共查询到20条相似文献,搜索用时 15 毫秒
1.
《Communications in Soil Science and Plant Analysis》2012,43(7-8):1091-1103
Abstract Soil phosphorus (P) deficiency is a constraint to crop production in many regions of sub‐Saharan Africa, which could be overcome through use of either soluble P fertilizer or sufficiently reactive phosphate rock (PR). A field study was conducted with corn (Zea mays L.) for three growing seasons (18 months) on a P‐deficient, acid soil in Kenya to compare a soluble P source (triple superphosphate, TSP) and relatively reactive Minjingu PR from Tanzania. In the 18 months following application of 250 kg P ha‐1, bicarbonate extractable inorganic soil P (Pi) was higher for application of TSP than PR, but Pi extracted with a mixed anion‐cation resin was comparable for TSP and PR. Inorganic P extracted by 0.1M NaOH, without prior extraction of resin and bicarbonate Pi, decreased during the 18 months following TSP application, but increased following PR application. After 18 months, about 7% of the added PR‐P remained as Ca‐bound P that was extracted with 1M HCl. The 1M HCl extractable P., however, underestimated residual PR‐P that gradually dissolved and supplied plant‐available P, as indicated by recovery of <40% of PR‐P added to soil in laboratory incubations even though PR solubility in HCl was >90%. Minjingu PR was an effective source of P for corn. Corn yields were comparable for TSP and PR, and the relative agronomic effectiveness of PR averaged 107% in Season 1 and 79% in Season 3. Anion resin and mixed anion‐cation resin appeared to be superior to bicarbonate and NaOH as a soil P test for use with both TSP‐ and PR‐treated soils. 相似文献
2.
《Communications in Soil Science and Plant Analysis》2012,43(9-10):1169-1178
Abstract About 35% of soils in Venezuela are acid and low in available phosphorus (P). To solve this problem farmers lime and apply phosphate fertilizers to the soils, but both lime and fertilizers are expensive. A good alternative to overcome soil acidity is the use of aluminum (Al)‐tolerant cultivars. The objective of this study was to test the hypothesis, by use of a pot experiment, that sorghum cultivars tolerant to Al toxicity are able to use P from phosphate rock more efficiently than are susceptible cultivars. Three sorghum (Sorghum bicolor L. Moench) cultivars, Chaguaramas III (Ch), AI‐tolerant, Decalb D59 (D59), and Pioneer 8225 (Pi), both Al‐susceptible, were grown in the greenhouse for 20 and 35 days in two acid soils fertilized with 0 and 100 mg P kg‐1 as triple superphosphate (SP) and Riecito phosphate rock (PR). Santa Maria soil was very low in available P (2 mg kg‐1) and highly saturated in Al saturation (64.5%) and Pao soil was higher in available P (20 mg kg‐1) and low in Al saturation (6.5%). Chaguaramas dry matter production, P uptake and root length was higher in Santa Maria soil as compared with Pi and D59 when grown with both SP and PR fertilization. Chaguaramas response to PR in Pao soil was not as good as in Santa Maria soil. The results of our experiment suggest that Al‐tolerant Ch is able to utilize P from PR more efficiently in soils like Santa Maria than Al‐susceptible cultivare Pi and D59. 相似文献
3.
Temesgen Wakweya Abebe Nigussie Gebeyanesh Worku Armaye Biresaw Abebayheu Aticho Obsu Hirko Gebermedihin Ambaw Melkamu Mamuye Bayu Dume Milkiyas Ahmed 《Soil Use and Management》2022,38(1):703-713
Although the addition of biochar has been shown to reduce the phosphorus (P) adsorption capacity of soil, quantitative evidence of this has mainly been provided by incubation experiments and it is therefore essential to conduct long-term field trials to draw general conclusions. It is largely unknown whether bone char has a greater effect than lignocellulosic biochar on P adsorption–desorption processes and crop yield. The aim of this study was to determine the long-term (8 years) effect of bone char and biochar on P adsorption–desorption and crop yield in low-input acidic soils. The results showed that bone char decreased the maximum P adsorption capacity (Qm) by 10% and increased the desorption capacity (Ds) by 150% compared with the control (i.e. without a soil amendment). The desorption ratio was highest for the bone char treatment (10.3%) and three times more than the control. Plant-available P was seven times greater under bone char than the control. There was no variation in adsorption–desorption characteristics, desorption ratio and plant-P available content between bone char and lignocellulosic biochar treatments. The average yield increment following the application of bone char and biochar was 1.7 and 1.4 Mg ha−1 for maize and 1.8 and 1.9 Mg ha−1 for soya bean, respectively. Despite the low application rate (4 t ha−1 year−1), these findings demonstrated that the long-term application of bone char and biochar-based amendments enhanced P availability in low-input cropping systems, mainly by altering the P adsorption and desorption capacity of soils. 相似文献
4.
R. F. Brennan 《Journal of plant nutrition》2013,36(6):1159-1176
In a field experiment with wheat (Triticum aestivum L.), the effect of the percentage severity of take‐all on the production of dried tops and grain and the kernel weight (mg/seed) was measured when different amounts of phosphorus (P) fertiliser were applied. The soil was severely P deficient. The amounts of P fertitiser varied from nil P (deficient) to 40 kg P/ha (adequate) applied annually. The levels of Gaeumannomyces graminis tritici (Ggt) were generated by four cropping sequences. The levels of percent severity of Ggt on plant roots ranged from low (<10% of wheat plant roots infected) to high (70% of roots infected by Ggt). Yield of dried tops, grain, and kernal weight, all increased as the level of P applied increased, but the amount of Ggt infection decreased. No grain was produced where no P was applied. The percentage increase in yield due to declines in the severity of take‐all was greater as the level of P applied increased. Increasing levels of P fertiliser help control the severity of Ggt (%) only where the initial level of Ggt with nil P fertiliser are moderate to low. Where the levels of Ggt severity are >65% the effectiveness of P in reducing the levels of Ggt severity rapidly declined. The percentage severity of Ggt affected the efficiency of plants to use P fertilisers. For each cropping sequence, a Mitscherlich function described the grain yield response to P fertiliser. The maximum grain yield (A coefficient) and the curvature coefficient (C) both declined with increases in the level of Ggt severity (%). For example, the C was significantly reduced from 0.134±0.03 for the least Ggt severity (%) to 0.00446±0.001 where Ggt was not controlled. The kernal weight (mg/seed) was increased by P application and decreased by Ggt infection. 相似文献
5.
《Communications in Soil Science and Plant Analysis》2012,43(4):417-425
Abstract The variability in corn yield responses to applications of Zn fertilizer appears to be associated with several complex soil and climatic factors that affect the availability of endogenous soil Zn to the crop under specific conditions. Among the soil chemical properties that influence availability of endogenous Zn are soil pH, organic matter content, and extractable P. Over a period of several years, soil and plant analysis data were collected from 54 field experiments, field trials, and diagnostic visits to producer's fields. These data were subjected to multiple regression analysis, resulting in an equation: Znleaf = 37.14 + 1.513 Znst ‐4.04 pHst ‐ 1.791 ln(Pst/100) where Znst, pHst, and Pst were 0.1N HC1 extractable soil Zn (kg/ha), 1:1 soil‐water pH, and Bray's 1 extractable soil P (kg/ha), respectively. These factors accounted for 67% of variation in leaf Zn, which was a large portion of the variability in Znleaf considering that climatic conditions, management levels, and varietal differences were uncontrolled in most instances. Using the previously published critical level in the leaf opposite and below the ear as 17 μg Zn/g, these data can be used to set required soil test levels of Zn at different levels of extractable P and soil pH. Inadequate levels of extractable Zn would range from 2.5 (at pH 6.0, P = 70 kg/ha) to, 9.5 kg/ha (at pH 7.5, P = 420 kg/ha). 相似文献
6.
《Communications in Soil Science and Plant Analysis》2012,43(3-5):205-215
Abstract The responses of corn and soybean to seed‐placed fertilizer were compared over NaHCO3‐extractable soil phosphorus (P) levels ranging from 3 to 35 ppm in a two‐year experiment. Early season corn and soybean shoot‐P concentrations were increased with increasing soil test P and were increased with seed‐placed P regardless of soil test P, although the increases were greater for corn than soybean. Corn grain yield increased with increasing soil test P to a plateau level and increased with seed‐placed P regardless of soil test P. A side‐band (5 cm × 5 cm) application of 39 kg P ha‐1 at a low soil test P increased yield more (P<0.15) than application of 7 kg P ha‐1 with the seed. A side‐band application of 9 kg P ha‐1 at a medium soil P test did not increase yield. Soybean yield was increased with increasing soil test P one year out of two, but did not respond to seed‐placed P in either year. The yield response of corn was attributed to the increased P concentration prior to the 6‐leaf stage. 相似文献
7.
《Communications in Soil Science and Plant Analysis》2012,43(9-10):2125-2135
Abstract Hakea francisiana and H. laurina were grown in soilless media based on pine bark, to which had been added one of the following phosphorus (P) sources: crushed bone, rock phosphate, calcined rock phosphate, sewage sludge, or sludge compost. Available P was assessed through extraction with unbuffered 2 mM DTPA. Similar regression equations between shoot P content and P in 2 mM DTPA extracts of the media at potting were obtained for both total P in the extract (determined by inductively coupled plasma emission spectrometry) and PO4‐P. The difference between them was small compared with the variation caused by different rates of dissolution of P the various sources during the growing period. Extractants give only an approximate guide to plant P uptake when the medium contains sources that slowly dissolve during the growing period. Nevertheless, the data indicate that, irrespective of P source, the maximum P concentration in a 2 mM DTPA extract (1:1.5 v/v) of the medium that is tolerated by P‐sensitive plants is 3–4 mg/L. This is similar to the concentration found previously for superphosphate as the source of P. 相似文献
8.
Effects of 15 annual applications (from 1979 to 1993) of ammonium nitrate (AN), urea, ammonium sulfate (AS), and calcium nitrate (CN) applied at 168 and 336 kg N ha‐1 to bromegrass (Bromus inermis Leyss.) on soil acidification, and concentration of aluminum (Al), iron (Fe), manganese (Mn), zinc (Zn), and copper (Cu) in soil and in hay were investigated in a field experiment on a thin Black Chemozemic (Typic Boroll) soil in Alberta, Canada. Soil was acidified and the concentration of extractable Al, Fe, and Mn was increased by nitrogen (N) application, but the magnitude varied with N source. Soil acidification was greatest with AS, followed by AN and urea, with no effect of CN. At 336 kg N ha‐1 rate, soil was acidified to a depth of 10, 15 and 30 cm with urea, AN AS, respectively. Soil acidification was also greater at 336 kg than 168 kg N ha‐1. The CaCl2‐extractable Al and Fe in the 0–15 cm layer increased with N application, which closely followed the decrease in soil pH from various N sources. Extractable Al and Fe concentration in the 15–30 cm layer increased in response to reduction in soil pH by AS only, and there was no change in the extractable Al and Fe below the 30‐cm depth by any form of N. The DTPA‐extractable Mn in soil generally changed in response to N application. There was no effect of N source on the DTPA‐extractable Zn and Cu in soil. When soil pH had been lowered from N application, the concentration of Al in hay decreased while Zn concentration increased. The Mn concentration in forage increased markedly in response to reduced soil pH from application of AN, urea and AS. There was no effect of N fertilization on the Cu and Fe concentration in hay. In conclusion, the magnitude of soil acidification, changes in the Al, Fe, and Mn concentrations in soil and changes in the Al, Zn, and Mn concentrations in bromegrass hay varied with N source. The results suggest the need for periodic monitoring of soil pH and consideration of liming costs in the economics of various N fertilizers. 相似文献
9.
《Communications in Soil Science and Plant Analysis》2012,43(19-20):3135-3146
Abstract Evolution of residual phosphate was monitored as function of time on an Ultisol without cropping in a field trial at Sembawa Rubber Research Station, South Sumatra, Indonesia. Three treatments were imposed and either triple superphosphate at a rate of 600 kg ha‐1 containing 21.54% phosphorus (P) or lime at the rate of 4.14 tons ha‐1 was applied. During the 20 months of incubation, extractable phosphate as evaluated by hydrochloric acid‐ammonium fluoride (Bray‐I) declined in all treatments. The decrease in the P fertilized plot was more pronounced in relation to the control and the limed soil. Only 56% of P added to the soil was initially recovered as extractable P. This percentage was 30–40% in limed soils. No significant pH difference was recorded for all treated plots except for limed soils. An increase of 1.3 pH units was initially obtained by liming, but the pH dropped to about 0.9 unit after 20 months of incubation. In addition, total P in arable layer remained fairly constant. According to the recoveries of P added referring to 4.3 P 100 g‐1, half‐life of a single P dose was estimated at 31 months for a P fertilized soil and almost threefold delay for combination of P fertilization and lime application, which was obtained from the following equation: 相似文献
10.
In order to increase the p:tady prodution of our country, a better fertilizer practice is needed Particularly in the low productive areas known as “akiochi” fields which are now said to occupy about one fifth of the whole paddy areas in Japan. 相似文献
11.
A field experiment was conducted for 3 crop years (July‐June) at the Indian Agricultural Research Institute, New Delhi to study the effects of Sesbania and cowpea green manuring (GM) and incorporation of mungbean residues after harvesting grain, Leucaena loppings, FYM and wheat straw incorporation before planting rice and application of 0,40,80 and 120 kg N ha?1 to rice on the soil organic carbon (SOC), alkaline permanganate oxidizable N (APO‐N), 0.5 M sodium bicarbonate extractable P (SBC‐P) and 1N ammonium acetate exchangeable K (AAE‐K) in surface 0–15 cm soil after the harvest of rice and wheat grown in sequence. Green manuring and addition of organic residues prevented the decline in SOC. On the other hand addition of N fertilizer tended to decrease SOC after rice harvest. On the contrary application of green manures, organic residues, FYM and fertilizer N increased APO‐N, which indicates the benefit of these treatments to a more labile soil organic N pool. Also application of green manures, organic residues, FYM and fertilizer N increased SBC‐P. Not much change was observed in AAE‐K by the treatments applied. 相似文献
12.
There are substantial areas of dallisgrass (Paspalum dilatatum Poir.)‐common bermudagrass (Cynodon dactylon (L). Pers.) summer‐type pastures in the Southeastern Central Plain, but little information is available on their response to P and K fertilization. The purpose of this study was to measure the response of dallisgrass‐common bermudagrass pastures to P and K fertilization with and with‐ out N. Phosphorus and K were applied to two soils in May each year for three years. Yield data were collected by clipping a swath through the length of the plots when the minimum forage height was approximately 30 cm. Responses to P and K applications were obtained when the soil test levels were low to very low, but not when they were medium as determined by the Mississippi Soil Test (MST). Forage P concentration of the control in the medium P and K soil was within the adequate range of 2.8 to 3.4 g/kg, but forage K concentration was below the critical range of 16 to 18 g/kg. Forage P and K concentrations of the controls in the low P and K soil were below critical levels. At both locations forage P and K concentrations were increased by P and K fertilization. Available soil P increased with rate of P application but soil extractable K was unaffected by K application. No yield response to P and K are likely at medium soil test levels (MST) even at high rates of N. There was no response to P and K application without N. 相似文献
13.
《Communications in Soil Science and Plant Analysis》2012,43(19-20):2917-2925
Abstract This study was to determine the effect of soil amendments on the fractionation of selenium (Se) using incubation experiments under simulated upland and flooded conditions. The treatments were as follows: 1) control [soil + sodium selenite (Na2SeO3) (1 mg Se kg‐1)]; 2) control + calcium carbonate (CaCO3) (5 g kg‐1); 3) control + alfalfa (40 g kg‐1); and 4) control + CaCO3 (5 g kg‐1) + alfalfa (40 g kg‐1). After a 90‐day incubation, soil was sampled and fractionated into five fractions: 1) potassium sulfate (K2SO4)‐soluble fraction (available to plants); 2) potassium dihydrogen phosphate (KH2PO4)‐exchangeable fraction (potentially available); 3) ammonium hydroxide (NH3H2O)‐soluble fraction (potentially available); 4) hydrochloric acid (HCl)‐extractable fraction (unavailable); and 5) residual fraction (unavailable). Compared with the control, CaCO3 increased the K2SO4 fraction at the expense of the NH3H2O fraction. Alfalfa increased both the K2SO4 and residual fractions but reduced the KH2PO4 and NH3H2O fractions. The CaCO3‐alfalfa treatment had a similar effect to the alfalfa treatment alone. The comparison between the upland and flooded conditions showed that the flooded condition generally increased the residual fraction and decreased the potentially‐available fractions. In general, CaCO3 was a better amendment because it not only increased the available fraction but also maintained the potentially available fractions at a high level. The application of Na2SeO3 and use of appropriate soil amendments can improve Se availability in soil. 相似文献
14.
A.D. Rovira 《Soil biology & biochemistry》1976,8(4):241-247
Fumigation of field soil with chloropicrin alone or followed by methyl bromide, each at 220Kg·ha?1, released 20–30 parts/106 NH+4-N which persisted for 75 days; such fumigation also doubled the amount of bicarbonate-extractable phosphate 28 days after fumigation. Soil fumigation increased both the vegetative and grain yields as well as increasing the content of N in the grain and the content of K and Cl in the tops at ear emergence. Root growth and the phosphate uptake activity of the roots were increased by soil fumigation. 相似文献
15.
The presented results originate from a field experiment established in 1972 on an Eutric cambisol with two main factors: soil tillage (conventional‐, reduced‐, and no‐tillage) and NPK fertilization. The test plants were maize and winter wheat in two years rotation. The long‐term soil fertility without and with optimum fertilization, the influence of fertilization, tillage and crop sequence on grain yields, the organic carbon content (Corg) and the nitrate infiltration are discussed. In the course of years without any NPK fertilization grain yields of maize and winter wheat decreased significantly and reached a minimum level which was modified however by the actual climatic conditions. The analogous yield level of optimum NPK fertilization at maize showed a growing tendence while at wheat it remained mostly constant. The method of soil tillage influenced grain yield of winter wheat to a lesser extent than the yield of maize. Grain yields of maize and winter wheat were consistently lower with no‐till as compared to reduced or conventional tillage, however the differences with w. wheat were much smaller. The effect of tillage was especially high at N0 P0 K0. Crop rotation had a positive effect on the yields of maize. For winter wheat at N0 P0 K0 oneself was the better forecrop, while at optimum N and PK maize performed a little better. Corgcontent of soil slightly increased in the course of 25 years not only on the fertilized plots but on the nil plots too. Increasing N‐doses showed only a little effect on the Corg. There was a little positive effect of no‐till on Corg content of soil as well as compared fall ploughing. Soil tillage did not much influence the total amount of nitrate in the soil profile. The distribution of nitrate‐N in the soil profile was more affected by the actual climatical circumstances than by the system of tillage. However big nitrate accumulations were found in the subsoil according to different soil tillage systems at some other times, as well as lack of it, which suppose the possibility of a relative quick nitrate infiltration. 相似文献
16.
《Communications in Soil Science and Plant Analysis》2012,43(14):1645-1653
Abstract Direct fertilization of peanuts (Arachis hypogaeaL.) with P and K has generally shown few yield responses, resulting in only limited information concerning critical soil‐test levels of P and K. The purpose of the experiments in this report was to determine the critical soil‐test levels of P and K for runner peanuts using the double‐acid extraction procedure. Fertilizer experiments were conducted on farmers’ fields from 1973 to 1986. Site selection was based on soil test data that indicated “medium”; or “low”; levels of available P or K but “high”; in Ca and Mg. Phosphorus and potassium were applied together at all sites at rates of 20 and 74 kg/ha, respectively, as concentrated superphosphate and potassium chloride. There were yield increases to fertilizer in 6 of the 39 experiments. Soil‐test P for these six ranged between 4 and 53 kg/ha; soil‐test K ranged between 10 and 31 kg/ha. Delineating the yield effect into their P and K components with the aid of multiple regressions of yield on soil test values showed that yield increases were due to the K component of the fertilizer. The critical soil‐test K value was calculated to be 37 kg/ha. Sound mature kernels (SMK) were generally unaffected by fertilizer. 相似文献
17.
《Communications in Soil Science and Plant Analysis》2012,43(15-17):2829-2835
Abstract The influence of soil particle size and soil fine grinding on Bray‐2 extractable phosphorus (Bray‐2P) was studied. Air‐dried and 2‐mm mesh‐sieved soil was separated into six particle size classes: <0.075, 0.075–0.106, 0.106–0.25, 0.25–0.425, 0.425–0.85, and 0.85–2 mm. The lowest amounts of Bray‐2P were found in the 0.425–0.85 and 0.85–2 mm fractions and the highest in <0.075 mm fraction. When ground for 3 min, the amount of Bray‐2P increased in the fractions larger than 0.25 mm, whereas it decreased in the fractions smaller than 0.25 mm. In the large fraction (0.425–0.85 mm), grinding for 1 to 3 min led to an increase in the amount of Bray‐2P, but grinding for 9 to 18 min caused a decrease. In contrast, in the small fraction (<0.075 mm), the amount of Bray‐2P decreased by grinding for 1 min. The large and small fractions that were ground absorbed P in proportion to the grinding time during the extraction‐filtration period. 相似文献
18.
《Communications in Soil Science and Plant Analysis》2012,43(17-18):2925-2937
Abstract The leaching of phosphorus (P), nitrogen (N), and radionuclides (232Th, 226Ra, 228Ra, and 40K) from Joel sands amended with red mud/gypsum (RMG) at 9 rates (0, 2, 4, 8, 16, 32, 64, 128, and 256 t/ha) was measured using columns. Intense leaching conditions (34 mm/day for 12 days) and a high rate of applied P (320 kg/ha as superphosphate) and N (680 kg/ha as ammonium nitrate) were used to simulate extremes of irrigated vegetable production on the Swan Coastal Plain. Addition of the highest rate of RMG (256 t/ha) reduced leaching of fertiliser P and ammonium‐nitrogen (NH4‐N) by 85% and 50%, respectively, compared with 0 t/ha after 12 days. At 641 RMG/ha P leaching was reduced 50% compared with 0 t/ha. Nitrate‐nitrogen (NO3‐N) leaching was not affected by addition of RMG. Reduced leaching of NH4‐N was attributed to an increase in cation exchange capacity of the soil with the addition of RMG. Bicarbonate‐extractable P in the soil increased with rate of RMG to >50 μg P/g soil at 256 t/ha. This indicates that soil testing of residual P could be used to reduce P inputs to vegetable crops after soils were amended with RMG. This would further reduce the impact of vegetable production on the water systems of the Swan Coastal Plain and extend the period of effectiveness of RMG amended soils. The increase in 232Th specific activity in Joel sand amended with RMG was well below statutory limits even at the highest rate. Neither 40K nor 226Ra were detectable in RMG amended sands up to 2561 RMG/ha. There was no evidence of leaching of 226Ra or 228Ra at any rate of RMG. These results suggest that the use of RMG amendment on commercial horticultural properties on the Swan Coastal Plain could be feasible. 相似文献
19.
《Communications in Soil Science and Plant Analysis》2012,43(3-4):457-470
Abstract An improved management of phosphorus (P) is crucial for increasing crop production and improving environmental quality of acid infertile soils. Laboratory analyses and greenhouse experiments were conducted to evaluate effects of phosphate rock (PR), coal combustion by‐product (BP), limestone, and cellulose application on the relationship between soil test P and crop growth in acidic soil. Application of PR, BP, limestone, and cellulose increased soil pH, exchangeable calcium (Ca) and magnesium (Mg), and extractable P, and decreased free aluminum (Al) ion in the acid soil. Addition of BP or limestone increased P availability efficiency [PAE, mg dry matter yield (DMY) of plant per mg soil extractable P by Olsen‐P procedure] and P utilization efficiency (PUE, mg DMY of plant per mg P in the plant). There was significant positive correlation between the PAE and BP rates applied alone (r2=O.979, p<0.01) or with either PR (r2=0.972, p<0.01) or PR plus cellulose (r2=0.985, p<0.01). The PUE of ryegrass was significantly correlated with BP rates alone (r2=O.957, p<0.01) or with either PR (r2=0.906, p<0.01) or PR plus limestone (r2=O.699). The increase in PAE and PUE of ryegrass caused by BP and limestone reflected more plant root growth from increased availability of Ca and Mg and higher soil pH. 相似文献
20.
Changes in nitrogen and phosphorus concentrations of silicon‐fertilized rice grown on organic soil 1
C. W. Deren 《Journal of plant nutrition》2013,36(6):765-771
Rice grown on the organic soils of the Everglades is routinely fertilized with silicon (Si). The objective of this research was to investigate changes in nitrogen (N) and phosphorus (P) concentration in various plant parts in response to Si fertilization. Two cultivars were grown in lysimeters filled with low‐Si soil. Half the lysimeters were fertilized with calcium silicate to provide 2Mg Si ha‐1 and the other lysimeters remained unfertilized as a control. Nitrogen concentration decreased in all plant parts with Si fertilization. Phosphorus concentration increased with Si. Maturity was earlier in the Si fertilized rice. 相似文献