstract

Lime‐stabilized sludge (LSS) from dairy processing waste‐water treatment plants is a desirable product for land application. The material contains lime, which neutralizes soil acidity, and P, which is useful as a plant nutrient. The fineness of the lime and the solubility of P make LSS especially desirable in establishing forage legumes. This greenhouse study had two objectives: to determine a reasonable quantity of LSS for establishing forage legumes such as alfalfa (Medicago sativa L.) and red clover (Trifolium pratense L.) and to prevent adverse effects on seedlings. Sludge was applied at 0, 2.5, 5.0, 7.5 g kg‐1 to an acid, low P soil in pots, and alfalfa and red clover seeds were sown. All treatments received 123 μg g‐1 potassium as KCl. A completely randomized design with four replications was used. Each species was handled as a separate study. Dry matter production was measured at one‐tenth bloom stage. Plant samples were analyzed for P, K, Ca, and Mg content. Soil samples taken at the end of the study were analyzed for pH, organic matter, Bray P, K, Ca, Mg, exchangeable Al, EC, and CEC. The higher quantities of LSS (7.5 g kg‐1 for alfalfa and 5.0 g kg‐1 for red clover) had negative effects on seedling germination and establishment. Lime‐stabilized sludge resulted in an increase in total nutrient uptake of Ca, Mg, K, and P up to 5.0 and 2.5 g kg‐1 in alfalfa and red clover, respectively. In both species significant dry matter yield increases were obtained with LSS up to 5.0 g kg‐1; however, 7.5 g kg‐1 caused a reduction in dry matter yield. Based on these results, applications of LSS at 5.0 for alfalfa and 2.5 g kg‐1 for red clover had positive effects in seedling establishment, nutrient uptake, and dry matter production. Lime‐stabilized sludge application resulted in significant increases in soil pH, available P, Ca, Mg, EC, and CEC; decreases were seen in neutralizable acidity and exchangeable Al levels in soil. This study indicates that LSS is appropriate for the acidic, low P soils of Southern Missouri for alfalfa and red clover establishment and production, if applied in appropriate quantities.  相似文献   

6.
A 6-year trial was laid out with varied PK fertilization on fen soil and analysed for the capability of undersown clover species to fix atmospheric nitrogen. No mineral nitrogen was applied. On an average of the six test years, the share of white clover in the total crop yield of the sward was 17% after sowing once and that of red clover or Swedish clover was 19% after sowing twice. The annual mean shares of these two clover variants in the total yield varied only slightly over the test period. White clover showed typical seasonal dynamics in the test years, with yield portions increasing from spring to late summer. Undersown red and Swedish clovers reached the highest yield percentages in their 2nd and 3rd growths. The variants grown without PK fertilizer and clover yielded 45 dt DM ha???1. With PK fertilizer dry matter yields increased to 57 and 68 dt ha???1, respectively. With supplemental white clover or red/Swedish clover sown into the sward, substantial amounts of symbiotic nitrogen were accumulated in the harvestable plant matter, giving a total dry matter yield of 76 dt ha???1. Clover yield shares up to 30% resulted in increasing DM yields which, however, declined again with even larger shares of clover. As to the ingredients of grasses, herbs and clover, the differences were mostly significant. On an average of the six test years, nitrogen fixation was 58.4?kg ha???1 for white clover and 46.6?kg ha???1 for red/Swedish clover.  相似文献   

7.
Abstract

One of the basic requirements for sustainable management of soils is to ensure that soil fertility is maintained in a productive state and conditions so as to enable the soil to continue to provide viable economic yields with minimum degradation of soil quality and quantity. The practice of supplying nitrogen to fruit trees from biological nitrogen fixation by pasture legumes in the understorey vegetation of orchards is a sustainable means of maintaining soil fertility. Quantitative field measurements of amounts of biomass production and biological nitrogen fixation by three different kinds of understorey vegetation in an organic apple orchard in Canterbury, New Zealand was conducted over a period of two years. Results obtained showed that understorey herbage biomass production varied from 8 to 12 t ha‐1 and biological nitrogen fixation varied from 118 to 126 kg N ha‐1 over the period of two years. Nitrogen fixation was significantly correlated with clover dry matter production. Results were affected by seasons and understorey management practices.  相似文献   

8.
Abstract

Tea (Camellia sinensis L.) grown in China often suffers from severe seasonal drought in the summer causing drastic effects on productivity. In a field trial, the effect of potassium (K) fertilization on summer tea yields during 1992–1994 was studied and related to the weather conditions of the respective years. Summer tea yields of 1994 (dry year) increased significantly at K2 (300 kg K2O‐ha‐1) compared to the Kl treatment (150 kg K2O ha‐1). In contrast, only marginal effects were observed by increasing K application from Kl to K2 in the years with adequate water availability (1992 and 1993). During the latter maximum tea yields were already achieved with Kl. In addition, a pot experiment was conducted in order to investigate the interaction between the soil water regime and K availability in the soil on tea biomass production. Soil moisture was maintained at 45, 55, 65, 75, and 85% of the field capacity (FC) and K levels were 0 and 500 mg K2Okg‐1. No tea plant survived at the 45% FC level whereas all tea plants survived at or above 75% FC. The survival rate increased substantially in the K treated tea plants under moderate drought stress conditions (55% and 65% FC). The dry matter production was significantly larger with increasing soil moisture and at the high K status in the soil. This observation was most pronounced under water stress conditions. The study indicates that under moisture stress, increased survival, improved dry matter production and yields of tea plants were due to improved K bioavailability following K application. Furthermore, larger amounts of K are required under moisture stress conditions compared to normal water supply.  相似文献   

9.
Abstract

Two field experiments were conducted for two consecutive seasons inside plastic houses to evaluate bell pepper (Capsicum annuum) response to nitrogen fertigation. Nitrogen fertilizers were applied through irrigation water at rates of zero, 150, 250, and 350 N kg ha‐1. The crops were irrigated in weekly bases with the amount of water equivalent to 80% of the E Pan reading. All treatments were replicated four times in a randomized complete block design. Five plants were sampled from each experimental unit at 30, 60, 90, 120, 150, and 180 days after planting. Growth rate, nutrient uptake and yield were determined. The results indicate that the yield and marketable number of fruits in both seasons increased with the addition of nitrogen. The highest yield was obtained with the addition of 150 kg N ha‐1. The maximum growth rate and the maximum rate of accumulation of dry matter in the fruits occurred during the period of 90 to 150 days after planting. This may indicate that the peak of the pepper N requirement and utilization would be during the same period of the maximum growth rate. Increasing the rates of nitrogen applied increased the uptake of nitrogen by the plants and at the same time stimulated the uptake of potassium and phosphorus through the synergistic effect of nitrogen on both nutrients.  相似文献   

10.
Abstract

Rice is a plant that requires high levels of silica (Si). As a silicate (SiO2) source to rice, coal fly ash (hereafter, fly ash), which has an alkaline pH and high available silicate and boron (B) contents, was mixed with phosphor‐gypsum (hereafter, gypsum, 50%, wt wt?1), a by‐product from the production of phosphate fertilizer, to improve the fly ash limitation. Field experiments were carried out to evaluate the effect of the mixture on soil properties and rice (Oryza sativa) productivity in silt loam (SiL) and loamy sand (LS) soils to which 0 (FG 0), 20 (FG 20), 40 (FG 40), and 60 (FG 60) Mg ha?1 were added. The mixture increased the amount of available silicate and exchangeable calcium (Ca) contents in the soils and the uptake of silicate by rice plant. The mixture did not result in accumulation of heavy metals in soil and an excessive uptake of heavy metals by the rice grain. The available boron content in soil increased with the mixture application levels up to 1.42 mg kg?1 following the application of 60 Mg ha?1 but did not show toxicity. The mixture increased significantly rice yield and showed the highest yields following the addition of 30–40 Mg ha?1 in two soils. It is concluded that the fly ash and gypsum mixture could be a good source of inorganic soil amendments to restore the soil nutrient balance in rice paddy soil.  相似文献   

11.
The Humboldt‐University of Berlin conducts several long‐term field trials designed to assess the effects of tillage methods, crop rotations, organic fertilization, mineral nitrogen, phosphorus, and potassium fertilizers, liming, irrigation, and weather conditions. On silty sand soils shallow ploughing resulted in a distinct accumulation of soil organic matter and phosphorus in the tilled soil layer while potassium and pH values were unaffected. On average shallow ploughing increased yields, with a tendency for higher yields in spring crops and lower yields in winter cereals. Different amounts of organic and mineral fertilizers applied over 30 years resulted in a great differentiation in soil organic matter content. In the following 32 years this variation stayed more or less unchanged, but with an overall reduction in the carbon content. In variants in which phosphate and potassic fertilizers were omitted, 16 kg ha—1 P and 15 kg ha—1 K per year were still being mobilized in the soil after 60 years. In treatments with mineral fertilization, the phosphorus is nearly balanced whilst only 60 % of the potassium is withdrawn from the soil. Additional organic fertilizers, given as farm yard manure, led to a nutrient surplus of 19 kg ha—1 a—1 P and 99 kg ha—1 a—1 K. Omitted liming caused an acidification of the soil to such an extent that crop production became impossible.  相似文献   

12.
Abstract

Phosphorus (P) fertilization is quite important for crop production grown on Andosols. Fertilizer P‐use efficiency was 17% in a long‐term wheat experiment on a low‐humic Andosol. Residual effects of P fertilization were investigated using field soils in pot experiments. Topsoil was collected from the plots with or without annual P fertilizer at the rate of 65 kg‐P ha?1 for 23 years (nitrogen phosphorous potassium (NPK) soil and nitrogen potassium (NK) soil, respectively). There was no significant difference in dry matter of wheat and P uptake between NPK and NK soils. However, dry matter of rice and P uptake were higher in NPK soil than in NK soil. Inorganic aluminum P (Al‐Pi) and iron P (Fe‐Pi) increased in NPK soil. Increase in Al‐Pi and Fe‐Pi during 23 years contributed little to P uptake by wheat, and repeated P fertilization is indispensable to obtain acceptable grain yield.  相似文献   

13.
The aim of this experiment was to investigate the growth and residual‐nitrogen (‐N) effects of different catch‐crop species on a low–N fertility coarse sandy soil. Six legumes (white clover [Trifolium repens L.], red clover [Trifolium pratense L.], Persian clover [Trifolium resupinatum L.], black medic [Medicago lupulina L.], kidney vetch [Anthyllis vulneraria L.], and lupin [Lupinus angustifolius L.]), four nonlegumes (ryegrass [Lolium perenne L.], chicory [Cichorium intybus L.], fodder radish [Raphanus sativus L.], and sorrel [Rumex Acetósa L.]), and one mixture (rye/hairy vetch [Secale cereale L./Vicia villosa L.]) were tested in a field experiment with three replicates in a randomized block design. Four reference treatments without catch crops and with N application (0, 40, 80, and 120 kg N ha–1) to a succeeding spring barley were included in the design. Due to their ability to fix N2, the legume catch crops had a significantly larger aboveground dry‐matter production and N content in the autumn than the nonlegumes. The autumn N uptake of the nonlegumes was 10–13 kg N ha–1 in shoots and approx. 9 kg ha–1 in the roots. The shoot N content of white clover, black medic, red clover, Persian clover, and kidney vetch was 55–67 kg ha–1, and the root N content in white clover and kidney vetch was approx. 25 kg ha–1. The legume catch crops, especially white and red clover, seemed to be valuable N sources for grain production on this soil type and their N fertilizer–replacement values in a following unfertilized spring barley corresponded to 120 and 103 kg N ha–1, respectively. The N fertilizer–replacement values exceeded the N content of shoots and roots.  相似文献   

14.
Abstract

Considerable amounts of phosphorus (P) fertilizer will be required on soils in the proposed Ord Stage II area of northwestern Australia if a sustainable dry‐season, cotton‐production system is to be established, because in their virgin state, the soils are known to be inherently low in P. This study aimed to determine P‐fertilizer requirements on these soils to optimize cotton yield as well as nutrient uptake. Five rates of P fertilizer were applied to soil recently cleared of trees and prepared for irrigation. In the second year, these same rates were imposed over the trial. It was concluded that the application of 60 kg ha?1 of P was sufficient to allow maximum yield and quality for dry‐season cotton grown in the first season on virgin soils in the Ord River Irrigation Area (ORIA), and a total of 80 kg ha?1 of P was required when cotton was grown over two seasons.  相似文献   

15.
Effects of household waste, chicken manure, and cow dung on nutrient-use and carbon (C)–sequestration efficiencies and improvement of soil fertility were assessed. Application of household waste at the rate of 4 kg m?2 and cow dung at the rate of 3 kg m?2 produced the maximum yields of rice and tomato, respectively. Nutrient uptake and use efficiency were enhanced with the application of wastes. Incorporation of wastes increased C content and decreased bulk density of soils. The maximum C sequestrations were 2.6 Mg ha?1 in soils under rice cultivation and 2.9 Mg ha?1 under tomato cultivation when household waste was applied at the rate of 4 kg m?2. The greater agronomic, physiological, and recovery efficiencies of nitrogen, phosphorus, and potassium were attributed to the greater sequestration of C in soils. The residual value of pH, organic matter, nitrogen, phosphorus, and potassium indicated the fertility enhancement of soils with the application of wastes.  相似文献   

16.
Abstract

An irrigated farmer's field at Hafizabad village in Dera Ismail Khan District of Northwest Frontier Province of Pakistan was sampled at a regular grid spacing of 50x15 m from surface (15 cm) to study the spatial variability of soil properties and wheat yield. The farm measured 250x75 m. Soil samples collected were analyzed for soil pH, lime content, organic matter, mineral nitrogen (N), ammonium bicarbonate (AB)‐DTPA‐extractable phosphorus (P) and potassium (K), and soil texture. A uniformly trial on wheat with a uniform rate of 120 kg N ha‐1, 90 kg P2O5 ha‐1, and 60 kg K2O ha‐1 was laid out. The results showed that the soil P had the highest coefficient of variation (CV 46%) followed by organic matter (36.20%) and clay content (33.81%). Grain yield had also a considerable variation in the field (CV=31.84%). Geostatistical technique of semivariogram analysis showed that mineral N, AB‐DTPA‐extractable K, sand, silt, and clay content had the strong spatial structure. Maps of soil fertility and crop productivity of the farm was prepared using modern geostatistical technique of kriging. The farm was divided into different management zones based on these maps for fertility management.  相似文献   

17.
ABSTRACT

Broccoli (Brassica oleraceaL. var. italica) and lettuce (Latuca sativaL.) were grown under greenhouse conditions with nitrogen (N) from a cover crop mixture of rye (Secale cerealeL.) and crimson clover (Trifolium incarnatumL.) and ammonium nitrate (NH4NO3). Individual cover crop species were produced with non-enriched or enriched (5 atom % NH4 15NO3) Hoagland Nutrient Solutions resulting in enriched rye [0.799% atom % 15N, 24:1 carbon (C):N ratio] and enriched clover (0.686% atom % 15N, 19:1 C:N ratio). Cover crops were applied as an equal mixture of rye and clover at 1884, 3768, and 5652 kg·ha? 1 dry weight to supply 26, 52, and 78 kg·ha? 1 N. Enriched materials were only applied at the 3768 kg·ha? 1 rate, either as enriched rye plus non-enriched clover or non-enriched rye plus enriched clover. Additional treatments consisted of an unfertilized control and three NH4NO3 fertilizer rates; 112, 224, and 336 kg·ha? 1 N for broccoli and 70, 140, and 210 kg·ha? 1 N for lettuce. Combination treatments were the standard cover crop rate (3768 kg·ha? 1) plus the lowest N fertilizer rate for each vegetable. Cover crops did not increase yield of either broccoli or lettuce, and contributed only 17% of the N in broccoli and 15% of the N in lettuce. The majority of cover crop 15N remained in the soil: 54.8% and 81.3% of rye and clover N, respectively, after broccoli harvest; and 68.1% and 79.2% of rye and clover N, respectively, after lettuce harvest. Broccoli plant tissue recoveries were 8.0% of the rye and 11.0 % of the clover 15N; while lettuce plant tissue recoveries were 6.3% (rye) and 4.1% (clover). Broccoli yield could not be assessed due to lack of floret development, but dry matter accumulation was maximized at 224 kg·ha? 1N. Lettuce yield and fertilizer N recovery efficiency (by mass balance) was maximized at 140 g·ha? 1 N.  相似文献   

18.
Abstract

A field experiment investigating amendments of organic material including farmyard manure, paper factory sludge and crop residues combined with fly ash, lime and chemical fertilizer in a rice-peanut cropping system was conducted during 1997–98 and 1998–99 at the Indian Institute of Technology, Kharagpur, India. The soil was an acid lateritic (Halustaf) sandy loam. For rice, an N:P:K level of 90:26.2:33.3 kg ha?1 was supplied through the organic materials and chemical fertilizer to all the treatments except control and fly ash alone. The required quantities of organic materials were added to supply 30 kg N ha?1 and the balance amount of N, P and K was supplied through chemical fertilizer. Amendment materials as per fertilization treatments were incorporated to individual plots 15 days before planting of rice during the rainy season. The residual effects were studied on the following peanut crop with application of N:P:K at 30:26.2:33.3 kg ha?1 through chemical fertilizer alone in all treatments, apart from the control. An application of fly ash at 10 t ha?1 in combination with chemical fertilizer and organic materials increased the grain yield of rice by 11% compared to chemical fertilizer alone. The residual effect of both lime and fly ash applications combined with direct application of chemical fertilizer increased peanut yields by 30% and 24%, respectively, compared to chemical fertilizer alone. Treatments with fly ash or lime increased P and K uptake in both the crops and oil content in peanut kernel compared to those without the amendments. Alkaline coal fly ash proved to be a better amendment than lime for improving productivity of an acid lateritic soil and enriching the soil with P and K.  相似文献   

19.
Rice is the staple food for nearly 40% of the world's population. In Malawi, rice is ranked second only to maize as a cereal food crop. In rainfed areas of Malawi, grain yields typically average 1.0–1:5 t ha‐1 while potential yield is 4–5 t ha1. To bridge the gap between current and potential yields, several novel nutrient management systems were studied. Many research reports indicate that rice responds to silicon (Si) application as well as to nitrogen (N), phosphorus (P), and potassium (K) which are commonly applied. Rice crop residues (straws and hulls) are rich in Si and K, but are not utilized currently in rice production. The effect of rice‐hull ash, rice straw, and method of N application (prilled or briquetted urea) on a transplanted rice crop was studied through field experiments in Malawi during 1995 and 1996. Application of urea in briquette form increased rice grain yield by 1056 and 122 kg ha‐1 compared to prilled urea in the 1995 winter and 1996 summer experiments, respectively. However in the 1996 winter experiment, prilled urea was superior to urea briquette and increased the rice grain yield by 307 kg ha1. Incorporation of rice straw significantly increased rice grain yields over the control in three consecutive experiments. Rice‐hull ash alone increased the rice grain yields in all three experiments up to 12%; however, the increase was not statistically significant. The combination of rice straw and rice‐hull ash along with optimum N rates (60 kg ha‐1) increased the rice grain yields significantly in 1996 winter season but the increase was not significant in the other two experiments.  相似文献   

20.
ABSTRACT

Field experiments were conducted in the major rice growing area of Chile to evaluate the effects of nitrogen (N) fertilization and site on grain yield and some yield components, dry matter production, N uptake, and N use efficiency in rice cultivar ‘Diamante’. Two sites (indicated as sites 1 and 2) and six N rates (0, 50, 100, 150, 200, and 300 kg N ha?1) were compared. Nitrogen fertilization increased yield, panicle density, spikelet sterility, dry matter production, and N uptake at maturity. 90% of maximum yield was obtained with 200 kg N ha?1 in site 1 (12,810 kg ha?1) and with 100 kg N ha?1 in site 2 (8,000 kg ha?1). These differences were explained by lower panicle density, and the resulting lower dry matter production and N uptake in site 2. Nitrogen use efficiency for biomass and grain production, and grain yield per unit of grain N decreased with N fertilization. While, agronomic N use efficiency and N harvest index were not affected. All N use efficiency indices were significantly higher in site 1, except grain yield per unit of grain N. The observed variation in N use efficiency indices between sites would reflect site-specific differences in temperature and solar radiation, which in turn, determined yield potentials of each site. On the basis of these results, cultivar ‘Diamante’ would correspond to a high-N use efficiency genotype for grain yield.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号