首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

Forest floor and mineral soils were collected from 169 conifer and hardwood forested plots across Minnesota, Wisconsin, and Michigan. Regression equations were developed between LOI and organic C for 20% of the samples (n=337), and LOI was then used to predict organic C on all of the samples. Results indicated that LOI is a good estimator of organic C in these soils, but that separate equations were needed for different soil strata. Percent organic C in forest floors was greater in conifer stands compared to hardwood (means of 35.1 and 30.1%, respectively)  相似文献   

2.
A modification of the method of Tchan (1952) for the direct enumeration of soil algae was evaluated with a view to determining effects of pesticides and herbicides upon soil algae. Modifications to Tchan's technique were the use of a Hg vapour u.v., light source for microscopy and a specially designed haemocytmeter slide. These modifications increased the intensity of fluorescence of algal cells, facilitated accurate estimation of numbers in soil as shown by high percentage recoveries of known numbers of algal cells added to sterile soil, and enabled transmitted or incident light systems to be used equally successfully.Using direct microscopy, various algal cells in culture were examined for fluorescence. Fluorescence during different stages of growth of two species of unicellular green algae was determined. Viable cells at all stages of growth were found to fluoresce. Newly killed cells, inactivated by heat, acid and herbicide treatment were found not to fluoresce. Twenty seven species of algae, selected for their wide range of structure and for their common occurrence in British soils were all found to fluoresce either in culture or when incubated in sterile soil.Four different (agronomic) soil types were examined for indigenous algae. To overcome seasonal variations that occur in numbers of algae, the effect of seeding soils with a mixed inoculum of algal cells was determined.The effects of shaking and ultra-sonicating soil suspensions before examination were compared in order to recover efficiently a known number of cells added to different soils. Survival of added algae in four soils of pH 5.8–7.8, and in one soil maintained at moisture contents ranging from 20–100% of the moisture holding capacity was determined. Growth of algae in soil at two different light intensities was also examined.  相似文献   

3.
Abstract

Phosphorus sorption studies were conducted on volcanic ash influenced surface horizons of 29 northern Idaho soils. Results show that the amount of P sorbed was significantly correlated with citrate‐dithionite extractable aluminum (r = .64**), but not with Fe. Other significantly correlated soil properties were: percent base saturation (r = ‐.73**), percent clay (r = .42**), and exchangeable acidity (r = .39*).  相似文献   

4.
We evaluate the feasibility of using foliar-applied molybdenum, (Mo) instead of side-dressed nitrogen (N) in three experiments. In soils with native rhizobia, plants received 0, 30, 60, 90 or 120 kg N ha?1 with +Mo (80 g ha?1) or -Mo. N concentration in leaves (NCL) -Mo ranged from 35.1 to 42.5 g kg?1 and NCL +Mo from 40.3 to 49.2 g kg?1; yield -Mo ranged from 1560 to 3350 kg ha?1and yield +Mo from 2829 to 3567 kg ha?1. In two experiments, NCL or yield -Mo increased linearly or quadratically with increasing N rates, but NCL or yield +Mo did not. In one experiment, NCL increased linearly with increasing N rates and 16% with +Mo relative to –Mo, but yield was not affected significantly. Our results suggest that using Mo fertilizer instead of side-dressed N can allow common bean plants to meet crop demands for N to support yields as high as 3000 kg ha?1.  相似文献   

5.
Starter fertilizers have been utilized to improve cotton (Gossypium hirsutum L.) yields, but yield increases have differed with soil type, application method, application rates, and tillage. Starter fertilizer tests were conducted from 1991 through 1993 on a Gigger silt loam (Typic Fragiudalf) in Louisiana and on a Loring silt loam soil (Typic Fragiudalf) in Tennessee to evaluate methods and application rates of 11–37–0 liquid fertilizer for cotton. Treatments were evaluated under conventional‐tillage (CT) and no‐tillage (NT) production systems. Application methods included in‐furrow application at planting (IF), spraying a 4‐inch wide surface band behind the planter (SB), and banding fertilizer two inches to the side and two inches below the seed at planting (2×2). The IF treatments were applied at 1.5, 3.0, and 4.5 gal/A. The SB and 2×2 treatments were applied at 7.5 gal/A. Starter fertilizer treatments were supplemented with broadcast granular fertilizers to achieve a total fertilization rate of 80–40–60 (N‐P2O5‐K2O lb/acre). Starter fertilizer treatments were compared to broadcasting 80–40–60 and 80–0–60. Soil test levels for phosphorus (P) were high on both soil types. In‐furrow applications of 3.0 and 4.5 gal/acre usually reduced plant population for both tillage systems on both soil types. The 1.5 gal/acre IF treatment was less detrimental to stand establishment than the higher IF rates. The effect of starters on plant height varied from year to year. Starter fertilizers usually did not affect early‐season plant height relative to broadcast treatments. In several experiments starter fertilization increased plant height compared to one, but not both, of the broadcast fertilization treatments. High IF rates (3.0 and 4.5 gal/acre) reduced plant height in one experiment. The 2×2 starter fertilizer treatment increased leaf area per plant relative to the broadcast fertilization treatments in two of six experiments on the Gigger soil. Responses for NT and CT studies were similar. In one CT experiment on the Loring soil, the 1.5 gal/acre IF treatment increased leaf area relative to the broadcast treatments. Lint yield responses to starter fertilization were inconsistent. Starter fertilization increased lint yield in one of six experiments on the Gigger soil and in two of six experiments on the Loring soil. Increased yields from starters varied with year and application method, however, the 2×2 and SB treatments tended to provide better responses than IF treatments. Starter fertilizer responses for NT and CT tests were generally similar.  相似文献   

6.
Abstract

Overwintering soil temperature may influence crop response to phosphorus (P) and indices of P availability in the humid, temperate, transitional climate of Tennessee. The effects of P fertilization and soil incubation temperature on sorghumsudangrass (Sorghum bicolor x S. Sudanese) grown on a Typic Hapludalf was investigated in a greenhouse study. In order to determine the effect of temperature on P availability, soils were incubated prior to cropping, at a constant temperature of 6°C or an average diurnal temperature of 24 and 36°C. Reagent grade Ca(H2PO4)2.H2O was used as the fertilizer source and applied at rates of 0, 10, 20, and 30 mg P kg‐1 for the first test and 0, 20, 40, 60, and 80 mg P kg 1 for the second test. Critical P concentration in the shoots for optimum yield was found to be 1.3 mg g‐1, corresponding to soil solution and labile P concentrations of 5.5 μmol L‐1 and 167 μg g‐1, respectively. Optimum yield occurred for applications of >65 mg P kg‐1 and was unaffected by soil incubation temperature. Applied P rates affected extractable P by five chemical extractants (Bray I, Bray II, Mehlich I, Mehlich III, and Mississippi), but soil incubation temperature had no affect. The extractants, however, were poorly correlated to plant P uptake and no one extractant appeared preferable to the others as an indicator of P availability.  相似文献   

7.
Maize (Zea mays L.) plants in the early stage of development were treated with 80 mM sodium chloride (NaCl) with or without supplemental calcium (Ca2+) (8.75 mM) for a seven day period. The effects of salinity on dry matter production and shoot and root concentrations of sodium (Na+), Ca2+, and potassium (K+) were measured for seven Pioneer maize cultivars. Salinity significantly reduced total dry weight, leaf area, and shoot and root dry weight below control levels. For all seven cultivars, Na+concentrations were reduced and leaf area was significantly increased by supplementing salinized nutrient solutions with 8.75 mM calcium chloride (CaCl2). The two cultivars with the lowest shoot and root Na+ concentrations under NaCl‐salinity showed the greatest increases in total, shoot and root dry weights with the addition of supplemental Ca. Shoot fresh weight/dry weight ratios for all cultivars were decreased significantly by both salinity treatments, but supplemental Ca2+ increased the ratio relative to salinity treatments without supplemental Ca. Root fresh weight/dry weight ratios were decreased only by salinity treatments with supplemental Ca. With NaCl‐salinity, cultivars which had lower shoot and root Na+ concentrations were found to be more salt sensitive and had significantly lower amounts of dry matter production than those cultivars which had higher shoot and root Na+ concentrations. It was concluded that Na+ exclusion from the shoot was not correlated with and was an unreliable indicator of salt tolerance for maize.  相似文献   

8.
Abstract

Total organic P, humic and fulvic acid‐P associations and inositol phosphates in nine volcanic soils of southern Chile were determined. The concentration of organic P (Po) ranged from 654 to 1942 ppm accounting for 49% to 64% of total soil P. Phosphorus associated to humic (HA‐P) and fulvic acids (FA‐P) accounted for 51–68% and 32–49% of Po, respectively. Inositol penta‐ and hexaphosphates represented 42% to 67% of Po suggesting that significant amounts are associated with both humic and fulvic acids. Po content was significantly correlated to organic C, total soil P and HA‐P. HA‐P and FA‐P fractions obtained from the most representative soil were examined by dyalisis and gel filtration. While approximately 96% of HA‐P presented a molecular weight higher than 100,000 daltons, 53% of FA‐P had a molecular weight under 12,000 daltons. It is suggested that these more labile organic P forms would be more easily mineralized, thus increasing the available P pool.  相似文献   

9.
Abstract

Quantity‐intensity (Q‐I) relation studies were often used to supplement information obtained from conventional soil tests for the estimation of potassium (K) needs of crops. With a view to ascertaining the reliability of the Q‐I relation parameters for comprehensive characterization of K dynamics in typical Nigerian soils, K values derived from Q‐I isotherms were related to neutral normal ammonium acetate (1 N NH4OAc, pH 7.0) (exchangeable) K, other soil K forms [non‐exchangeable (Kne), exchange (Ke), mineral K (K m ), and solution K (Ks)] and the K uptake by Guinea‐corn (Sorghum bicolor, var. LS 187) subjected to weekly cuts in Neubauer cultivation vessels. Most of the soil K (about 98%) was in the form of soil minerals while less than 1% was plant available whereas about 1% was trapped within the interlattice layers of the clay minerals (as fixed K or Kne). Mineral K (Km) content was closely related to total K (Kt), but not to the other forms, Kne, Ke, and Ks. A close relationship was noted between the two components of labile K (Ke and Ks). Except for % K saturation, the relationships between the K measurements with plant response were poor. The results of these investigations clearly demonstrate that the Q‐I relation could not adequately characterize the K dynamics of these tropical soils.  相似文献   

10.
Crop and native plants can be characterized as high and low nutrient‐adapted based on their expected response to native and applied nutrients. Our objective was to compare the plasticity of biomass allocation and tissue nutrient concentrations to added sulfur (S) and nitrogen (N) across a continuum of high and low nutrient‐adapted grasses, represented by barley (Hordeum vulgare), smooth brome (Bromus inermis), bluebunch wheatgrass (Pseudoroegneria spicata), and Idaho fescue (Festuca idahoensis). In our greenhouse study, treatments included two S sources (pyrite and gypsum), at 150 and 300 kg S ha‐1, N at 50 kg ha‐1, and a check. Shoot biomass of barley, smooth brome, and bluebunch wheatgrass was enhanced by S plus N. Shoot biomass of barley and smooth brome was greater with pyrite than with gypsum. Root biomass of smooth brome and bluebunch wheatgrass was greater with pyrite than with gypsum. Plant S concentrations of barley and Idaho fescue were enhanced by added S. Plant S concentrations in barley and smooth brome were greater with gypsum than with pyrite. Except for barley, plant S pools (shoot biomass x shoot S concentration) were enhanced with S plus N compared with no added nutrients. Nitrogen pools of barley, smooth brome, and bluebunch wheatgrass were higher with pyrite than with gypsum. Soil sulfate (SO4) was greater when S or S plus N was added than without any added nutrients. For barley and smooth brome, soil sulfate tended to be lower with pyrite than with gypsum. For all soils, pH was lower with added S or added S plus N compared with unamended soils. While pyrite lowered soil pH, gypsum tended to increase soil pH. Overall, barley and smooth brome were highly plastic in responding to enhanced nutrient levels, bluebunch wheatgrass was relatively responsive, and Idaho fescue was least responsive.  相似文献   

11.
Abstract

Certain soils in the Lower Atlantic Coastal Plain are Mn‐deficient and because of their inherent properties, deficiencies of other elements might be expected. The response of soybean [Glycine max (L.) Merr. cv. ‘Ransom'] to annual soil applications of B, Cu, Fe, Mo, S, and Zn with and without Mn was examined. The study was conducted on an Olustee‐Leefield sand (Ultic Haplaquod‐Arenic Plinthaquic Paleudult) in 1975, 1976, and 1977. Seed yields, and soil and plant tissue concentrations of certain of the applied elements were determined. Soil pH increased from 6.4 in 1975 to 7.0 in 1977 as a result of lime applications.

Of the seven elements studied, only Mn significantly increased soybean seed yield compared to the check. Leaf concentrations of the respective elements were higher where the element was added than they were in plants grown on the check plots. In 1977, after three years of elemental additions, plant concentrations of Mn, Cu, and Zn were higher, relative to checks, than in 1975. In 1977, with the higher soil pH levels, plants from check plots had lower concentrations of Mn, but unexpectedly equal levels of Cu and higher levels of Zn than in 1975. This unexplained increase in plant Zn was also found in Other experiments in the same field during the same time period. Double acid extracted more soil Mn, Cu, and Zn than did DTPA from similar treatments during all three years. The DTPA‐extractable soil Mn correlated much better with plant Mn than did double acid Mn values, especially over years where a change in soil pH occurred. Correlation coefficients comparing extractable soil versus plant values for Cu and Zn data combined over years were higher for double acid than DTPA, although coefficients for the Cu and Zn data were still generally much lower than for the Mn data.  相似文献   

12.
Abstract

The comparative availability to Lolivm perenne of 32P myo‐inositol hexaphosphate (IH32P) and KH2 32PO. added to soil could be determined unequivocally from the 32P count of leaf material even when dry matter yields and total P content were not significantly different from the control.

IH32P was equivalent to KH2 32PO4. in a soil with a low P retention at 200 p.p.m. P but not at 20 p.p.m. P. IH 32P was totally unavailable in two soils with high P retention at 200 p.p.m. and 20 p.p.m. P, whereas uptake of KH2 32PO4. was observed in each instance.  相似文献   

13.
Abstract

Reliable assessments of erosion potential, N fertilization need, and nitrogen (N) non‐point pollution potential for soybean [Glycine max (L.) Merr.] cropping systems require accurate estimates of soybean dry matter and N accumulations. The objective of this field study was to determine dry matter and N accumulation in soybean during the growing season and at harvest in samples large enough to reduce sample variation and increase the confidence in measured values. A split‐plot design was used with cultivar (Braxton, Coker 338, and Davis) as the main plot treatment and sampling date as the split‐plot treatment. Each split‐plot contained eight rows 4.6 m in length on 0.75 m spacing. The seed were sown in a Norfolk loamy sand (fine‐loamy, siliceous, thermic, Typic Paleudult) on May 18 at the rate of 33 seeds/m. Water was applied by use of an overhead irrigation gun. Plant samples were collected from 20 m2 of the six center rows on 89, 115, and 138 days after planting as well as at seed harvest. Fallen plant material (crop litter) was collected from each plot at each sampling date. Itact plant samples, crop litter, and soil samples were analyzed for total Kjeldahl N. The mean seed yield was 2.01 Mg/ha; the mean maximum dry matter accumulation for intact shoots plus crop litter was 10.2 Mg/ha, and the coefficients of variation were <10%. The actual harvest index (seed yield/total dry matter accumulation) ranged from 0.19 to 0.28, and the mean maximum N accumulation was 293 kg/ha. These accumulations are greater than those reported for indeterminate soybean grown on high‐N soils in the midwestern United States, and they clearly show that determinate soybean grown in the southeastern United States accumulate substantial amounts of dry matter and N.  相似文献   

14.
An inexpensive and mechanically simple technique has been developed to maintain realistically low P concentrations in nutrient solutions using a solid‐phase buffer. Phosphate is adsorbed on alumina in a PVC column, and the resulting alumina‐F is desorbed against nutrient solution circulated through the column. Kinetics of P adsorption and desorption indicate that the solid‐phase‐P has rapidly and slowly desorbing components and that buffering capacity is limited by desorption from the solid phase. The technique has been used to maintain F concentrations as low as 0.4 minol m‐3 for 26 days in experiments with maize (Zea mays L.), and in solution cultures with prune (Prunus domestica L.) trees. Effects of P supply on P accumulation and P transport are discussed.  相似文献   

15.
Abstract

Winter wheat shoot weight and phosphorus (P) concentrations, corn leaf weight and P concentrations, and soil AL, Olsen, H2O, Bray 1, Pi (Fe-oxide impregnated paper strip) and AERM (anion exchange resin membrane) contents were determined in a network of uniform Hungarian national long‐term field trials. P application had a significant effect on soil P test values at different P levels and sites. The relationship between the different soil P test methods was studied separately for different soil groups (all, acid, and calcareous soils). Corn leaf weight was influenced by the sites much more than by soil P supply level, whereas corn leaf P percentage was influenced by both sites and P levels. For winter wheat, both sites and soil P levels had a positive effect on wheat shoot weight. Wheat shoot P percentage was influenced by the soil P supply much more than by the sites. Correlation between corn leaf P percentage and the Pi or AERM extractable P and between wheat shoot P percentage and the Pi and AERM P values was logarithmic.  相似文献   

16.
Three‐week‐old nodulated faba bean plants were subjected to two levels of water stress (0.5 and 0.25 field capacity; soil water content of 20 and 10%) for five weeks. Half of the stressed plants was treated with potassium chloride (KC1) at 10 (K1) and 150 mg (K2)/kg soil at the beginning of water deficit. Nodulation was examined and some nodule activities were assayed. Nodulation, nitrogenase activity, total nitrogen (N), and dry matter yield were significantly decreased by increasing stress but were significantly higher with the two levels of potassium (K) supply. Leghaemoglobin and protein contents of cytosol as well as nodule protease and invertase were severely depressed by drought stress. Soluble carbohydrate contents of nodules, however, was significantly increased. Protein and leghaemoglobin contents and enzyme activities were greater with K fertilization but less soluble carbohydrate was accumulated. The results indicate that K supply, particularly at the 150 mg/kg soil level, increased faba bean resistance to water stress.  相似文献   

17.
The role of zinc (Zn) in maintaining the structural and functional integrity of plant membranes was investigated in the present work. The relationship between the activity of NAD(P)H oxidases generating active oxygen species and changes in lipid composition and peroxidation was evaluated in microsomal membrane vesicles isolated from roots of Zn‐defícient bean (Phaseolus vulgaris L., cv. Bobis) plants. Zinc content of bean root microsomal membranes was decreased by about 30% by Zn deficiency. Microsomes isolated from roots of Zn‐deficient plants showed higher rates of NAD(P)H oxidation and NAD(P)H‐dependent O2 generation than Zn‐sufficient roots. Microsomal O2 consumption, measured in the presence of pyridine nucleotides, was also considerably enhanced by Zn deficiency. This latter activity was greatly stimulated by Fe(III)EDTA, while inhibited by Superoxide dismutase (SOD) and catalase, indicating that active oxygen species were produced during the oxygen consuming enzyme reaction. Zinc deficiency caused a decline in microsomal phospholipid (PL) content. In addition, saturated fatty acids were present at a higher proportion than unsaturated fatty acids in microsomes from Zn‐deficient roots. Sterol content of microsomal vesicles was also modified by Zn deficiency, which led to an increase in the planar sterol campesterol and a concomitant decrease in stigmasterol and sitosterol content. NADPH‐dependent lipid peroxidation, directly measured in microsomal vesicles as malondialdehyde (MDA) production, was slightly enhanced by Zn deficiency. These results support the idea that Zn deficiency determines an enhanced generation of harmful oxygen species by membrane‐associated enzymes and show that this activity can be more pronounced in the presence of iron (Fe), which accumulates in Zn‐deficient tissues. The relationship between the occurrence of this phenomenon and the changes in membrane lipid profile is discussed.  相似文献   

18.
Abstract

Field experiments were conducted on calcareous and non‐calcareous Orthic Black Chemozemic soils over a five year period to study the effect of rates and placements of P‐fertilizer on Canadian rape (Brassica napus L. cv Tower) production. Six rates of P as mono‐ammonium phosphate (MAP) were applied at seeding using four placement methods: i) broadcast and cultivated 10 cm into the soil (BC); ii) banded in the seed row with the seed (PWS); iii) banded 2.5 below and 2.5 cm to the side of the seed (PSS); iv) banded 2.5 cm directly below the seed (PBS). Soil type had no significant effect on rape growth, seed yield and P‐uptake. Rape responded best to P‐fertilizer banded with (PWS) or near (PSS, PBS) the seed. But, placing 15 kg/ha P or greater with the seed reduced seedling emergence; with 25 kg P/ha insufficient plants emerged to justify harvesting. The reduced seedling emergence resulted in reduced seed yield and P‐uptake. Maximum yields were obtained when the fertilizer was banded 2.5 cm away from the seed (PSS, PBS). The BC method produced the least growth, yield and P‐uptake responses of the four methods. Only when broadcast rates of P were in excess of 10 kg/ha did rape dry matter, seed and P‐uptake increase. Banding 10 kg/ha with or near to the seed was equivalent to broadcasting 25 kg/ha in terms of seed yield and P‐uptake. Application of P fertilizer also increased seed protein and oil concentrations.  相似文献   

19.
Abstract

Soil from the Ap‐horizon of four acid sandy soils differing mainly in Corg content was adjusted to pH values between 3 and 7.5 with NaOH and HCl respectively and incubated for two weeks. Afterwards, displaced soil solution was obtained and analyzed.

The concentrations of Fe, Al, and P showed a broad minimum in the pH range from 4 to 6. The concentration of these elements strongly increased with the increase of pH to 7.5. Acidification below pH values of 4 led to a slight increase.

Separation of dissolved organic carbon by ultrafiltration before the photometric orthophosphate determination decreased measured concentrations in comparison to direct determination in two of the four soils. This decrease was more pronounced for soil solutions with higher concentrations of organic carbon. The effect of acid hydrolysis of organic phosphorus during orthophosphate determination can be explained by existence of humic‐Fe‐(Al phosphate complexes in the soil solution. These complexes can account for more than 50% of the total organic P in solution.  相似文献   

20.
Abstract

Uptake of Co by corn (Zea mays) and bush beans (Phaseolus vulgaris) seedlings was affected by plant species, soil type and soil amendment. Bean leaves preferentially accumulated 60Co in comparison with corn leaves. Both the DTPA and (lime and DTPA) treatments enhanced 60Co uptake by both plant species, notably in the Troup soil which had lower cation exchange capacity (CEC) and lower soil fertility in comparison with Dothan soil. Conversely, soils with lime but without the chelating agent suppressed 60Co uptake. This dictates that farming practices should be closely evaluated if crops for livestock and human consumption are to be raised in fields contaminated by radionuclides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号