首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
? Onion (Allium cepa cv. Spanish Sweet Utah), lettuce (Lactuca sativa cv. Black Seeded Simpson), snapdragon (Antirrhinum majus cv. Sonnet Yellow), and turfgrass (Festuca arundinacea cv. Marathon) were grown twice annually (spring and fall) on a San Emigdio sandy loam (coarse-loamy, mixed calcareous thermic, Typic Xerorthents) soil for two years that was treated with a cumulative total of 0, 37 and 74 MT/ha of sewage sludge compost from San Diego. The soil received two compost treatments each year and crops were planted within a week of compost incorporation. Crop growth was monitored and the results of the fourth or final planting are described here. Seedlings of onion, snapdragon and lettuce transplanted to compost treated plots displayed more vigorous establishment than those in the control plots. Compost treatments produced higher yields of onion, turf and lettuce. Snapdragon yield was not affected by compost treatment. Soil analysis of compost treated plots revealed lowered pH and increased levels of organic matter, primary nutrients, soluble salts and heavy metals.  相似文献   

2.
Abstract

The effect of organic amendment with sewage sludge composts of varying heavy metal content on the organic matter content and enzymatic activity of an agricultural soil supporting barley (Hordeum vulgare L.) or lettuce (Lactuca sativa L.) crops was studied. The organic amendments did not improved lettuce growth, the contaminated composts having a negative effect on yield. However, all organic amendments improved barley straw yields although they did not affect grain yields. The addition of the organic materials increased the total carbohydrate content of the soil although this content decreased with cultivation. There was a clearly observed effect of crop type and the degree of heavy metal contamination of the amendment on the most labile carbon (C) fractions (water‐soluble C, carbohydrates, and polyphenolics). In general, soil enzymatic activities were stimulated by addition of sewage sludge compost with low heavy metal content. The compost containing high level of cadmium (Cd), copper (Cu), nickel (Ni), and zinc (Zn) inhibited protease‐BAA activity with respect to the other composts. After cultivation, urease activity increased in soil amended with the high dose of composts, regardless their degree of metallic contamination. Both crop type and metallic contamination contained in the organic materials added influenced phosphatase and ß‐glucosidase activity.  相似文献   

3.
Abstract

The objectives were to determine if phosphorus (P) from different organic wastes differs in availability to crops. Four materials: digested, dewatered sewage sludge (DSS); irradiated sewage sludge (DISS); irradiated and composted sewage sludge (DICSS); and composted livestock manure (CLM) were applied for two years at five rates (0, 10, 20, 30, 40 Mg#lbha‐1#lbyr‐1) with four replicates. Uptake of P was measured in lettuce [Lactuca saliva L. (cv. Grand Rapids)], bean [Phaseolus vulgaris L. (cv. Tender Green)], and petunia [Petunia hybrida Vilm. (cv. Superior Red)] in 1990, and in consecutively harvested two cuts of lettuce in 1991. Percentage of total P that was extractable by 0.5M sodium bicarbonate (NaHCO3) in CLM (30–70%) was much higher than in DSS, DISS, and DICSS (0.8–5.6%). Phosphorus uptake by crops harvested in an early stage of growth, lettuce in 1990 and first cut lettuce in 1991, and the extractable soil P linearly increased with total P applied. The lack of response in P uptake with bean pod and petunia in 1990, and the second cut lettuce in 1991, was possibly due to their advanced stage of maturity. Much larger amounts of P were applied with DSS, DISS, and DICSS than with CLM, while P uptake and extractable soil P did not increase compared to that in the treatment that received no P. The low availability of P in sludge was likely caused by iron (Fe) and aluminum (Al) which precipitated P. Sludge irradiation and/or composting had no significant effect on P availability.  相似文献   

4.
Field experiments were conducted for four years, between 1998 and 2002, in two olive grove soils of adult olive orchards (Olea europaea L. cv. Cornicabra) in a clay loam soil in Seseña (Toledo, Spain) and in a sandy loam soil in Aranjuez (Madrid, Spain). There were four treatments, sewage sludge compost (SSC), sewage sludge compost plus urea (SSC+U), urea (U) and control (C). Each treatment was replicated four times and two depths were studied (0-15 and 15-30 cm). Once a year, before spreading sewage sludge compost, soil samples were taken at depths of 0 to 15 cm and 15 to 30 cm. Organic matter, total Kjeldhal nitrogen, phosphorus availability, pH, and electric conductivity were measured. No differences were found between treatment on organic matter and electric conductivity after four years of application of sewage sludge compost to two olive grove soils. In relation to nitrogen content, sewage sludge compost, only in Seseña, produced higher nitrogen soil content than the traditional urea treatment. Sewage sludge compost applied on olive grove soils improved the Phosphorus availability for the olive tree. In Aranjuez, the use of sewage sludge compost increased the pH of the soil with respect to Urea and Control plots. In Seseña, the reverse effect was found.  相似文献   

5.
Abstract

Two composts were tested in eleven different Malus domestica orchards: one was a sewage sludge and bark compost with a low heavy metal content, the other was a municipal solid waste compost with a higher concentration of metals. For six years the zinc (Zn), copper (Cu), nickel (Ni), lead (Pb), cadmium (Cd), and chromium (Cr) content were monitored in the soil, both in ‘total’ and EDTA extractable form, and in leaves and fruits. The resulting data demonstrate clearly that the sewage sludge and bark compost did not cause any significant increase of heavy metal levels in soil and plants; this compost can thus be used to fertilize the soil with no danger either to the environment or to crops. In contrast, the municipal solid waste compost led to a notable accumulation of all the metals examined in the soil and, above all in the case of Pb and Cd, also in the vegetation and the fruits.  相似文献   

6.
We studied the effects of applying different composts (urban organic waste, green waste, manure and sewage sludge), mineral fertilizer and compost plus mineral fertilizer on chemical, biological and soil microbiological parameters over a 12‐year period. The organic C and total N levels in soils were increased by all compost and compost + N treatments. Microbial biomass C was significantly (P ≤ 0.05) increased for some compost treatments. In addition, basal respiration and the metabolic quotient (qCO2) were significantly higher in all soils that had received sewage sludge compost. The Shannon diversity index (H), based on community level physiological profiling, showed a higher consumption of carbon sources in soils treated with compost and compost + N compared with the control. The utilization of different guilds of carbon sources varied amongst the treatments (compost, compost + N or mineral fertilizer). Cluster analysis of polymerase chain reaction‐denaturing gradient gel electrophoresis patterns showed two major clusters, the first containing the mineral fertilization and compost treatments, and the second, the composts + N treatments. No differences in bacterial community structure could be determined between the different types of compost. However, the results suggest that long‐term compost treatments do have effects on the soil biota. The results indicate that the effects on the qCO2 may be due to shifts in community composition. In this study, it was not possible to distinguish with certainty between the effects of different composts except for compost derived from sewage sludge.  相似文献   

7.
Abstract

Disposing poultry manure from broiler and layer flocks by its incorporation into the soil was evaluated on greenhouse lettuce (Lactuca sativa L. cv. Paris Island cos). Floor litter that contains the manure mixed with sawdust and wood shaving, was 8 weeks old from broilers and one year old from layers. Broiler manure had 19% moisture and 5.5% N, while layer manure had 22% moisture and 3.7% N. Application of 27.5 ton/ha broiler manure and 18 ton/ha layer manure, on wet basis, gave comparable yield of lettuce as did an application of 100 kg N/ha from NH4NO3 in 2 split applications, and an unfertilized treatment. The manure was effective for lettuce growth 10 months after its incorporation in the soil. The highest yield was in manure treated plots, however, the lack of significant response in yield is due to the sufficient levels of soil NO3‐N and available P. There was no effect on soil EC, pH, and available P due to the treatments; however, soil NO3‐N was significantly increased under all fertilized treatments. Leaf concentration of PO4‐P was not affected by the treatments, but NO3‐N was significantly increased under all fertilized treatments. It may be concluded that broiler and layer poultry manure when disposed of by soil incorporation, are equally effective as a fertilizer for a leafy crop such as lettuce.  相似文献   

8.
Abstract

Open pollinated ‘York Imperial’ apple (Malus domestica Borkh.) seeds were germinated and grown for a period of 7 months in: (1) sand with complete nutrient solutions added; (2) limed and unlimed soil, (3) limed and unlimed soil amended with two different sewage sludges at rates of 25, 50 or 100 dry kg ha‐1. A third composted, lime stabilized sludge was added either sieved or non‐sieved (to remove wood chips) at the same rates. The sludge materials used were: (1) a high metal, composted sludge from Baltimore, MD (BALT); (2) a high Cd sewage sludge (CITY) and (3) a low metal, composted sewage sludge from Washington, D.C. (DC).

Germination was unaffected by treatments. After 7 months, the best growth was obtained from the sand plus nutrient solution media. Two of the three sludge materials increased seedling growth over that of the soil, either limed or unlimed. The BALT compost treated soils produced the lowest growth, particularly when unlimed. Elevated tissue metal levels indicated that Mn, Zn, Cu and Ni were the probable causes of reduced growth noted from the BALT compost treatment. The use of soil with or without low metal sludges as media for early apple seedling growth when compared to standard sand culture is not recommended.  相似文献   

9.
Abstract

Incineration reduces sewage sludge volume, but management of the resulting ash is an important environmental concern. A laboratory incubation study and greenhouse pot experiments with lettuce (Lactuca sativa L.) and corn (Zea mays L.) were conducted to examine the potential for recycling elements in sewage sludge incinerator ash in agricultural systems. Ash rates in both the laboratory and greenhouse were 0, 0.95, 3.8, 15.2, and 61.0 g/kg soil (Typic Hapludoll). Ash was also compared to equivalent rates of citrate soluble P from superphosphate fertilizer in a soil‐less growth medium. During soil: ash incubation, Olsen P and DTPA extractable copper (Cu), zinc (Zn), cadmium (Cd), and lead (Pb) increased with incubation time at the higher ash rates. Release rates diminished rapidly, however, and the limited release of these elements after 280 days was associated with decreasing pH. In the greenhouse, ash amendment increased extractable soil P, plant tissue P, and the growth of lettuce and corn. Ash was a less effective P source than superphosphate fertilizer in the soil‐less growth medium and Olsen P levels were more consistent with these differences than Bray P. Ash increased extractable soil levels and plant tissue concentrations of calcium (Ca), magnesium (Mg), sodium (Na), Cu, and Zn, but extractable soil manganese (Mn) and plant tissue Mn decreased. Ash increased soil pH and extractable SO4‐S. DTPA extractable Cd and Pb increased, but chromium (Cr) and nickel (Ni) decreased. Lettuce accumulated higher amounts of these trace metals than corn, but tissue concentrations were at control levels or below detection limits in both crops.  相似文献   

10.
A pot experiment was conducted to investigate the effect of sewage sludge compost (SSC) alone and applied with chemical fertilizer on growth and heavy-metal accumulations in lettuce grown on two soils, a Xanthi-Udic Ferralosol and a Typic Purpli-Udic Cambosol. The treatments included control; nitrogen–phosphorus–potassium (NPK) fertilizer; sewage sludge compost applied at the rates of 27.54 (SSC), 82.62 (3SSC), 165.24 (6SSC) t hm–2; and coapplication treatment (1/2 SSC + 1/2 NPK), where the N, P, and K inputs from NPK fertilizer, SSC, and coapplication treatments were normalized to the local recommend rates. The SSC application increased the biomass; copper, zinc, and lead contents in lettuce; and soil total and diethylenetriaminepentaacetic acid (DTPA)–extractable metals. However, SSC alone at the recommended rate caused less plant biomass than NPK fertilizer alone. Coapplication treatment obtained greater or similar biomass to NPK fertilizer alone and did not increase heavy-metal accumulation in soils and plants. The results demonstrated that SSC should be applied to soils with chemical fertilizers.  相似文献   

11.
Abstract

The purpose of this study was to examine the long‐term effect of compost application on the heavy metal content in soil, leaves, and fruit of grape (Vitis vinifera). Two types of compost were tested in a vineyard. One was compost with a low heavy metal content, which was derived from sewage sludge and bark (SB compost). The other type was compost with a higher concentration of metals, which was derived from municipal solid waste (MSW compost). For 6 years, the levels of zinc (Zn), copper (Cu), nickel (Ni), lead (Pb), cadmium (Cd), and chromium (Cr) in their total (aqua regia digestion), EDTA‐extractable, and DTPA‐extractable forms were monitored in soil, leaves, musts, and wines. The resulting data clearly demonstrate that SB compost did not cause any significant increase in heavy metal levels in the soil and the plants. Thus, this type of compost can be used for soil fertilization with no danger either to the environment or to crops. In contrast, the use of MSW compost caused a significant accumulation of Ni, Pb, Cd, and Cr in the soil, in vegetation, and in musts. Skin‐contact fermentation dramatically decreased the heavy metal content of the wines. The concentration of heavy metals in plant tissues was found to be positively correlated with the DTPA‐extractable form of the metals in the soil, but not correlated with the total or the EDTA‐extractable forms.  相似文献   

12.
Abstract

The effect of sewage sludge applications on extractability and uptake by chard and lettuce of soil cadmium (Cd), chromium (Cr), copper (Cu), nickel (Ni), leaf (Pb), and zinc (Zn) was investigated. Ten different treatments (0, 150, 300, and 500 kg N ha‐1) as mineral fertilizer, and 400, 800, and 1,200 kg N ha‐1 of aerobically and anaerobically‐digested sewage sludges were applied annually to a sandy‐loam soil since 1984. Seven years after the start of the treatments, higher levels of heavy metals were detected in the soil, depending on the type of metal, depth of sampling, type of sludge used, and, especially, rate of application. Following a sequential extraction procedure incorporating 0.1M CaCl2, 0.5M NaOH, and 0.05M Na2EDTA, most of the heavy metals in soil were detected in the Na2EDTA solution and the residual fractions. Large amounts of Cd appeared to be extracted by CaCl2, whereas substantial amounts of Cu and Ni were isolated by NaOH. The effect of treatments on the percentages of the metals found in each fraction depended on the type of metal, sampling depth, sludge used, and application rate. No significant increases were found in the heavy metal contents of chard and lettuce leaves, but some of the treatments resulted in a significant decrease of Cd and Cr levels in lettuce leaves.  相似文献   

13.
Organic wastes such as sewage sludge and compost increase the input of carbon and nutrients to the soil. However, sewage sludge-applied heavy metals, and organic pollutants adversely affect soil biochemical properties. Therefore, an incubation experiment lasting 90 days was carried out to evaluate the effect of the addition of two sources of organic C: sewage sludge or composted turf and plant residues to a calcareous soil at three rates (15, 45, and 90 t of dry matter ha–1) on pH, EC, dissolved organic C, humic substances C, organic matter mineralization, microbial biomass C, and metabolic quotient. The mobile fraction of heavy metals (Zn, Cd, Cu, Ni, and Pb) extracted by NH4NO3 was also investigated.The addition of sewage sludge decreased soil pH and increased soil salinity to a greater extent than the addition of compost. Both sewage sludge and compost increased significantly the values of the cumulative C mineralized, dissolved organic C, humic and fulvic acid C, microbial biomass C, and metabolic quotient (qCO2), especially with increasing application rate. Compared to compost, the addition of sewage sludge caused higher increases in the values of these parameters. The values of dissolved organic C, fulvic acid C, microbial biomass C, metabolic quotient, and C/N ratio tended to decrease with time. The soil treated with sewage sludge showed a significant increase in the mobile fractions of Zn, Cd, Cu, and Ni and a significant decrease in the mobile fraction of Pb compared to control. The high application rate of compost resulted in the lowest mobility of Cu, Ni, and Pb. The results suggest that biochemical properties of calcareous soil can be enhanced by both organic wastes. But, the high salinity and extractability of heavy metals, due to the addition of sewage sludge, may limit the application of sewage sludge.  相似文献   

14.
Experiments were started in May 1998 at two sites to measure various crop responses to a mixed municipal solid waste-biosolids cocompost (named Nutri Plus) and examine the fate of certain metals associated with Nutri Plus compost. There were six treatments: Check, 50, 100, and 200 T compost/ha, NPKS (75 kg nitrogen (N) /ha, 20 kg phosphorus (P)/ha, 45 kg potassium (K) and 18 kg sulphur (S)/ha), PK (20 kg P, 45 kg K/ha), and three crops: canola (Brassica rapa cv. ‘Hysyn 110’), wheat (Triticum aestivum L. cv. ‘Roblin’) and barley (Hordeum vulgare L. cv. ‘Lacombe’). Each treatment was replicated four times and was in a complete randomized block design. In the compost treatments, 20 kg P and 45 kg K were applied due to low concentration of these two nutrients in the compost. Soil and plant samples were analyzed for nutrient content such as N, P and K. In addition, plant samples and soil samples after the compost application were also analyzed for elemental content of As, B, Cr, Co, Cu, Zn Se, Mo, Cd, Hg and Pb. The research results show that the compost slightly increased heavy metal concentrations in the soil but did not cause any phytoxicity to crops. Yield from 100 and 200 T/ha application was higher with the compost than with NPKS treatment. However, the yield of the 50 T/ha application was similar to that of NPKS treatment. Comparing the two sites, the compost apparently was more beneficial at Site 1 than at Site 2 in the year of application. This is likely due to the lower indigenous soil fertility and poor soil physical properties at Site 1. The N content in cereal grains was similar among the compost treatments but lower than the Check and NPKS treatments due to the diluting effect of higher yield. The oil content in canola seed was similar among all treatments. The results suggest that Nutri Plus compost applications generated positive yield responses in all three crops. Crop yield increased as the application rate increased. Heavy metal loading was not an immediate problem with the compost application, although it will limit total compost application over time to the same soil  相似文献   

15.
Abstract

The development of a method using a chelating resin to assess heavy metal mobility in soil and the first results obtained from a pot experiment with sewage sludge additions were studied. The resin was Chelex 100 with the calcium (Ca)‐form of the resin proving to be best suited for the extraction. The efficiency of recovery of the heavy metals from an aqueous solution ranged from 81.2% for cadmium (Cd) to 102% for copper (Cu) within 24 hours. For heavy metal extractions from a soil sample, a 96 hour extraction period was found to be optimum. The extracted heavy metal portion was comparable with the results obtained with an ammonium acetate (NH4AOc) extraction. Total heavy metal contents in the substrate of the pot experiment did not show a significant influence due to the sewage sludge treatments, although considerable amounts of heavy metals were added by the sewage sludge. This effect can be both due to the incomplete recovery of heavy metals by an aqua regia extraction and leaching losses of these elements from the pots. Rape (Raphanus sativus L.) plants did not have any heavy metal contents which might indicate a high availability in soil, with the Cd and Cr contents in the rape biomass being partly lower in the sewage sludge‐treated pots than in the control plants; however, zinc (Zn) uptake slightly increased with increasing sewage sludge treatments. The Chelex 100 extraction procedure was correlated with Cd plant uptake, while the NH4AOc extraction procedure was better related to the Zn uptake by rape plants.  相似文献   

16.
Accurate prediction of plant-available N release from sewage sludge is necessary to optimize crop yields and minimize NO3 leaching to groundwater. We conducted a 1.5-year study with three maize crops to determine N mineralization from an urban sewage sludge from Barueri, State of São Paulo, Brazil, and its potential to contaminate groundwater with NO3. The soil at the experimental site was a loamy/clayey-textured Dark Red Dystroferric Oxisol. The treatments consisted of: plots without chemical fertilization or sludge, plots with complete chemical fertilization, and plots receiving four different doses of sewage sludge. Dose 1 was calculated at the agronomic N rate, while doses 2, 3 and 4 were, respectively, two, four, and eight times dose 1. The inorganic N addition increased with the rate of biosolid application. The high NO3 concentrations in relation to NH4+ were associated with intense soil nitrification. High N losses occurred for the first 27 days after soil sludge incorporation, even at the lowest dose, suggesting that land application of sewage sludge based on the N requirement of the crop may be overestimating the amount of sewage sludge to be applied.  相似文献   

17.
A field study was conducted to determine the plant uptake of metals in soils amended with 500 Mg ha?1 of municopal sewage sludge applied 16 yr previously. Results showed that metals were available for plan uptake after 16 yr, but that liming greatly reduced the plant availability of most metals. The application of sludge also resulted in high rates nitrification and subsequent lowering of the soil pH before the uptake study was started. The sludge-amended soil (a mesic Dystric Xerochrept) was adjusted with lime one month prior to planting from an unlimed pH of 4.6 to pH 5.8, 6.5 and 6.9. Food crops grown were: (i) bush bean (Phaseolus vulgaris L. cv. Seafarer), (ii) cabbage (Brassica oleracea L. v. capitata L. cv. Copenhagen market), (iii) maize (Zea mays L. cv. FR37), (iv) lettuce (Lactuca sativa L. cv. Parris Island, (v) (Solanum tuberosum L. cv. (vi) tomato (Lycopersicum esculentum L. cv. Burpee VF). With the exception of maize, yields were significantly reduced in the unlimed sludge-amended soil. However, liming increased yields above the growth level of the unlimed untreated soil for cabbage, maize, lettuce, potato tuber and tomato fruit. Soluble and exchangeable of Cd. Ni and Zn were also reduced after liming the sludge-amended soil. In both limed and unlimed soils, the majority of the soil Cu was found in insoluble and unavailable soil fractions. To evaluate trace metal uptake, the edible portion of each crop was analyzed for Cd, Cu, ni and Zn. Liming redoced uptake of Cd, Ni and Zn in most crops, but generally did not change Cu, This study shows the benefit of pH adjustment in reducing relative solubility and plant uptake of metals as well as increasing crop yield in acid soils.  相似文献   

18.
Rice production and cyanobacterial N in acid soil can be improved by liming. There is evidence that the organic amendments can increase the soil pH. The aim of this study was to find appropriate combination of soil amendments and cyanobacteria capable for enhancing nutrient uptake and improving rice yield in acidic paddy soil. Three soil amendments (rice straw, sewage‐sludge composts, NPK) with and without inoculation of cyanobacteria were studied for rice plants (Oryza sativa L.) in a pot experiment. The sludge compost had significantly reduced soil acidity from 5.44 to 6.67. The plant N and K uptake increased significantly with sludge and cyanobacteria application. The yield components increased significantly with sludge, but decreased thereafter, an exception was the number of panicles, with straw compost. These characters were also significantly affected by inoculation with cyanobacteria except 100‐grain weight, filled‐grain percentage, and harvest index. The combination of sludge compost and cyanobacteria improved the yield components and consequently grain yield (138 g pot–1) compared with sludge treatment only (132 g pot–1). The amount of cyanobacterial N absorbed (N‐difference method) by rice plant under sludge compost was higher than that of soils amended with either rice straw or NPK treatments. Therefore, the addition of sewage sludge to acid paddy soil not only amended the soil properties but also activated the cyanobacteria and consequently improved rice plant nutrition and grain yield.  相似文献   

19.
ABSTRACT

This experiment was conducted under greenhouse conditions using a sandy clay loam treated with garbage and mushroom composts, cattle and chicken manures, or municipal sludge at rates of 0, 30, or 60 ton ha?1. The organic materials were applied to the pots and incubated for 15 d. The soil samples were watered at field capacity. In this experiment, wheat (Triticum aestivum L.) was used as a test crop. At the end of the experiment, it was found that treating sandy clay loam with the organic materials increased plant total and grain yields, protein content, 1000-kernel weight, number of grains in spike, and accumulation of nitrogen (N), phosphorus (P), potassium (K), iron (Fe), zinc (Zn), and manganese (Mn) by wheat compared with the control treatment, depending on the organic material applications. Thus, the increases were found to be statistically significant (P ≤ 0.05). Among the types of organic materials, the sewage sludge was the most effective material in increasing N, P, K, Fe, Zn, and Mn content of leaf, grain, and stem samples of the wheat plant. It was followed by mushroom compost and cattle manure. Based on the results, sewage sludge and garbage compost are suggested for use as an amendment for the soil studied. Comparing the beneficial effects of the organic materials applied for improving plant growth and nutrient accumulation, the materials can be arranged in the following descending order: municipal sludge > chicken manure > cattle manure > garbage compost > mushroom compost. It is suggested that recycling of organic materials for agricultural usage as an organic-matter resource is an alternative, organic fertilization option in Turkey.  相似文献   

20.
Barley (Hordeum vulgare L. cv Doriru) leaf samples were collected from a field comprising three plots, plot F chemical fertilizer treated, plot S receiving sewage sludge and sawdust mixed compost, and plot H receiving sewage sludge and rice husk mixed compost. Relative concentrations of selected elements, potassium (K), calcium (Ca), and chloride (Cl) of young, mature, and old barley leaves were determined by microscopic energy dispersing X‐ray fluorescence (EDXRF). The objective of this investigation was to verify the applicability of EDXRF for rapid nutrient element diagnosis of plants. Typically whole leaves were washed in deionized‐distilled water and dried by ironing for analysis. Intact dried barley leaf sample irradiation was accomplished with X‐rays obtained from an X‐ray tube focused on an area <100 μm of the respective sample specimen surface. The EDXRF provided sufficient sensitivity for relative concentrations of K, Ca, and Cl. Element content data of all the elements investigated, specifically K, resulted in adequate plant nutrient element values to diagnose K insufficiency in barley leaves taken from plants in the sewage sludge receiving plots. Potassium was more densely accumulated in the new leaf than in mature and old leaves in case of plants from the S and H plots. In contrast, such K accumulation was more dense in old and mature leaves than young leaves in case of plants from the F plot. However, Cl and Ca coupling in barley leaves from all of the F, S, and H plots had shown the similar pattern of distribution and followed the order: old > mature > young. Therefore, EDXRF can be an easy, rapid, and practical method for diagnosing the elemental content of plant tissues and thereby help to aid plant growth and development through timely supplements of the required element(s).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号