首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Critical concentrations of nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), iron (Fe), zinc (Zn), and manganese (Mn) with respect to dry matter yield end antagonistic and synergistic relationships among these nutrients were studied in which tomato (Lycopersicon esculentum L.) was grown in recirculating nutrient solution (NFT). Increments of nutrient elements in the nutrient solution increased the proportional rate of the corresponding nutrient elements. Increasing levels of N negatively correlated with plant P and positively correlated with Ca, Fe, and Zn. Iron and Mn contents of the plants were increased and N, K, Ca, and Mg were decreased as a function of P applied. Increases in K in the nutrient solution caused increases in the concentrations of K, N, P, and Zn, and decreases in the concentration of Ca and Fe. Applied Ca increased the concentrations of Ca and N, and decreased the concentrations of P, Mg, Fe, Zn, and Mn. Potassium, Ca, and Fe contents of the plants were decreased and Zn increased, while N, P, and Mn were not affected by the increasing levels of external Mg. Iron suppressed the plant Mg, Zn, and Mn contents. Synergism between Zn and Fe was seen, while P, K, Ca, Mg, and Mn contents were not affected by Zn levels. Potassium, Ca, Mg, and Fe were not responsive to applied Mn, however, N and P contents of the plants were decreased at the highest levels of Mn.  相似文献   

2.
Abstract

A compost of high copper (Cu) and zinc (Zn) content was added to soil, and the growth of barley (Hordeum vulgare L.) was evaluated. Four treatments were established, based on the addition of increasing quantities of compost (0, 2, 5, and 10% w/w). Germination, plant growth, biomass production, and element [nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), sodium (Na), magnesium (Mg), iron (Fe), Cu, manganese (Mn), and Zn] contents of soil and barley were determined following a 16‐week growing period. Following harvesting of the barley, analysis of the different mixtures of soil and compost was performed. Micronutrient contents in soils as affected by compost additions were determined with diethylene–triamine–pentaacetic acid (DTPA) (Cu, Mn, Fe, and Zn) or ammonium acetate [Ca, Na, Mg, K, cation exchange capacity (CEC)] extractions, and soils levels were compared to plant uptake where appropriate. Increasing rates of compost had no affect on Ca, Mg, or K concentration in barley. Levels of Cu, Zn, Mn, and Na, however, increased with compost application. High correlations were found for DTPA‐extractable Cu and Zn with barley head and shoot content and for Mn‐DTPA and shoot Mn content. Ammonium acetate–extractable Na was highly correlated with Na content in the shoot. High levels of electrical conductivity (EC), Cu, Zn, and Na may limit utilization of the compost.  相似文献   

3.
Abstract

The Diagnosis and Recommendation Integrated System (DRIS) was used to identify nutrient status of mango fruit trees in Punjab, India. Standard norms established from the nutrient survey of mango fruit trees were 1.144, 0.126, 0.327, 2.587, 0.263, 0.141% for nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), and sulfur (S), and 15, 3.5, 145, 155, and 30 mg kg?1, respectively, for zinc (Zn), copper (Cu), iron (Fe), manganese (Mn), and boron (B) in dry matter. On the basis of DRIS indices, 16, 15, 12, 17, and 16% of total samples collected during nutrients survey of mango trees were low in N, P, K, Ca, and Mg, respectively. For micronutrients, 19, 18, 12, 20, and 6% samples were inadequate in Zn, Cu, Fe, Mn, and B, respectively. DRIS‐derived sufficiency ranges from nutrient indexing survey were 0.92–1.37, 0.08–0.16, 0.21–0.44, 1.71–3.47, 0.15–0.37, and 0.09–0.19% for N, P, K, Ca, Mg, and S and 11–19, 1–6, 63–227, 87–223, and 16–44 mg kg?1 for Zn, Cu, Fe, Mn, and B, respectively.  相似文献   

4.
The dry weight accumulation per male and female flower as well as the concentration per gram of dry weight and the accumulation of nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), iron (Fe), manganese (Mn), zinc (Zn), and copper (Cu) were determined in walnut tree (Juglans regia L.) catkins and female flowers at the stage of flower bud and during the flower development. Catkin emergence was accompanied by a very fast hydration of the tissues. After the catkin matured, the fresh and dry weights were reduced. The female flower development period was accompanied by the dry and fresh weight increase. Total N, P, K, Fe, Mn, Cu and Zn concentrations in catkin buds were detected at lower levels, Mg in equal levels, and Ca at higher levels as compared to the nutrient concentrations in young growing leaves. The estimated values of the ratio NCmfb/NCygl were: total N = 0.54, P = 0.83, K = 0.56, Ca = 1.5, Mg = 1.0, Fe = 0.46, Mn = 0.71, Cu = 0.85, and Zn = 0.60. Nutrient concentration in female flower buds was detected in almost equal levels with the exception of total N and Fe. The estimated values of the ratio: NCffb/NCygl were: total N = 0.57, P = 1.1, K = 1.17, Ca = 1.06, Mg = 0.9, Fe = 0.47, Mn = 1.0, Cu = 0.92, and Zn = 0.85. Total N, P, Mn, Cu, and Zn accumulations in the catkin were increased during the fast growing phase and decreased after catkin maturing. Potassium, Mg, and Fe accumulation continued to increase in the mature catkin. Calcium accumulation decreased at a very late mature catkin phase. Total N, P, and K accumulation rates during the catkin fast growing phase were higher than the dry weight accumulation rate. Calcium, Mg, Fe, Mn, Cu, and Zn accumulation rates at the same period were lower or equal to dry weight accumulation rates. In mature catkins, the total N, P, Mn, Cu, and Zn depletion rates were higher than the dry weight depletion rate. The continual increase of K, Ca, Mg, and Fe accumulation in mature catkin resulted in the increase of nutrients concentration also. Total N and P showed the highest remobilization values from mature catkin of 51.4% and 45%, respectively. Calcium, K, Mg, Cu, Mn, and Zn remobilization values estimated to be 22.1%, 7.5%, 3.2%, 45.3%, 33.4%, and 31.8%, respectively. Iron showed no remobilization at all. Nutrients remobilization from catkins as compared to the leaves had almost similar values for total N, Zn, and Cu, higher for P, Ca, and Mn, and lower for Mg, Fe, and K. Accumulation of all nutrients in female flowers increased after fertilization. The dry weight accumulation rate was higher than the nutrient accumulation rates.  相似文献   

5.
中国烤烟中部叶矿质营养元素浓度状况   总被引:13,自引:1,他引:13  
于20012~004年,从重点植烟县采集了410个烤烟中部叶样品,运用ICP测定方法和概率密度分布函数对其氮、钾、磷、钙、镁、硫、锰、铜、锌、硼、钠、铁、氯13个矿质元素的浓度特征进行了分析。结果表明:1)大量元素的变异系数较小,中量元素其次,微量元素较大;2)除氮、镁、硫、铜、锌、钠、铁外,其他元素的浓度在品种之间的差异显著,但不同指标在品种之间的高低秩序不同,例如,云烟87的磷浓度显著地高于云烟85、K326的磷浓度,而钾浓度按K326、云烟87、云烟85依次降低;3)所有元素在省份之间的差异极显著,但不同元素在地区之间的高低秩序不同,例如,河南烟叶的钾浓度显著地低于其他省份,贵州烟叶的氯离子浓度显著地高于其他地方;4)钾、磷、钙、硫、硼、钠在烟叶中的浓度符合正态分布,氮、镁、氯、锰、铜、锌、铁在烟叶中的浓度符合对数正态分布;5)氮、磷、钾、钙、镁、硫、锰、铜、锌、硼、钠、铁、氯的正常浓度范围分别为1.18~2.34、0.11~0.30、0.87~2.83、0.99~3.64、0.1~0.8、0.25~0.9、25.18~601.65、2.1~37.271、3.11~105.421、2.6~55.62、163.02~503.11、97.6~384.2、0.07~0.53(氮、磷、钾、钙、镁、硫、氯的单位为%,其余为mg/kg);6)氮、钾、氯、钾/氯比四个因素符合国际型优质烟叶质量标准的概率只有0.726、0.379、0.193、0.829,目前我国烤烟营养不够协调的主要方面是养分浓度偏低。  相似文献   

6.
Abstract

The effect of salinity in inducing soil macro and micronutrient deficiencies that can decrease crop growth was evaluated in a corn (Zea mays L.) field located in east central Wyoming. In this study water soluble Na was found to be a better predictor of salinity than pH and other cations. Soil saturated paste extracts had electrical conductivities that were negatively correlated with soil total K, Cu, Fe, and Mn. Total N, NO3‐N, PO4‐P, Zn, pH, and water soluble Na, Ca, and Mg of the soil were positively correlated with EC. Significant positive relationships existed between soil EC and N, P, Mo, and Zn, and negative relationships with K, Cu, Fe, and Mn of corn leaves and kernels. Concentrations of nutrients in the kernels were positively correlated with corresponding nutrient concentrations in the leaves and with AB‐DTPA extractable soil nutrients. The analysis of variance of EC data indicated that soil samples possessing high salinity were higher in pH and contained significantly higher soluble Na, Ca and Mg, total N, N03‐N, PO4‐P, and Zn and significantly lower Mn compared to samples having low salinity. The kernel weight per cob and plant height were significantly reduced as salinity increased.  相似文献   

7.
《Journal of plant nutrition》2013,36(12):2831-2851
ABSTRACT

The Diagnosis and Recommendation Integrated System (DRIS) approach evaluates plant nutritional status. The Diagnosis and Recommendation Integrated System is based on a comparison of crop nutrient ratios with optimum values from a high-yielding group (DRIS norms). Several researchers affirm that once DRIS norms based on foliar composition have been developed for a given crop, they are universal and applicable to that particular crop grown at any place and at any stage of its development. But different diagnoses with DRIS norms established for the same crop but under different growth conditions have been found. The objectives of this study were (i) to evaluate the confidence intervals of three DRIS norms of sugarcane crop, (ii) to compare sugarcane nutritional diagnosis with three DRIS norms, and (iii) to evaluate the universal use of DRIS norms in sugarcane crop. Sugarcane DRIS norms were tested. Means for nitrogen (N)/phosphorus (P), N/calcium (Ca), N/copper (Cu), manganese (Mn)/N, N/zinc (Zn), Ca/P, Cu/P, Mn/P, Zn/P, potassium (K)/Ca, K/Cu, Mn/K, Zn/K, Mn/Ca, Zn/Ca, Cu/magnesium (Mg), Mn/Mg, Zn/Mg, Mn/Cu, Zn/Cu, and Zn/Mn of these three DRIS norms were significantly different (?p<0.05). The sugarcane nutritional diagnosis derived from norms published in the literature was different. These three DRIS norms were not universally applicable to the sugarcane crop. Therefore, in the absence of DRIS norms locally calibrated, norms developed under one set of conditions only should be applied to another if the nutrient concentrations of high-yielding plants from these different set of conditions are similar.  相似文献   

8.
Abstract

The effect of treated sewage water on the vegetative and reproductive growth of date palms was assessed. Leaves and fruits samples were collected from locations irrigated with treated sewage (TSW), desalinised, and well water. Samples were analysed for their calcium (Ca), magnesium (Mg), iron (Fe), lead (Pb), copper (Cu), and zinc (Zn) content by atomic absorption spectro‐photometry and for sodium (Na) and potassium (K) by flame photometry. The Mg, Fe, and Zn content of fruits and Na in the leaves were not found to be significantly different. Treated sewage water from University campus utilities significantly increased the Na, K, and Cu and reduced Ca in leaves and Zn in fruits of date palms. But no significant effect was observed on the K, Ca, Mg, and Na contents in fruits of the same palms. The different concentrations of Ca, Mg, Fe, and Zn in the fruits of date palms grown along the same TSW line were attributed to variations in the soil; however, those in Pb content of leaves could be attributed to motor vehicle combustion. The general trend indicated that fruits contained higher K, Na, and Fe contents, but lower Ca, Mg, Cu, Zn, and Pb contents than the leaves. Furthermore, leaves of date palms irrigated with desalinised and well water contained higher Ca and Zn, but lower K, Mg, Na, Cu, Fe, and Pb contents than those of palms irrigated with treated sewage water. Desalinised water reduced the K, Ca, Na, and Zn contents, but it increased the Mg, Fe, Cu, and Pb content of leaves compared to well water. None of the examined metals were found to reach toxic level to man or plant.  相似文献   

9.
ABSTRACT

Salinity and drought stresses are critical for Phaseolus vulgaris L. growth and development. They affect plants in various ways, including tissue mineral element content. Micro- and macro-elements in leaves of Phaseolus vulgaris L. (cv. ‘Blue lake’ and cv. ‘Terli’) subjected to deficit irrigation and salinity treatments were investigated, both analytically and with regards to their effect on the leaves’ spectral reflectance. B (boron), K (potassium), Mn (manganese), Na (sodium), Si (silicon) and Zn (zinc) appeared to be influenced by stress factors, mainly responding to salinity increase. The leaf spectral reflectance of the plants appeared to be significantly correlated with most of the elements under investigation. Multivariate regression identified a relationship of the reflectance at particular regions of the spectrum with phosphorus and NDVI (normalized difference vegetation index) and indicated a significant correlation with B, Fe (iron), K, Mn, P (phosphorus) and Zn. Moreover, customized spectral indices, exhibiting significantly high correlation with B, Fe, K, Mg (magnesium), Mn, Na, P, Zn and N (nitrogen), were developed.  相似文献   

10.
巨桉人工林叶片养分交互效应   总被引:1,自引:0,他引:1  
在四川巨桉栽培区设立了60个标准地,采用相关分析和矢量诊断法进行分析,以了解巨桉人工林养分的相互作用关系。结果表明,巨桉人工林叶片的养分交互作用较为复杂。N可促进P、K、Ca、Mn等的吸收,但易受到Fe、Zn、高Ca、高Mg的拮抗,而且高N抑制了Mn的吸收;P可促进K、Mg、Mn等的吸收,但易受Zn、Fe、高Mn、高K、高Ca、高Mg的拮抗,而高浓度的P将抑制K、Zn、Fe等的吸收;K对其他养分元素均没有明显的促进作用,但高浓度K限制P的吸收;Ca、Mg之间可相互促进吸收。同时,低浓度的Ca和Mg有利于Fe、Zn的吸收,高浓度的Ca和Mg将对N、P、Fe、Mn、S、B等养分产生拮抗,限制吸收;S可促进Zn的吸收,但易受高Ca、高Mg拮抗;Cu、Zn、Fe、Mn之间主要以拮抗为主。B相互作用较少,对其他养分几乎没有明显的促进作用。  相似文献   

11.
《Journal of plant nutrition》2013,36(7):1191-1200
Abstract

Kosteletzkya virginica (L.) Presl. is a perennial dicot halophytic species that grows in brackish portions of coastal tidal marshes of the mid-Atlantic and southeastern United States. It was introduced into Northern Jiangsu, China, by the Halophyte Biotechnology Center (University of Delaware, Newark, DE) as a species with potential to improve the soil and develop ecologically sound saline agriculture. Fifteen major and minor elements [calcium (Ca), magnesium (Mg), phosphorus (P), sodium (Na), potassium (K), iron (Fe), manganese (Mn), zinc (Zn), lead (Pb), cadmium (Cd), aluminum (Al), copper (Cu), lithium (Li), cobalt (Co), and vanadium (V)] in roots, stems, leaves, and seeds of Kosteletzkya virginica and saline soils were measured in the study. Concentrations of Al, Fe, Zn, Mn, V, and Pb were the highest in soils, whereas concentrations of Na, Li, Cu, Ca, and Mg were the highest in the roots, stems, and leaves, respectively, and concentrations of K and P were the highest in the seeds. Potassium, P, Mg, and Ca were the main constituents in the seeds, and concentrations of Fe, Li, Mn, Zn, and Cu in seeds were relatively high. However, concentrations of Na and Al were very low in the seeds. The K/Na ratio in the seeds was 34.26, and the Ca/P ratio was 0.52, which was less than the maximum tolerable value for the human diet. These proportions were considered to be an advantage from a nutritional point of view. From roots to stems to leaves, increases in K/Na, Ca/Na, and Ca/Mg ratios could mitigate salt stress of the growth habitat of Kosteletzkya virginica. These results suggest that Kosteletzkya virginica is a halophytic species with potential as a rich source of mineral-element supply, and its products could be used for development of food, fodder, health care products and industrial raw materials.  相似文献   

12.
Effect of wastewater irrigation was investigated on mineral composition of corn and sorghum plants in a pot experiment. The ranges for the concentration of different minerals in corn plants were 0.67–0.89% calcium (Ca), 0.38–0.58% magnesium (Mg), 0.09–1.29% sodium (Na), 0.81–1.87% nitrogen (N), 1.81–2.27% potassium (K), 0.12–0.16% phosphorus (P), 190–257 mg/kg iron (Fe), 3.5–5.6 mg/kg copper (Cu), 37.1–44.5 mg/kg manganese (Mn), 21.6–33.6 mg/kg zinc (Zn), 1.40–1.84 mg/kg molydbenum (Mo), 11.0–45.7 mg/kg lead (Pb), and 2.5–10.8 mg/kg nickel (Ni). Whereas for sorghum plants, the ranges were: 0.56–0.68% Ca, 0.19–0.32% Mg, 0.02–0.27% Na, 0.69–1.53% N, 1.40–1.89% K, 0.10–0.14% P, 190–320 mg/kg Fe, 3.8–6.0 mg/kg Cu, 29.2–37.6 mg/kg Mn, 21.1–29.9 mg/kg Zn, 2.2–3.7 mg/kg Mo, 12.3–59.0 mg/kg Pb, and 2.5–15.2 mg/kg Ni. Heavy metals such as cobalt (Co) and cadmium (Cd) were below detection limits at mg/kg levels. The concentrations of Ca, N, K, P, Cu, and Mn in corn plants were in the deficient range except for Mg, Fe, Zn, and Al. The concentrations of Ca, N, P, K, Cu, Mn, Mg, and Zn in sorghum plants were in the deficient range except for Fe and aluminum (Al). The analysis of regression indicated a strong interaction between Pb, Ni, Ca, and Fe in corn and sorghum plants. In conclusion, waste water irrigation did not increase mineral concentrations of either macro‐ and micro‐elements or heavy trace metals in corn and sorghum plants to hazardous limits according to the established standards and could be used safely for crop irrigation.  相似文献   

13.
ABSTRACT

Roots of young ‘Golden Delicious’ apple on M9 rootstock were inoculated with four strains of Azotobacter chroococcum, which were isolated from various soils. Effects of these strains in combination with different levels of nitrogen (N) fertilizer and compost on plant growth and nutrient uptake were studied over two seasons. Therefore, a factorial arrangement included four strains of A. chroococcum, two levels of N-fertilizer (0 and 35 mg N kg?1soil of ammonium nitrate) and two levels of compost (0 and 12 g kg?1 soil of air-dried vermicompost). Among the four strains, AFA146 was the most beneficial strain, as it increased leaf area, leaf potassium (K), magnesium (Mg), iron (Fe), manganese (Mn), zinc (Zn), and boron (B) uptake and root N, phosphorus (P), potassium (K), Mn, and Zn. The combination of AFA146 strain, compost and N fertilizer increased leaf uptake of Ca, Mg, Fe, Mn, Zn, and B, and root uptake of P, K, Ca, Mg, Mn, and copper (Cu), and root dry weight.  相似文献   

14.
Abstract

Simultaneous extraction of nutrients using ammonium bicarbonate–diethylene triamine penta acetic acid (ABDTPA) extractant has been successful for highland soils, but its potential for lowland soils is still uncertain. This study evaluated the suitability of ABDTPA extractant to determine available phosphorus (P), potassium (K), sodium (Na), calcium (Ca), magnesium (Mg), iron (Fe), manganese (Mn), zinc (Zn), and copper (Cu) in lowland rice soils of Sri Lanka. Available nutrients were analyzed both by conventional and ABDTPA methods, using the original ABDTPA (1∶2 soil–extractant) method as well as a modified (1∶4 soil–extractant) method. Conventional methods tested were Olsen, Bray 1, and FeO strip for available P; neutral NH4OAc extraction for exchangeable Ca, Na, K, and Mg; and DTPA extraction for available Zn, Cu, Fe, and Mn. Nutrient content and uptake by plants were determined by a pot experiment with rice (Oryza sativa). Nutrients extracted by the conventional methods and ABDTPA methods correlated well, in general, for all nutrients. Highly significant correlations were observed between plant uptake and extractable nutrients by 1∶2 and 1∶4 ABDTPA methods for P (r=0.85***and 0.73***, respectively), K (r=0.79*** and 0.66***, respectively), Na (r=0.86*** and 0.78***, respectively), Zn (r=0.66*** and 0.60***, respectively), Mn (r=0.72*** and 0.84***, respectively), and Fe (r=0.74*** and 0.68***, respectively). Calcium and Mg extracted by ABDTPA showed a poor relationship with their respective plant uptake. The ABDTPA method was as effective as or even better than the conventional methods in evaluating fertility status of lowland rice soils with respect to most nutrients. Replacing the conventional methods by the single ABDTPA multielement extractant will reduce the time and cost of soil analysis.  相似文献   

15.
ABSTRACT

Diagnosis and recommendation integrated system (DRIS) norms were computed from the data on leaf mineral composition, soil available nutrients, and corresponding mean fruit yield of three years (1999–2002), collected from the set of 57 irrigated commercial ‘Nagpur’ mandarin (budded on Citrus jambhiri Lush) orchards, representing 26 locations and 3 basalt derived soil orders (Entisols, Inceptisols, and Vertisols) rich in smectite minerals. The DRIS norms derived primarily from spring-cycle index leaves from non-fruiting terminals sampled during August to October (6–8 months old) suggested optimum leaf macronutrient concentration (%) as: 1.70–2.81 nitrogen (N), 0.09–0.15 phosphorus (P), 1.02–2.59 potassium (K), 1.80–3.28 calcium (Ca), and 0.43–0.92 magnesium (Mg). While, optimum level of micronutrients (ppm) was determined as: 74.9–113.4 iron (Fe), 54.8–84.6 manganese (Mn), 9.8–17.6 copper (Cu), and 13.6–29.6 zinc (Zn) in relation to fruit yield of 47.7–117.2 kg tree? 1. Likewise, DRIS indices for soil fertility developed from dripline soil samples collected at 0–20 cm depth corresponding to similar level of fruit yield, the optimum limit of soil available nutrients (mg kg? 1) was observed as: 94.8–154.8 N, 6.6–15.9 P, 146.6–311.9 K, 401.0–601.6 Ca, 85.2–369.6 Mg, 10.9–25.2 Fe, 7.5–23.2 Mn, 2.5–5.1 Cu, and 0.59–1.26 Zn. Primary DRIS indices developed on the basis of leaf and soil analysis revealed deficiency of N, P, K, Fe, and Zn. The nutrient constraints so diagnosed were further verified through fertilizer response studies carried out on a representative Typic Haplustert soil type facing multiple nutrient deficiencies, and accordingly suggested the revised fertilizer schedule.  相似文献   

16.
以山地梨枣(Zizyphus jujuba Mill. cv. Lizao)为试验材料,采用野外试验与室内分析,研究了黄土丘陵区山地滴灌下施用氮磷钾对矮化密植梨枣叶片8种营养元素(N、P、K、Ca、Mg、Fe、Mn、Zn)季节动态变化规律以及施肥对梨枣生长,产量及品质的影响。结果表明:不同生育期梨枣叶片养分含量变化具有一定的规律性。开花坐果期(5月上旬至7月上旬),叶片N、P、K含量处较高水平,Mg、Fe、Mn、Zn含量处于较低水平。果实膨大期(7月中下旬到8月下旬),叶片N、P有一个相对稳定的含量,K快速下降,而Fe、Mn、Zn含量上升。果实成熟期(9月初到10月初),叶片N、P、K含量下降,Mg、Fe、Mn、Zn则是缓慢上升并趋于稳定。叶片N、P、K、Mn含量之间呈正相关,Ca、Mg、Fe、Zn含量之间也呈正相关关系,叶片N、P、K之间达极显著正相关关系,而N、P、K与Ca、Mg、Fe、Zn含量之间呈负相关关系。施氮肥可促进前期枣树新枝生长和枣果膨大;施磷肥可提高产量,达到33210 kg/hm2;施钾肥可明显提高枣果品质。  相似文献   

17.
The dry weight accumulation per leaf as well as the concentration per gram of dry weight and the accumulation of nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), iron (Fe), manganese (Mn), zinc (Zn), and copper (Cu) were determined in walnut tree leaves (Juglans regia L.) during a complete life cycle. Additionally, the dynamics of plant nutrient concentration in leaf petiole sap and carbohydrate accumulation in leaves were studied in relation to the main life cycle events of the walnut tree. Total N, P, K, Cu, and Zn concentrations decreased, whereas that of Ca, Mg, and Mn increased during the season. Iron concentration fluctuated around a mean value. Total N, P, K, Mg, and Cu concentrations detected in younger mature leaves were at the sufficient level, whereas Ca, Fe, Mn, and Zn concentrations were at higher levels as compared to those previously reported. All the detected nutrient accumulations increased abruptly during leaf ontogeny and leaf maturation until a maximum level was attained in the younger mature leaves. Similarly, sucrose, glucose, and fructose accumulation were observed at the same period. The rates of total N, P, Cu, and Zn accumulation were lower than the rates of the observed dry matter accumulation and nutrient concentration dilution. Potassium and Mn accumulation rates were almost equal, whereas those for Ca and Mg were higher as compared to the dry matter accumulation rate. The fast embryo growing phase resulted in a considerable decrease in dry weight, total N, P, K, Cu, Zn, and carbohydrate accumulation, and to a lesser degree in Ca, Mg, and Mn accumulation. Nutrient accumulation reduction in leaves by the influence of the growing fruits were estimated to be: total N 52%, K 48%, P 29.5%, Mg 16.3%, Ca 15%, Fe 51.2%, Cu 55.2%, Zn 37.3%, and Mn 5.4% of the maximum nutrient value of the younger mature leaves. Old leaves preserved nutrients before leaf fall as follows: total N 25.4%, P 45%, K 31%, Ca 74.8%, Mg 76.5%, Mn 89.2%, Fe and Zn 50%, and Cu 37%. Nutrient remobilization from the senescing old leaves before leaf fall were: total N 22.6%, P 25.5%, K 21%, Ca 10.2%, Mg 7%, Fe 3.2%, Mn 5.4%, Cu 8%, and Zn 13.3% of the maximum value in the younger mature leaves. In early spring, the absorption rates of N, P, and Ca were low while those of Mg, Fe, Mn, Cu, and Zn were high. During the fast growing pollen phase, the N, P, Fe, Mn, Cu, and Zn concentrations were reduced. Calcium concentration is supposed to be more affected by the rate of transpiration rather than during the growing of embryo. Calcium and Mg concentrations in the sap were negatively correlated. The detected K concentration level in the sap was as high as 33 to 50 times that of soluble N, 12 to 21 times to that of P, 5 times to that of Ca, and 10 to 20 times to that of Mg. The first maximum of starch accumulation in mature leaves was observed during the slow growing embryo phase and a second one after fruit ripening. Old senescing leaves showed an extensive carbohydrate depletion before leaf fall.  相似文献   

18.
Abstract

Periods of maximum hard red spring (HRS) wheat (Triticum aestivum L.) nutrient demand need to be determined in order to develop best nutrient management practices, and to provide data for nutrient uptake modeling. Aerial (aboveground biomass) whole plant samples of irrigated HRS wheat were collected from the field at 16 growth stages and separated into leaves, stems, heads, and grain for dry matter determinations and analyzed for nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), sulfur (S), chloride (Cl), zinc (Zn), manganese (Mn), iron (Fe), and copper (Cu) concentrations. Accumulation curves were computed for each plant part for the growing season from compound cubic polynomial models based on accumulated growing degree units (GDUs). Total aerial accumulations of dry matter, N, P, K, Ca, Mg, S, Cl, Zn, Mn, Fe, and Cu were 14400, 116, 30.8, 103, 9.2, 9.3, 15.2, 32.3, 0.18, 0.58, 2.05, and 0.045 kg/ha, respectively. Grain at maturity accumulated greater than 78% of the total aerial N, P, and Zn, while it contained less than 20% of the aerial accumulated K, Ca, Cl, and Fe. Nitrogen and Fe were rapidly accumulated near 200 GDU, while P, K, Ca, Mg, S, Cl, Zn, Mn, and Cu were most rapidly accumulated near 600 GDU. Accumulation rates were 183, 2.9, 0.90, 0.72, 0.008, 1.41, 0.29, and 0.12 kg/ha/d for dry matter, N, P, K, Ca, Mg, S, and Cl, respectively, and 136, 1.7, 0.48, 0.13, 0.004, 0.78, 0.20, and 0.02 g/ha/d, respectively, during grainfill. This plant information suggests the timing of in‐season nutrient applications and, when integrated with other agronomic practices, could improve overall nutrient management for HRS wheat in the northern Great Plains.  相似文献   

19.
Results from a collaborative study of a method for the determination of 9 elements in infant formula, using inductively coupled plasma emission spectroscopy, are reported. Six collaborators analyzed 6 infant formulas for native and spiked levels of Ca, Cu, Fe, Mg, Mn, P, K, Na, and Zn. The within-laboratory and between-laboratory coefficients of variation were generally (69 of 108 samples) below 9% for all elements determined in all samples. Most of the average recoveries of the elements from spiked samples ranged from 90 to 105%. The method has been adopted official first action for determining Ca, Cu, Fe, Mg, Mn, P, K, Na, and Zn in infant formula.  相似文献   

20.
Abstract

A comprehensive system for the determination of N,‐ P, K, Ca, Mg, Na, B, Cu, Fe, Zn, S, and F in plant tissue is presented. A wet ash procedure using sulfuric acid and hydrogen peroxide permits determination of N, P, K, Ca, Mg, Na, B, Cu, Fe, Zn in one digest. S and F are determined in solutions of separate dry ashings.

The use of leaf analyses and its limitations are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号