首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Periods of maximum hard red spring (HRS) wheat (Jriticum aestivum L.) nutrient demand need to be determined in order to develop best nutrient management practices, and to provide data for nutrient uptake modeling. Aerial (aboveground biomass) whole plant samples of irrigated HRS wheat were collected from the field at 16 growth stages and separated into leaves, stems, heads, and grain for dry matter determinations and analyzed for N, P, K, Ca, Mg, S, Cl, Zn, Mn, Fe, and Cu concentrations. Accumulation curves were computed for each plant part for the growing season from compound cubic polynomial models based on accumulated growing degree units (GDUs). Total aerial accumulations of dry matter, N, P, K, Ca, Mg, S, Cl, Zn, Mn, Fe, and Cu were 14400, 116, 30.8, 103, 9.2, 9.3, 15.2, 32.3, 0.18, 0.58, 2.05, and 0.045 kg/ha, respectively. Grain at maturity accumulated greater than 78% of the total aerial N, P, and Zn, while it contained less than 20% of the aerial accumulated K, Ca, Cl, and Fe. Nitrogen and Fe were rapidly accumulated near 200 GDU, while P, K, Ca, Mg, S, Cl, Zn, Mn, and Cu were most rapidly accumulated near 600 GDU. Accumulation rates were 183, 2.9, 0.90, 0.72, 0.008, 1.41, 0.29, and 0.12 kg/ha/d for dry matter, N, P, K, Ca, Mg, S, and Cl, respectively, and 136, 1.7, 0.48, 0.13, 0.004, 0.78, 0.20, and 0.02 g/ha/d, respectively, during grainfill. This plant information suggests the timing of in‐season nutrient applications, and when integrated with other agronomic practices could improve overall nutrient management for HRS wheat in the northern Great Plains.  相似文献   

2.
A field study was made of the seasonal changes in dry‐matter production, and the uptake, distribution, and redistribution of 12 mineral nutrients in the semi‐dwarf spring wheat, Egret, grown under typical irrigation farming conditions. Most of the dry‐matter production and nutrient uptake had occurred by anthesis, with 75–100% of the final content of magnesium (Mg), copper (Cu), chloride (Cl), sulfur (S), phosphorus (P), nitrogen (N), and potassium (K) being taken up in the pre‐anthesis period. The above‐ground dry‐matter harvest index was 37%, and grain made up 76% of the head dry matter. Redistributed dry matter from stems and leaves could have provided 29% of the grain dry matter. Concentrations of phloemmobile nutrients, such as N and P, decreased in the leaves and stems throughout the season, whereas concentrations of phloem‐immobile nutrients, such as calcium (Ca) and iron (Fe), generally increased. The decline in the N concentration in stems and leaves was not prevented by N fertilizer applied just before anthesis. Leaves had the major proportion of most nutrients in young plants, but stems had the major proportion of these nutrients at anthesis. Grain had over 70% of the N and P, and 31–64% of the Mg, manganese (Mn), S, and zinc (Zn), but less than 20% of the K, Ca, sodium (Na), Cl, and Fe in the plant. Over 70% of the N and P, and from 15 to 51% of the Mg, K, Cu, S, and Zn was apparently redistributed from stems and leaves to developing grain. There was negligible redistribution of Ca, Na, Cl, Fe, and Mn from vegetative organs. Redistribution from stems and leaves could have provided 100% of the K, 68–72% of the N and P, and 33–48% of the Zn, Cu, Mg, and S accumulated by grain. It was concluded that the distribution patterns of some key nutrients such as N, P, and K have not changed much in the transition from tall to semi‐dwarf wheats, and that the capacity of wheat to redistribute dry matter and nutrients to grain is a valuable trait when nutrient uptake is severely restricted in the post‐anthesis period.  相似文献   

3.
A study was made of the effects of soil salinity on dry matter production, grain yield, and the uptake, distribution and redistribution of mineral nutrients in irrigated grain sorghum. Soil salinity (EC, 3.6 mS/cm) reduced seedling establishment by 77%, and dry matter and grain yields per plant by 32%; grain yield/ha was reduced by 84%. Salinity reduced grain number per head, but not individual grain size. The accumulation of dry matter and most nutrients was reduced by salinity, but the distribution and redistribution of nutrients within the plant were largely unaffected. Redistributed dry matter provided 52 and 31% of the grain dry matter for control and salt‐affected plants, respectively. Salt‐affected plants had a greater proportion of their sulfur (S), magnesium (Mg), sodium (Na), and chloride (Cl) in stems and leaves than control plants at maturity. Grain had 50–90% of the nitrogen <N), phosphorus (P), S, and Mg, 20–50% of the potassium (K), manganese (Mn), zinc (Zn), and copper (Cu), but < 20% of the calcium (Ca), Na, Cl, and iron (Fe) contents of the whole plant. Over 65% of the N and P, and from 20 to 30% of the K, S, Mg, Cu, and Zn was redistributed from the stem and leaves to grain. There was no redistribution of Ca, Na, Cl, Fe, and Mn. Leaves were more important than the stem as a source of redistributed N, but the leaves and stem were equally important as sources of redistributed P, K, S, Mg, and Cu. Redistribution from the stem and leaves provided 80% of the K and 20–50% of the N, P, S, Mg, Zn, and Cu accumulated by grain. Concentrations of Na, and especially Cl, were high in vegetative organs of salt‐affected plants, but not in grain. It was concluded that although moderate salinity was detrimental to the establishment and yield of grain sorghum, it had little effect on patterns of distribution and extents of redistribution of mineral nutrients.  相似文献   

4.
The dry weight accumulation per male and female flower as well as the concentration per gram of dry weight and the accumulation of nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), iron (Fe), manganese (Mn), zinc (Zn), and copper (Cu) were determined in walnut tree (Juglans regia L.) catkins and female flowers at the stage of flower bud and during the flower development. Catkin emergence was accompanied by a very fast hydration of the tissues. After the catkin matured, the fresh and dry weights were reduced. The female flower development period was accompanied by the dry and fresh weight increase. Total N, P, K, Fe, Mn, Cu and Zn concentrations in catkin buds were detected at lower levels, Mg in equal levels, and Ca at higher levels as compared to the nutrient concentrations in young growing leaves. The estimated values of the ratio NCmfb/NCygl were: total N = 0.54, P = 0.83, K = 0.56, Ca = 1.5, Mg = 1.0, Fe = 0.46, Mn = 0.71, Cu = 0.85, and Zn = 0.60. Nutrient concentration in female flower buds was detected in almost equal levels with the exception of total N and Fe. The estimated values of the ratio: NCffb/NCygl were: total N = 0.57, P = 1.1, K = 1.17, Ca = 1.06, Mg = 0.9, Fe = 0.47, Mn = 1.0, Cu = 0.92, and Zn = 0.85. Total N, P, Mn, Cu, and Zn accumulations in the catkin were increased during the fast growing phase and decreased after catkin maturing. Potassium, Mg, and Fe accumulation continued to increase in the mature catkin. Calcium accumulation decreased at a very late mature catkin phase. Total N, P, and K accumulation rates during the catkin fast growing phase were higher than the dry weight accumulation rate. Calcium, Mg, Fe, Mn, Cu, and Zn accumulation rates at the same period were lower or equal to dry weight accumulation rates. In mature catkins, the total N, P, Mn, Cu, and Zn depletion rates were higher than the dry weight depletion rate. The continual increase of K, Ca, Mg, and Fe accumulation in mature catkin resulted in the increase of nutrients concentration also. Total N and P showed the highest remobilization values from mature catkin of 51.4% and 45%, respectively. Calcium, K, Mg, Cu, Mn, and Zn remobilization values estimated to be 22.1%, 7.5%, 3.2%, 45.3%, 33.4%, and 31.8%, respectively. Iron showed no remobilization at all. Nutrients remobilization from catkins as compared to the leaves had almost similar values for total N, Zn, and Cu, higher for P, Ca, and Mn, and lower for Mg, Fe, and K. Accumulation of all nutrients in female flowers increased after fertilization. The dry weight accumulation rate was higher than the nutrient accumulation rates.  相似文献   

5.
The dry weight accumulation per leaf as well as the concentration per gram of dry weight and the accumulation of nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), iron (Fe), manganese (Mn), zinc (Zn), and copper (Cu) were determined in walnut tree leaves (Juglans regia L.) during a complete life cycle. Additionally, the dynamics of plant nutrient concentration in leaf petiole sap and carbohydrate accumulation in leaves were studied in relation to the main life cycle events of the walnut tree. Total N, P, K, Cu, and Zn concentrations decreased, whereas that of Ca, Mg, and Mn increased during the season. Iron concentration fluctuated around a mean value. Total N, P, K, Mg, and Cu concentrations detected in younger mature leaves were at the sufficient level, whereas Ca, Fe, Mn, and Zn concentrations were at higher levels as compared to those previously reported. All the detected nutrient accumulations increased abruptly during leaf ontogeny and leaf maturation until a maximum level was attained in the younger mature leaves. Similarly, sucrose, glucose, and fructose accumulation were observed at the same period. The rates of total N, P, Cu, and Zn accumulation were lower than the rates of the observed dry matter accumulation and nutrient concentration dilution. Potassium and Mn accumulation rates were almost equal, whereas those for Ca and Mg were higher as compared to the dry matter accumulation rate. The fast embryo growing phase resulted in a considerable decrease in dry weight, total N, P, K, Cu, Zn, and carbohydrate accumulation, and to a lesser degree in Ca, Mg, and Mn accumulation. Nutrient accumulation reduction in leaves by the influence of the growing fruits were estimated to be: total N 52%, K 48%, P 29.5%, Mg 16.3%, Ca 15%, Fe 51.2%, Cu 55.2%, Zn 37.3%, and Mn 5.4% of the maximum nutrient value of the younger mature leaves. Old leaves preserved nutrients before leaf fall as follows: total N 25.4%, P 45%, K 31%, Ca 74.8%, Mg 76.5%, Mn 89.2%, Fe and Zn 50%, and Cu 37%. Nutrient remobilization from the senescing old leaves before leaf fall were: total N 22.6%, P 25.5%, K 21%, Ca 10.2%, Mg 7%, Fe 3.2%, Mn 5.4%, Cu 8%, and Zn 13.3% of the maximum value in the younger mature leaves. In early spring, the absorption rates of N, P, and Ca were low while those of Mg, Fe, Mn, Cu, and Zn were high. During the fast growing pollen phase, the N, P, Fe, Mn, Cu, and Zn concentrations were reduced. Calcium concentration is supposed to be more affected by the rate of transpiration rather than during the growing of embryo. Calcium and Mg concentrations in the sap were negatively correlated. The detected K concentration level in the sap was as high as 33 to 50 times that of soluble N, 12 to 21 times to that of P, 5 times to that of Ca, and 10 to 20 times to that of Mg. The first maximum of starch accumulation in mature leaves was observed during the slow growing embryo phase and a second one after fruit ripening. Old senescing leaves showed an extensive carbohydrate depletion before leaf fall.  相似文献   

6.
Critical concentrations of nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), iron (Fe), zinc (Zn), and manganese (Mn) with respect to dry matter yield end antagonistic and synergistic relationships among these nutrients were studied in which tomato (Lycopersicon esculentum L.) was grown in recirculating nutrient solution (NFT). Increments of nutrient elements in the nutrient solution increased the proportional rate of the corresponding nutrient elements. Increasing levels of N negatively correlated with plant P and positively correlated with Ca, Fe, and Zn. Iron and Mn contents of the plants were increased and N, K, Ca, and Mg were decreased as a function of P applied. Increases in K in the nutrient solution caused increases in the concentrations of K, N, P, and Zn, and decreases in the concentration of Ca and Fe. Applied Ca increased the concentrations of Ca and N, and decreased the concentrations of P, Mg, Fe, Zn, and Mn. Potassium, Ca, and Fe contents of the plants were decreased and Zn increased, while N, P, and Mn were not affected by the increasing levels of external Mg. Iron suppressed the plant Mg, Zn, and Mn contents. Synergism between Zn and Fe was seen, while P, K, Ca, Mg, and Mn contents were not affected by Zn levels. Potassium, Ca, Mg, and Fe were not responsive to applied Mn, however, N and P contents of the plants were decreased at the highest levels of Mn.  相似文献   

7.
This study was conducted to investigate the effect of salinity and foliar application of salicylic acid (SA) on sorghum biomass and nutrient contents. Treatments were comprised of salinity levels (0 and 100?mM NaCl) and SA concentrations (0.3, 0.7, 1.1 and 1.5?mM). Salinity increased sodium (Na), chlorine (Cl) and copper (Cu) but decreased nitrogen (N), phosphorus (P), potassium (K), magnesium (Mg), sulfur (S), iron (Fe), zinc (Zn) and manganese (Mn) contents and the root and shoot dry matter. Fe and Zn were the most affected nutrients by salinity. However, SA reduced Na and Cl but increased plant dry matter and nutrient content. SA had greater positive effects on root than on shoot dry matter. Maximum increases through SA were achieved in N, K, Fe, Mn, Cu, and shoot weight under salt stress but in Zn and root weight under non-saline condition. In most cases 1.1?mM was the most effective SA concentration in reducing the negative effects of salinity.  相似文献   

8.
In this investigation the extraction curve of macronutrients (N, P, K, Ca, Mg) and micronutrients (Fe, Cu, Zn and Mn) were determined in the cultivation of fig. A system of intensive production of fig in greenhouse and hydroponics was established with 1.25 plants m?2. The determination of the nitrogen content was done by the micro-Kjeldahl method. The P was by the yellow molybdovanadate method throughon a spectrophotometer. The K was determined by flamometry and the Ca, Mg, Fe, Cu, Zn and Mn were determined by atomic absorption spectrophotometry. Of the organs analyzed, the stem was the that accumulated more dry matter, then, the leaves and finally the fruits. The nutrient extraction dynamics presented similar upward behavior in all nutrients. The demand for macronutrients in decreasing order was N?>?K?>?P?>?Ca?>?Mg and for the micronutrients Cu?>?Fe?>?Mn?>?Zn.  相似文献   

9.
中国烤烟中部叶矿质营养元素浓度状况   总被引:13,自引:1,他引:13  
于20012~004年,从重点植烟县采集了410个烤烟中部叶样品,运用ICP测定方法和概率密度分布函数对其氮、钾、磷、钙、镁、硫、锰、铜、锌、硼、钠、铁、氯13个矿质元素的浓度特征进行了分析。结果表明:1)大量元素的变异系数较小,中量元素其次,微量元素较大;2)除氮、镁、硫、铜、锌、钠、铁外,其他元素的浓度在品种之间的差异显著,但不同指标在品种之间的高低秩序不同,例如,云烟87的磷浓度显著地高于云烟85、K326的磷浓度,而钾浓度按K326、云烟87、云烟85依次降低;3)所有元素在省份之间的差异极显著,但不同元素在地区之间的高低秩序不同,例如,河南烟叶的钾浓度显著地低于其他省份,贵州烟叶的氯离子浓度显著地高于其他地方;4)钾、磷、钙、硫、硼、钠在烟叶中的浓度符合正态分布,氮、镁、氯、锰、铜、锌、铁在烟叶中的浓度符合对数正态分布;5)氮、磷、钾、钙、镁、硫、锰、铜、锌、硼、钠、铁、氯的正常浓度范围分别为1.18~2.34、0.11~0.30、0.87~2.83、0.99~3.64、0.1~0.8、0.25~0.9、25.18~601.65、2.1~37.271、3.11~105.421、2.6~55.62、163.02~503.11、97.6~384.2、0.07~0.53(氮、磷、钾、钙、镁、硫、氯的单位为%,其余为mg/kg);6)氮、钾、氯、钾/氯比四个因素符合国际型优质烟叶质量标准的概率只有0.726、0.379、0.193、0.829,目前我国烤烟营养不够协调的主要方面是养分浓度偏低。  相似文献   

10.
Soil acidity is often associated with toxic aluminum (Al), and mineral uptake usually decreases in plants grown with excess Al. This study was conducted to evaluate the effects of Al (0, 35, 70, and 105 μM) on Al, phsophorus (P), sulfur (S), potassium (K), calcium (Ca), magnesium (Mg), iron (Fe), manganese (Mn), zinc (Zn,) and copper (Cu) uptake in shoots and roots of sorghum [Sorghum bicolor (L.) Moench, cv. SC283] colonized with the vesicular‐arbuscular mycorrhizal (VAM) fungi isolates Glomus intraradices UT143–2 (UT143) and Glomus etunicatum UT316A‐2 (UT316) and grown in sand (pH 4.8). Mycorrhizal (+VAM) plants had higher shoot and root dry matter (DM) than nonmycorrhizal (‐VAM) plants. The VAM treatment had significant effects on shoot concentrations of P, K, Ca, Fe, Mn, and Zn; shoot contents of P, S, K, Ca, Mg, Fe, Mn, Zn, and Cu; root concentrations of P, S, K, Ca, Mn, Zn, and Cu; and root contents of Al, P, S, K, Ca, Mg, Fe, Mn, Zn, and Cu. The VAM effects on nutrient concentrations and contents and DM generally followed the sequence of UT316 > UT143 > ‐VAM. The VAM isolate UT143 particularly enhanced Zn uptake, and both VAM isolates enhanced uptake of P and Cu in shoots and roots, and various other nutrients in shoots or roots.  相似文献   

11.
Abstract

The Diagnosis and Recommendation Integrated System (DRIS) was used to identify nutrient status of mango fruit trees in Punjab, India. Standard norms established from the nutrient survey of mango fruit trees were 1.144, 0.126, 0.327, 2.587, 0.263, 0.141% for nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), and sulfur (S), and 15, 3.5, 145, 155, and 30 mg kg?1, respectively, for zinc (Zn), copper (Cu), iron (Fe), manganese (Mn), and boron (B) in dry matter. On the basis of DRIS indices, 16, 15, 12, 17, and 16% of total samples collected during nutrients survey of mango trees were low in N, P, K, Ca, and Mg, respectively. For micronutrients, 19, 18, 12, 20, and 6% samples were inadequate in Zn, Cu, Fe, Mn, and B, respectively. DRIS‐derived sufficiency ranges from nutrient indexing survey were 0.92–1.37, 0.08–0.16, 0.21–0.44, 1.71–3.47, 0.15–0.37, and 0.09–0.19% for N, P, K, Ca, Mg, and S and 11–19, 1–6, 63–227, 87–223, and 16–44 mg kg?1 for Zn, Cu, Fe, Mn, and B, respectively.  相似文献   

12.
芦笋矿质元素吸收特性研究   总被引:2,自引:0,他引:2  
研究了芦笋不同生长时期干物质积累和矿质元素吸收特性。结果表明,芦笋在采笋期干物质积累占全年总积累量的26.2%。嫩茎为该时期的干物质积累中心,积累量占采笋期积累量的69.7%。母茎生长期干物质积累占全年总积累量的73.8%,母茎为该时期的干物质积累中心,积累量占这一时期积累量的70.9%。在各种矿质元素中,芦笋植株吸收钾最多,其次为氮。对氮、磷、钾、钙、镁的吸收比例为3.33︰1︰4.77︰0.52︰0.23。钾在采笋期和母茎生长期的积累量基本相同;氮、铜、锌主要在采笋期积累;磷、钙、镁、铁、锰则主要在母茎生长期积累。根据芦笋矿质元素吸收特性提出了芦笋不同生育阶段的施肥建议。  相似文献   

13.
The objective of this work was to propose preliminary Diagnosis and Recommendation Integrated System (DRIS) norms and derive critical levels and nutrient sufficiency ranges in the leaves of guava plants in commercial nursery conditions. Sixty-eight leaf samples were evaluated from fertilization trials with seedlings. In the low-yield subpopulation (84% of the population), the limiting nutrients by deficiency in descending order were nitrogen (N)> copper (Cu)>phosphorus (P) = potassium (K)> manganese (Mn)> iron (Fe) = zinc (Zn)> sulfur (S)> boron (B) = magnesium (Mg)> calcium (Ca), and the limiting ones by excess in descending order were B > Ca > Fe > Mn > S > Mg > Cu > P > Zn > N = K. The ranges of the appropriate DRIS indices were 24 to 28, 2.4 to 3.1, 21 to 29, 6 to 8, 1.9 to 2.9 and 1.9 to 2.3 (g kg?1) for the macronutrients N, P, K, Ca, Mg and S, respectively, and 35 to 48, 4 to 15, 68 to 93, 31 to 60 and 180 to 245 (mg kg?1) for the micronutrients B, Cu, Fe, Mn and Zn, respectively. The dry matter production of guava seedlings was associated with the nutritional status.  相似文献   

14.
ABSTRACT

The fertilizer absorption characteristics of strawberries are not clear, although appropriate fertilization is definitely necessary to ensure produce quality and quantity. This study aimed to determine the amounts of macro- and micronutrients absorbed during cultivation of strawberries and their biodistribution and utilization in the plant body. We cultivated Japanese strawberries ‘Benihoppe’ and ‘Kirapika’ in small hydroponic equipment containing a nutrient solution and determined the amounts of N, P, K, Ca, Mg, Fe, Mn, B, Zn, Cu, and Mo absorbed during and at the end of cultivation. The results revealed the adsorption levels of these elements during the cultivation period. The nutrient concentrations varied greatly among plant organs. In particular, P and B accumulated at high levels in the leaves and stem, K, Ca, Mg, Mn, Zn, and Cu accumulated in the crown, and N, Fe, and Mo accumulated in the roots. In addition, the uptake levels of N, P, K, Mg, Mn, Zn, and Cu differed between Benihoppe and Kirapika. Our results provide useful information for determining fertilizer application rates in strawberry cultivation.  相似文献   

15.
Writing nutrient management plans for Christmas tree production requires accurate values for nutrient removal and harvest records. Freshly cut trees of each of Norway spruce (Picea abies), Canaan fir (Abies balsamea var. phanerolepis), and Douglas fir (Pseudotsuga menziesii) were collected in December 2005. Minimum, maximum, and mean cut tree size measurements were documented. Nutrient contents were calculated and there were no significant differences in nutrient uptake values among species. In a spacing of 1.5 m × 1.5 m (4302 trees per hectare), a clear-cut harvest would remove on average (kg/ha) 560 nitrogen (N), 60.87 phosphorus (P), 168 potassium (K), 243.51 calcium (Ca), 37.75 magnesium (Mg), 28.25 sulfur (S), 0.54 boron (B), 3.39 iron (Fe), 4.74 manganese (Mn), 0.11 copper (Cu), 2.79 zinc (Zn), 2.92 aluminum (Al), 105.85 chlorine (Cl), 0.02 molybdenum (Mo), and 1.44 sodium (Na). Except for Mn and Na, nutrient removal increased linearly as dry weight of whole tree increased.  相似文献   

16.
Walnut (Juglans regia L.) tree fruit showed after the endocarp lignification a fast growing stage during which fresh and dry weights increased abruptly. From the beginning of fruit ripening and during the fast sperm growing stage, fresh weight started to decrease while dry weight continued to increase with a reduced growth rate. Dry weights increased in sperm and decreased in exocarp‐mesocarp tissues during the fast sperm growing stage. The material exit from pericarp tissues was completed in the ripe fruit. By contrast, fresh weight continued to decrease in the tissue. Patterns of nutrient accumulation per fruit increased continuously during the fruit growth period. The observed reductions of nutrient accumulations for total nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), iron (Fe), manganese (Mn), copper (Cu), and zinc (Zn) in the fruit individuals during the very late fruit stage after fruit ripening, and in conjunction with the pericarp tissues senescence, are supposed to represent mineral nutrient returns from the ripe fruit. Patterns of total N, P, Mg, Fe, and Zn accumulations increased in the exocarp‐mesocarp tissue during the slow sperm growing stage and decreased during the fast sperm growing stage. Potassium accumulation in the tissue increased continuously up to the fruit ripening time. Calcium, Mn, and Cu increased continuously. Patterns of all nutrients in endocarp tissue increased during the slow sperm growing stage and decreased at the fast sperm growing stage. In the sperm tissues, total N, P, Mg, and Ca accumulations increased during the sperm development and slightly decreased in a late stage. The increasing trend of Ca accumulation was temporarily interrupted during the fast sperm growing stage. Iron, Mn, Cu, and Zn accumulations showed no reductions at all. Potassium accumulation was drastically restricted in the tissue with the approach of fruit ripening. Sperm tissues are extraordinary rich in mineral nutrients. Sperm total N, P, Mg, Mn, Zn, Cu, and Fe accumulations represented the 98.1%, 88.2%, 59.2%, 81.5%, 72.3%, 65.6%, and 52.5% of the total nutrients accumulation in the fruit, respectively. Sperm K and Ca accumulations represented only the 13% and 11.6%, respectively. Exocarp‐mesocarp K, Ca, and Mg accumulations represented the 76%, 72% and 37.1% of the total nutrients accumulation in the fruit individual, respectively. Total N and P accumulation in the tissue were detected in very low levels 1.3% and 7%, respectively. Iron, Cu, Zn, and Mn accumulations were detected in the same tissue in ratio values of 27.5%, 22%, 5.4%, and 11%, respectively. Macro‐ and micro‐nutrient accumulations of the endocarp tissues were detected in the lower levels as compared to the other fruit tissues. The estimated values of mineral nutrient returns from the mature fruit individuals were 2.8% for total N, 13% for P, 16.5% for K, 23% for Ca, 12% for Mg, 28.5% for Fe, and 21% for Zn. Manganese and Cu showed no returns at all. The estimated nutrient returns from the sperm tissues were 60% for total N, 67% for P, 22% for K, and 50% for Mg of the total returned nutrient from the fruit individual. The estimated nutrient returns from exocarp‐mesocarp were 100% for Zn, Fe, and Ca, 50% for Mg, 78% for K, 33% for P, and 40% for total N. Calcium, Fe, Mn, Cu, and Zn in the sperm and Mn and Cu accumulations in pericarp tissues showed no returns at all. A restricted nutrient diffusion from exocarp‐mesocarp and sperm tissues to the endocarp tissues is supposed to be possible. These results suggested a pericarp tissue behaviour similar to the old senescing leaves.  相似文献   

17.
李营养累积、分布及叶片养分动态研究   总被引:9,自引:0,他引:9  
李鑫  张丽娟  刘威生  杨建民  马峙英 《土壤》2007,39(6):982-986
基于保障生态和果品安全以及合理实施果园养分管理的前提,对大石早生李树体各部位营养元素积累、分布以及各营养元素的周年变化规律进行了分析.结果表明:①营养元素在各个器官的相对含量,除K、Zn在果实中含量最高外,N、P、Ca、Mg均以叶片中含量为最高,以叶片做营养诊断是适宜的.②大石早生李树体营养元素N、P、K、Ca、Mg、Fe、Zn的元素比值为10.00:1.26:6.42:12.57:2.46:1.87:0.14.⑧100 kg鲜果的养分吸收量分别为:N 772.47g,P74.25 g,K 730.33g,Ca874.16 g,Mg 169.82 g,Fe 66.05 g,Zn 7.53 g,N:P:K的比例为1.00:0.10:0.95.④N、P、K、Ca、Mg、Fe、Zn、Mn、Cu的含量随物侯期呈规律性变化.生长季初期,N、P、K、Zn、Cu的含量迅速下降,Fe、Mn、Ca、Mg呈逐渐上升的趋势;中期这9种元素总体变化幅度较小;后期Fe,Cu.N、P、K的含量呈下降趋势,Mn、Zn、Ca,Mg依然上升.本结果既丰富了国内李营养理论,同时又为制定合理的施肥措施及建立绿色优质果品科技示范基地提供了理论依据.  相似文献   

18.
巨桉人工林叶片养分交互效应   总被引:1,自引:0,他引:1  
在四川巨桉栽培区设立了60个标准地,采用相关分析和矢量诊断法进行分析,以了解巨桉人工林养分的相互作用关系。结果表明,巨桉人工林叶片的养分交互作用较为复杂。N可促进P、K、Ca、Mn等的吸收,但易受到Fe、Zn、高Ca、高Mg的拮抗,而且高N抑制了Mn的吸收;P可促进K、Mg、Mn等的吸收,但易受Zn、Fe、高Mn、高K、高Ca、高Mg的拮抗,而高浓度的P将抑制K、Zn、Fe等的吸收;K对其他养分元素均没有明显的促进作用,但高浓度K限制P的吸收;Ca、Mg之间可相互促进吸收。同时,低浓度的Ca和Mg有利于Fe、Zn的吸收,高浓度的Ca和Mg将对N、P、Fe、Mn、S、B等养分产生拮抗,限制吸收;S可促进Zn的吸收,但易受高Ca、高Mg拮抗;Cu、Zn、Fe、Mn之间主要以拮抗为主。B相互作用较少,对其他养分几乎没有明显的促进作用。  相似文献   

19.
Temporal dynamics of nutrient densities, their interrelationships, and remobilization from leaves to seeds of cuphea were quantified in growth chamber and field studies. Temporal nutrient densities in leaf samples exhibited large levels of variation, whether remobilized and largely accumulated in the seed [copper, (Cu), potassium (K), phosphorus (P), sulfur (S) and zinc (Zn)], remobilized and accumulated in the seed coat [boron (B), calcium (Ca), iron (Fe), magnesium (Mg), manganese (Mn), and sodium (Na)] or almost excluded from the seed [barium (Ba), selenium (Se) and strontium (Sr)]. The temporal seed-to-leaf nutrient density “[S]/[L]” ratios and the proportion of variance unique to each nutrient separated the nutrients into a group (Cu, Fe, S, and Zn) with large [S]/[L] ratios and large unique variances, and another group (B, Ca, Mg, Mn and Sr) with small [S]/[L] ratios and small unique variances; the first group was selectively stored in the developing embryo. Nutrients with large densities in leaves at harvest may constitute a resource potentially available for subsequent crops.  相似文献   

20.
Birch seedlings (Betula pendula) were cultivated in nutrient solution with 0–2 μM cadmium (Cd). The effects of 2–10 days of Cd exposure on root and shoot element composition [potassium (K), calcium (Ca), magnesium (Mg), phosphorus (P), sulfur (S), iron (Fe), manganese (Mn), zinc (Zn), copper (Cu), molybdenum (Mo), and Cd] and growth (as percentage dry weight increase) were investigated. The element composition of fine roots and remaining root parts were analysed separately to elucidate the significance of the fine roots as a primary target for Cd toxicity. The nutrient composition of the roots was considerably altered by the Cd exposures, whereas the nutrient composition of the shoot was less affected. After eight days, the whole root (fine roots + remaining roots) concentrations of K, Ca, Mg, and Mn were reduced, whereas the opposite was found for Cu and Mo. The element distribution between fine roots and remaining roots was altered by the Cd exposures. Cadmium was accumulated in the roots and in fine roots especially. Fine roots also exhibited a capacity for Cu accumulation and a retainment of Ca and S. Total plant growth was stimulated by 0.05 μM Cd but was reduced by the 0.5–2 μM Cd treatments. Root growth was increased by the Cd exposures and growth reductions were restricted only to the shoot. Accumulation of Cd and Cu and a retainment of Ca and S in the fine roots together with a preference for root growth, imply that the explanation for the Cd effects obtained may include mechanisms for Cd tolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号