首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

A study was carried out in the Argentine Pampa. Plots under continuous maize and maize–wheat/soybean–soybean rotation were used. Three control plots on grassland with different undisturbed periods were also used. The objective was to show that C3 and C4 plants have a different effect on the quantity of carbon retained in the soil when different crop sequences are used. Total organic carbon was determined, and mass spectrometry techniques were used to assess the natural variation of the abundance of 13C and 12C to trace carbon fate in the soil. No differences were observed in the carbon stock at 90 cm deep across cultivated plots. Maize monoculture represented an important contribution to the soil organic matter when compared to the grassland areas, but the comparison through the initial δ13C from reference plots did not allow an assessment of the original soil carbon in the plot under rotation.  相似文献   

2.
The purpose of this work was to determine whether some soil physical and chemical properties, and microbial activity were affected by two conservation tillage systems in a Chernozemic clay loam soil (Vertic Argiudoll), after 5 years of trial initiation. Two crop sequences, corn (Zea mays L.)–wheat (Triticum aestivum L.)/soybean (Glycine max (L.) Merr.) and wheat/soybean, under chisel plowing (ChP) and no till (NT) were evaluated. Physical and chemical properties were also analyzed taking the same soil without disturbance as reference. The Hénin instability index (HI) was larger in ChP than in NT in both corn–wheat/soybean (C–W/S) and wheat/soybean (W/S) sequences (P≤0.05). The C–W/S sequence differed from W/S (P≤0.01) in total organic carbon (TOC). As regards organic carbon fractions, no differences were found in labile organic carbon (LOC), while W/S under ChP showed the lowest value (P≤0.01) of humified organic carbon (HOC). No differences were found in microbial respiration either in crop sequences or in tillage systems. Soil physical and chemical properties differentiated crop sequences and tillage treatments from the undisturbed soil when a Student’s t-test was performed. Five years elapsed since the beginning of this trial was time enough to detect changes in some of the soil properties as a consequence of management practices. An important reduction in the soil structural stability was observed as related to the undisturbed soil. However, the C–W/S sequence under NT resulted in lower soil degradation with respect to the other treatments.  相似文献   

3.
Abstract

Nitrogen (N) management may be improved by a thorough understanding of the nutrient dynamics during previous‐crop residue decomposition and its impact on fertilizer N fate in the soil–plant system. An experiment was conducted in the Argentine Pampas to evaluate the effect of maize and soybean as previouscrops and plow‐till and no‐till methods on N dynamics and 15N‐labeled fertilizer uptake during a wheat growing season. Maize and soybean residues released N under both tillage treatments, but N release was faster from soybean residues and when residues were buried by tillage. Net immobilization of N on decomposing residues was not detected. A regression model that accounted for 92% of remaining N variability included time, previous crop, and tillage treatment as independent variables. The rapid residue decomposition with N release was attributed to the high temperatures of the agroecosystem. The recovery of 15N‐labeled fertilizer in the wheat crop, soil organic matter, and decomposing residues was not statistically different between previous crop treatments or tillage systems. Crop uptake of fertilizer N averaged 52% across treatments. Forty percent of fertilizer N was removed in grains. Immobilization of labeled N on soil organic matter was substantial, averaging 34% of the 15N‐labeled fertilizer retained, but was very small on decomposing residues, averaging 0.2–3.0%. Fertilizer N not accounted for at harvest in the soil–plant system was 12% and was ascribed to losses. Previous crop or tillage system had no impact on wheat yield, but when soybean was the previous crop, N content of grain and straw+roots increased. Discussion is presented on the potential availability of N retained in wheat straw, roots, and soil organic matter for future crops.  相似文献   

4.
Crop rotation adoption in no‐tillage systems (NTS) has been recommended to increase the biological activity and soil aggregation, suppress soil and plant pathogens, and increase the productivity aiming at the sustainability of agricultural areas. In this context, this study aimed to assess the effect of crop rotation on the arbuscular mycorrhizal fungi (AMF) community and soil aggregation in a soil cultivated for nine years under NTS. Treatments consisted of combinations of three summer crop sequences and seven winter crops. Summer crop sequences consisted of corn (Zea mays L.) monoculture, soybean (Glycine max L. Merrill) monoculture, and soybean–corn rotation. Winter crops consisted of corn, sorghum (Sorghum bicolor (L.) Moench), sunflower (Helianthus annuus L.), sunn hemp (Crotalaria juncea L.), pigeon pea (Cajanus cajan (L.) Millsp.), oilseed radish (Raphanus sativus L.), and millet (Pennisetum americanum (L.) Leeke). Soil samples were collected at a depth of 0–0.10 m for analyses of soil chemical, physical, and biological attributes. Spore abundance, total glomalin, and soil aggregate stability index were higher in the soil under corn monoculture. The highest values of aggregate mean weight diameter were observed in the soybean–corn rotation (3.78 mm) and corn monoculture (3.70 mm), both differing from soybean monoculture (3.15 mm), while winter crops showed significant differences only between sorghum (3.96 mm) and pigeon pea (3.25 mm). Two processes were identified in the soil under summer crop sequences. The first process was observed in PC1 (spore abundance, total glomalin, easily extractable glomalin, pH, P, and Mg2+) and was related to AMF; the second process occurred in PC2 (aggregate mean weight diameter, soil aggregate stability index, K+, and organic matter) and was related to soil aggregation. The nine‐year no‐tillage system under the same crop rotation adoption influenced AMF abundance in the soil, especially with corn cultivation in the summer crop sequence, which promoted an increased total external mycelium length and number of spores of AMF. In addition, it favored an increased soil organic matter content, which is directly related to the formation and stability of soil aggregates in these managements.  相似文献   

5.
小麦-玉米-大豆轮作下黑土农田土壤呼吸与碳平衡   总被引:5,自引:1,他引:5  
农田生态系统是陆地生态系统的重要组成部分,探讨农田生态系统的土壤呼吸与碳平衡对于科学评价陆地生态系统在全球变化下的源汇效应具有重要意义。基于中国科学院海伦农业生态实验站的长期定位试验,对不同施肥处理下黑土小麦-玉米-大豆轮作体系2005—2007年的作物固碳量与土壤CO2排放通量进行了观测,并对该轮作体系下黑土农田生态系统的碳平衡状况进行了估算。结果表明:在小麦-玉米-大豆轮作体系中,作物固碳量的高低表现为:玉米>大豆>小麦,平均值分别为6 513 kg(C).hm-2、4 025 kg(C).hm-2和3 655kg(C).hm-2。从作物生长季土壤CO2排放总量来看,3种作物以大豆农田生态系统的土壤CO2排放总量最高,平均值达4 062 kg(C).hm-2;其次为玉米,为3 813 kg(C).hm-2;而小麦最低,为2 326 kg(C).hm-2。3种作物轮作下NEP(净生态系统生产力)均为正值,表明黑土农田土壤-作物系统为大气CO2的"汇",不同作物系统的碳汇强度表现为玉米>小麦>大豆,三者的平均值分别为3 215 kg(C).hm-2、1 643 kg(C).hm-2和512 kg(C).hm-2。长期均衡施用氮、磷、钾化肥或氮、磷、钾化肥配施有机肥后,小麦、玉米和大豆农田生态系统的固碳量和土壤CO2排放总量均明显增加,并在氮、磷、钾配施有机肥处理下达到最高。不同的施肥管理措施将改变土壤-植物系统作为大气CO2"汇"的程度,总体表现为化肥均衡施用下NEP值较高,而化肥与有机肥配施下农田生态系统的NEP值较低。  相似文献   

6.
不同植物根际土壤团聚体稳定性及其结合碳分布特征   总被引:4,自引:1,他引:4  
以大豆(S)、玉米(M)、小麦(W)和草本植物(GL)的根际土和裸地(BL)作为处理,研究了不同植物根际土壤团聚体组成、稳定性以及团聚体结合碳的分布。结果表明,草地以水稳性大团聚体(>0.25 mm)占绝对优势,比例达85.9%;与草地相比,农田三种作物处理显著降低了大团聚体的比例,质量分数为68.7%;裸地大团聚体比例(55.7%)最小,尤其是>2 mm的团聚体仅占3.5%。团聚体水稳定性草地最高,裸地团聚体水稳定性最差,农田三种作物处理居中。玉米、小麦和大豆三种作物根际土壤团聚体在组成上并无显著差异,而玉米根际土壤团聚体稳定性显著高于小麦和大豆。草地团聚体结合碳量最高,为36.0g kg-1土,比农田(平均33.9 g kg-1土)和裸地分别高出5.8%和16.7%。大团聚体(>0.25 mm)是有机碳存储的主要部分,因此保护和维持这部分团聚体的数量和稳定性对于抵押CO2排放和土壤肥力的可持续发展具有重要意义。  相似文献   

7.
To identify crop rotation systems capable of sequestering C and N to 1 metre depth in a subtropical Ferralsol of Southern Brazil managed under long‐term zero‐tillage (21 yrs), we evaluated six crop sequences: wheat (Triticum aestivum)–soybean (Glycine max) [W‐S], the baseline; oat (Avena strigosa, as cover crop)–maize (Zea mays)–wheat–soybean [O‐M‐W‐S]; vetch (Vicia villosa, as legume cover crop)–maize–wheat–soybean [V‐M‐W‐S]; vetch–maize–oat–soybean–wheat–soybean [V‐M‐O‐S‐W‐S]; ryegrass (Lolium multiflorum, for hay)–maize–ryegrass–soybean [R‐M‐R‐S]; and alfalfa (Medicago sativa, for hay)–maize [A‐M]. Compared to W‐S and to 1 metre, the hay‐based system of A‐M showed the largest C and N sequestration rates (0.50 and 0.06 Mg/ha/yr, respectively). Alfalfa, being a perennial legume under cut‐regrowth cycles, possibly added more C and N through roots. The other hay system, R‐M‐R‐S, also sequestered C efficiently (0.27 Mg/ha/yr), but not N (0.01 Mg/ha/yr). The legume‐based system of V‐M‐W‐S sequestered significant amounts of both C (0.29 Mg/ha/yr) and N (0.04 Mg/ha/yr). The grass‐based system of O‐M‐W‐S showed the lowest sequestration of C (0.09 Mg/ha/yr). In all systems, a positive relationship (R2 = 0.71) occurred between estimated addition of root C and soil C stock to 1 metre. Whenever C and N sequestration occurred, more than half of that occurred below 20 cm depth. Results suggest that adoption of legume‐based systems, perennially as A‐M or annually as V‐M‐W‐S, is efficient for C and N sequestration in subtropical zero‐tillage soils and that roots possibly contribute more to that sequestration than aboveground biomass.  相似文献   

8.
We quantified the effects of different straw return modes on soil organic carbon (SOC), total nitrogen content (TN) and C:N ratios in a wheat/maize double‐cropping agricultural system by analysing their content in different soil aggregate sizes and density fractions under four modes of straw return: (a) no return/retention of wheat and maize straw (Control); (b) retention of long wheat stubble only (Wheat Stubble); (c) retention of long wheat stubble and return of chopped maize straw (Mixed); and (d) return of chopped wheat and maize straw (Both Chopped). The Mixed and Both Chopped straw return modes produced the highest crop yields. Relative to the Control, SOC stock was 9.6% greater with the Mixed treatment and 14.5% greater with the Both Chopped treatment, whereas the Wheat Stubble treatment had no effect on SOC. Mixed and Both Chopped significantly enhanced TN stock relative to the Wheat Stubble and Control treatments. Compared with the Control, the Mixed and Both Chopped treatments increased the mass proportions of large macroaggregates and reduced the silt plus clay fraction; Mixed and Both Chopped caused a significant increase in SOC and TN in large and small macroaggregates; the Mixed treatment significantly increased SOC content in the coarse and fine intra‐aggregate particulate organic matter (iPOM) density fractions of large macroaggregates, whereas Both Chopped increased SOC in the coarse iPOM, fine iPOM and mineral‐associated organic matter (mSOM) density fractions of both large and small macroaggregates; and Mixed and Both Chopped enhanced TN content in coarse iPOM and fine iPOM within small macroaggregates. Although the Mixed treatment was slightly less effective at improving C sequestration in agricultural fields than the Both Chopped treatment, the Mixed treatment may nonetheless be the optimal plant residue management mode in terms of minimizing time and labour due to its ability to improve soil structure, maintain organic carbon levels and provide a means of sustainable crop production in intensive wheat/maize double‐cropping systems.  相似文献   

9.
在河套灌区以春小麦、玉米、向日葵单作为对照,测定并分析了春小麦/玉米、春小麦/向日葵间作套种作物生长季0—120cm土层土壤水分及作物产量。结果表明,春小麦/玉米、春小麦/向日葵间作套种生长季的土壤水分蒸散强度为双峰曲线,春小麦、玉米、向日葵单作为单峰曲线。春小麦/玉米、春小麦/向日葵间作套种的土壤水分蒸散量高于春小麦、玉米、向日葵单作。春小麦/玉米、春小麦/向日葵间作套种提高了作物产量,提高了土地当量比,但降低了作物生长期、作物生长季及灌溉水的水分利用效率和水分当量比。建议河套灌区减少间作套种面积,或间作套种时在不同作物之间修建土埂隔挡,根据不同作物对水分的需求分别灌溉。  相似文献   

10.
连续施用土壤改良剂对砂质潮土团聚体及作物产量的影响   总被引:2,自引:0,他引:2  
  【目的】   研究施用无机和有机土壤改良剂对团聚体形成和作物产量的影响,为新型土壤改良剂的应用提供理论依据。   【方法】   以河北廊坊砂质潮土为研究对象,以虾头蟹壳废弃物为核心材料的有机土壤改良剂 (SC) 和以凹凸棒土为核心材料的无机土壤改良剂 (SA) 为试材,进行4年 (2015—2019) 定位试验。试验设4个处理:单施化肥 (CK)、化肥+无机改良剂 (SA)、化肥+有机改良剂 (SC)、化肥+无机改良剂+有机改良剂 (SCA)。种植方式为小麦–玉米轮作。2019年小麦和玉米收获后,测定作物产量并采集耕层土壤,测定土壤理化指标、微生物量碳氮含量、团聚体组成及其碳氮含量。   【结果】   在小麦季和玉米季,SCA处理均可显著提高作物产量,较CK处理分别提高了54.16%和24.26%;在小麦季,SC处理较CK处理显著提高土壤全氮 (TN)、有机碳 (SOC)、速效钾 (AK) 和有效磷 (AP) 含量,微生物量碳 (MBC) 显著提高8.82%,pH显著降低3.19%;在玉米季,SCA处理较CK显著提高了土壤TN、SOC、AK、AP含量,MBC显著提高了33.65%,土壤pH显著降低了5.92%;在小麦季和玉米季,土壤团聚体均以粒径0.053~0.25 mm为主;与CK处理相比,小麦季SC处理土壤粒径 > 0.25 mm的大团聚体含量、平均重量直径 (MWD) 和几何平均直径 (GMD) 分别显著提高42.51%、22.41%和20.35%,玉米季SCA处理3个指标分别显著提高68.71%、35.47%和29.65%;各粒级团聚体中SOC和TN含量都以粒径 > 0.25 mm大团聚体最高,且SCA处理显著增加土壤各级别团聚体SOC和TN含量;施用土壤改良剂增加粒径 > 0.25 mm大团聚体SOC和TN贡献率,小麦季SC处理较CK处理分别增加了29.06%和69.24%,玉米季SCA处理较CK处理分别增加了61.62%和114.20%;通过冗余分析和结构方程模型分析发现,粒径> 0.25 mm大团聚体与pH呈负相关关系,与AP、MBC、SOC以及各粒级团聚体中碳含量呈正相关关系;稳定的团聚体结构会影响SOC含量和pH,改善土壤C/N,进而影响作物产量。   【结论】   在砂质土壤上,单独施用以虾头蟹壳废弃物为核心材料的有机土壤改良剂或与无机土壤改良剂配施均可改善土壤理化性质,促进大团聚体形成,提高团聚体稳定性,稳定的土壤团聚体可通过改善土壤碳氮比以提高作物产量。  相似文献   

11.
间作对玉米根系分泌物及团聚体稳定性的影响   总被引:8,自引:1,他引:7  
通过田间小区试验种植玉米(玉米单作、玉米∥大豆、玉米∥马铃薯),测定3个生育期(拔节期、大喇叭口期、抽雄期)玉米根系分泌总糖含量、总有机酸含量和土壤团聚体状况,分析间作对玉米根系分泌物及团聚体稳定性的影响。结果表明:玉米根系分泌总糖含量和总有机酸含量随生育期的推移而增加,间作显著提高玉米根系分泌总糖含量和总有机酸含量,玉米∥马铃薯玉米∥大豆。在抽雄期,玉米∥大豆、玉米∥马铃薯相比玉米单作0.25mm水稳性团聚体含量(R_(0.25))分别显著提高6.19%,8.17%;平均质量直径(MWD)分别提高5.04%,10.08%;几何平均直径(GMD)分别提高6.12%,12.24%;分形维数(D)分别显著降低0.72%,1.09%;团聚体破坏率(PAD)分别显著降低16.77%,26.08%。在根系分泌物最大的抽雄期,玉米根系分泌总糖含量、总有机酸含量与R_(0.25),GMD,D,PAD呈极显著相关关系(P0.01)。因此,间作可通过增加玉米根系分泌总糖含量和总有机酸含量,进而提高土壤团聚体的稳定性。  相似文献   

12.
Knowledge of the effect of a multiple combination of summer/winter crop rotation on the microbiological properties of soil would allow a more adequate response to its use. This study aimed to evaluate the effect of the rotation of three summer crops (continuous soybean, continuous maize and soybean/maize rotation) in combination with seven winter crops (maize, sunflower, oilseed radish, millet, pigeon pea, sorghum and sunn hemp) on the microbiological properties of the soil. A soybean/maize (SM) rotation had a greater influence on microbial biomass than continuous maize (MM) and continuous soybean (SS). Urease and phosphatase activities were not affected by the crop rotation. Dehydrogenase activity was higher in continuous crops (MM and SS) than in SM, whereas respiratory activity was higher in SM than in continuous crops. For the SM rotation, the main variables selected by principal components analysis were microbial biomass C, N and P, respiratory and phosphatase activities, and microbial quotient. Pigeon pea, sorghum and sunn hemp had a greater effect on soil properties than the other winter crops. In general, the degree of influence of the summer and winter crops on the microbiological soil properties can be ranked as follows: SM > MM > SS, and millet > sorghum > sunn hemp > radish > pigeon pea > maize, respectively.  相似文献   

13.
Abstract

The impact of conservation tillage, crop rotation, and cover cropping on soil‐quality indicators was evaluated in a long‐term experiment for cotton. Compared to conventional‐tillage cotton, other treatments had 3.4 to 7.7 Mg ha?1 more carbon (C) over all soil depths. The particulate organic matter C (POMc) accounts for 29 to 48 and 16 to 22% of soil organic C (SOC) for the 0‐ to 3‐and 3‐ to 6‐cm depths, respectively. Tillage had a strongth influence on POMc within the 0‐ to 3‐cm depth, but cropping intensity and cover crop did not affect POMc. A large stratification for microbial biomass was observed varing from 221 to 434 and 63 to 110 mg kg?1 within depth of 0–3 and 12–24 cm respectively. The microbial biomass is a more sensitive indicator (compared to SOC) of management impacts, showing clear effect of tillage, rotation, and cropping intensity. The no‐tillage cotton double‐cropped wheat/soybean system that combined high cropping intensity and crop rotation provided the best soil quality.  相似文献   

14.
ABSTRACT

A more comprehensive understanding of the mechanisms of phosphorus (P) efficiency is agronomically significant to advance in the design of crop management schemes that increase P efficiency and reduce the need of fertilizers. Phosphorus efficiency is defined as the ability of a plant to acquire P from the soil and/or to utilize it in the production of biomass or the harvestable organ. Because most parameters related to P efficiency vary according to the growth conditions and isolation of the individual effect of P efficiency is not straightforward; plants must be grown in uniform experimental conditions to obtain a fair comparison of their nutrient acquisition and utilization. In this work, we compare the ability of soybean, sunflower, and maize to utilize and acquire soil P. Field and greenhouse experiments including different P levels were conducted. The general observation was that the three species ranked differently according to the specific parameter of P efficiency considered. Maize clearly showed higher P utilization efficiency than soybean and sunflower, either expressed as biomass or as grain produced per unit of absorbed P. In turn, soybean and sunflower exhibited higher acquisition efficiency than maize. Soybean showed the shallowest root system: 69% of the total root length was concentrated in the top 20 cm of the soil. Phosphorus uptake per unit root length was rather similar among the three species, but soybean and sunflower had higher P uptake per unit of root weight. This can be explained by the higher specific root length (SRL) and specific root area (SRA) of both dicots. For example, SRL averaged 59, 94, and 34 m g?1 in field grown soybean, sunflower, and maize, respectively. The more favorable root morphology determined that soybean and sunflower can explore more soil with the same belowground biomass and absorb more P per unit of carbon invested belowground. Since the three species exhibited similar values of P uptake per unit root length, we hypothesize that the capacity of each segment of root to deplete soil P fractions is similar.  相似文献   

15.
The Argentine Pampa is one of the major global regions for the production of maize (Zea mays L.) and soybean (Glycine max L. [Merr.]), but intense management practices have led to soil degradation and amplified greenhouse‐gas (GHG) emissions. This paper presents preliminary data on the effect of maize‐soybean intercrops compared with maize and soybean sole crops on the short‐term emission rates of CO2 and N2O and its relationship to soil moisture or temperature over two field seasons. Soil organic carbon (SOC) concentrations were significantly greater (p < 0.05) in the maize sole crop and intercrops, whereas soil bulk density was significantly lower in the intercrops. Soil CO2 emission rates were significantly greater in the maize sole crop but did not differ significantly for N2O emissions. Over two field seasons, both trace gases showed a general trend of greater emission rates in the maize sole crop followed by the soybean sole crop and were lowest in the intercrops. Linear regression between soil GHG (CO2 and N2O) emission rates and soil temperature or volumetric soil moisture were not significant except in the 1:2 intercrop where a significant relationship was observed between N2O emissions and soil temperature in the first field season and between N2O and volumetric soil moisture in the second field season. Our results demonstrated that intercropping in the Argentine Pampa may be a more sustainable agroecosystem land‐management practice with respect to GHG emissions.  相似文献   

16.
Abstract

Distribution of dissolved (DOC) and soil organic carbon (SOC) with depth may indicate soil and crop‐management effects on subsurface soil C sequestration. The objectives of this study were to investigate impacts of conventional tillage (CT), no tillage (NT), and cropping sequence on the depth distribution of DOC, SOC, and total nitrogen (N) for a silty clay loam soil after 20 years of continuous sorghum cropping. Conventional tillage consisted of disking, chiseling, ridging, and residue incorporation into soil, while residues remained on the soil surface for NT. Soil was sampled from six depth intervals ranging from 0 to 105 cm. Tillage effects on DOC and total N were primarily observed at 0–5 cm, whereas cropping sequence effects were observed to 55 cm. Soil organic carbon (C) was higher under NT than CT at 0–5 cm but higher under CT for subsurface soils. Dissolved organic C, SOC, and total N were 37, 36, and 66%, respectively, greater under NT than CT at 0–5 cm, and 171, 659, and 837% greater at 0–5 than 80–105 cm. The DOC decreased with each depth increment and averaged 18% higher under a sorghum–wheat–soybean rotation than a continuous sorghum monoculture. Both SOC and total N were higher for sorghum–wheat–soybean than continuous sorghum from 0–55 cm. Conventional tillage increased SOC and DOC in subsurface soils for intensive crop rotations, indicating that assessment of C in subsurface soils may be important for determining effects of tillage practices and crop rotations on soil C sequestration.  相似文献   

17.
The use of biochar as a soil amendment is gaining interest to mitigate climate change and improve soil fertility and crop productivity. However, studies to date show a great variability in the results depending on raw materials and pyrolysis conditions, soil characteristics, and plant species. In this study, we evaluated the effects of biochars produced from five agricultural and forestry wastes on the properties of an organic‐C‐poor, slightly acidic, and loamy sand soil and on sunflower (Helianthus annuus L.) growth. The addition of biochar, especially at high application rates, decreased soil bulk density and increased soil field capacity, which should impact positively on plant growth and water economy. Furthermore, biochar addition to soil increased dissolved organic C (wheat‐straw and olive‐tree‐pruning biochars), available P (wheat‐straw biochar), and seed germination, and decreased soil nitrate concentration in all cases. The effects of biochar addition on plant dry biomass were greatly dependent upon the biochar‐application rate and biochar type, mainly associated to its nutrient content due to the low fertility of the soil used. As a result, the addition of ash‐rich biochars (produced from wheat straw and olive‐tree pruning) increased total plant dry biomass. On the other hand, the addition of biochar increased the leaf biomass allocation and decreased the stem biomass allocation. Therefore, biochar can improve soil properties and increase crop production with a consequent benefit to agriculture. However, the use of biochar as an amendment to agricultural soils should take into account its high heterogeneity, particularly in terms of nutrient availability.  相似文献   

18.
Abstract

Northeast China is the main production area of maize and soybean in China. In the present study, the rates of decomposition and replacement of soil organic carbon (SOC) were estimated using the soil inventory collected since 1991 from long-term maize and soybean cultivation plots in Heilongjiang Province, Northeast China, to evaluate the sustainability of the present cultivation system. The total carbon (C) content in soil was stable without any significant changes in the plots (approximately 28.5 g C kg?1). The δ13C value of soil organic matter under continuous maize cultivation increased linearly with an annual increment of 0.07 from ?23.9 in 1991, which indicated that approximately 13% of the initial SOC was decomposed during the 13-year period of maize cultivation, with a half-life of 65 years. Slow decomposition of SOC was considered to result from the low annual mean temperature (1.5°C) and long freezing period (170–180 days year?1) in the study area. In contrast, the amount of organic C derived from maize increased in the soil with a very slow annual increment of 0.17 g C kg?1, probably because of the removal of all the plant residues from the plots. Based on the soil organic matter dynamics observed in the study plots, intentional recycling/maintenance of plant residues was proposed as a way of increasing soil fertility in maize or soybean cultivation.  相似文献   

19.
Abstract

The effects of different management systems on the level and composition of humified organic matter in an entic Haplustoll from the semiarid Pampean region were studied. The systems were: TPc, wheat‐mixed pasture; TV, wheat (Triticum aestivum), oat (Avena sativa), corn (Zea mays) and triticale grasses; TP, wheat‐cattle grazing; and V, virgin, non cultivated. Humic acids were extracted, fractionated, and analyzed for their organic carbon (OC) content, elemental composition, and E4:E6 spectral ratios. The infrared (IR), electron spin resonance (ESR). and 13C‐NMR spectra were registered on these humic acids. The TP rotation showed the lowest humic acid‐carbon to fulvic acid‐carbon (HA‐C:FA‐C) ratio. The lower O:C ratio of humic acids from the cropped soils indicates a higher level of oxidation than that of the virgin one. The comparison of the different methodologies allowed us to conclude that crop rotations and conservation tillage were adequate to mantain the level and composition of the soil organic matter and humus which affected the soil fertility and level of productivity  相似文献   

20.
Abstract

The effect of the carbon:nitrogen ratio (C/N) of organic amendments on soil structure modification was studied in laboratory incubation experiments. Variable C/N ratios were obtained through application of carbonaceous substrates (cellulose, starch and wheat straw) and different levels of urea. Optimal responses of soil density and soil aggregate stability were found for the C/N range of 20–40. The levels of sugars extracted with boiling water and those of uronic acids were highest for the same C/N range. The preference of this C/N range substrates is also justified theoretically, considering microbial carbon and nitrogen budgets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号