首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effects of forest management (thinning) on gross ammonification, net ammonification, net nitrification, microbial biomass, and N2O production were studied in the forest floor of adjacent untreated control (“C”) and thinned (“T”) plots in three beech (Fagus sylvatica L.) stands in the Swabian Jura (Southern Germany) during three intensive field campaigns in the year 2004. The investigated sites are located less than 1 km apart on the slopes of a narrow valley. Due to different exposure (southwest, northeast, northwest), the three sites are characterized by warm‐dry microclimate (southwest site, SW) and cool‐moist microclimate (northeast site, NE; and northwest site, NW). Measurements at the NW site covered the second year (13 to 20 months) after thinning, and measurements at the SW and NE sites covered the sixth year (61 to 68 months) after thinning. Mean gross ammonification varied insignificantly across the six plots (range: 37.5 ? 31.2 to 51.0 ? 10.5 mg N (kg dry soil)–1 d–1). The SW site was characterized by very low net nitrification and nitrate (NO ) concentrations that were not significantly different between control and thinned plot. In contrast, for the thinned plot at the NE site (NET), significantly increased mean net nitrification (2.3 ? 1.2 mg N (kg dry soil)–1 d–1 at the NET plot vs. 0.4 ? 0.2 mg N (kg dry soil)–1 d–1 at the NEC plot) and mean extractable NO concentrations (43.9 ? 22.8 mg N (kg dry soil)–1 at the NET plot vs. 4.1 ? 0.8 mg N (kg dry soil)–1 at the NEC plot) were observed. The differences in net nitrification and NO concentrations across the research plots were related to differences in the forest‐floor C : N ratios: net nitrification increased exponentially below a threshold C : N value of about 25. The results of this study indicate that the forest floor of the warm‐dry SW site is very resistant to N loss triggered by thinning due to high C : N ratios around 30. Under the cool‐moist microclimate of the NE site, a significantly lower C : N ratio of 22.1 at the thinned plot (control plot: 26.7) coincided with significantly increased net nitrification. Thus, different responses of net nitrification to thinning under different microclimate appear to be triggered by different C : N ratios. Nitrous oxide production was mainly governed by forest‐floor water content, and since differences in water content at adjacent control and thinned plots were low, N2O production was not significantly different between adjacent control and thinned plots.  相似文献   

2.
Properly estimating soil nitrogen (N) mineralization as a consequence of different agronomic practices would result in better soil N fertility management. In this study, we tested the differences between laboratory and in situ resin‐core incubation methods for estimating soil net N mineralization for long‐term burley tobacco (Nicotiana tobacum L .) tillage and rotation systems. The laboratory incubation method used crushed, homogenized, litter‐free soil samples, and the in situ resin‐core incubation method used an intact soil core with the inclusion of any plant residue below or above ground. Comparisons showed that no‐tillage had significantly increased soil net N mineralization compared to conventional tillage with the laboratory incubation method, while there was no significant difference between tillage methods with the in situ resin‐core method. This indicates that soil pretreatment in the laboratory incubation method can create an “artificial tillage effect” for soil previously managed with no‐tillage, resulting in overestimated soil net N mineralization. The rotation comparison showed that different crop sequences had no impact on measured net N mineralization with the laboratory incubation method. However, a preceding soybean crop did significantly increase net soil N mineralization compared to preceding corn when measured with the in situ resin‐core method. This suggests that discarding plant residue in the laboratory incubation method can neglect the potential effect of plant residue on soil N mineralization. Therefore, it is important to be aware that soil pretreatment may influence soil N mineralization estimates, potentially resulting in flawed decisions for soil N fertility management.  相似文献   

3.
In temperate forest soils, N net mineralization has been extensively investigated during the growing season, whereas N cycling during winter was barely addressed. Here, we quantified net ammonification and nitrification during the dormant season by in situ and laboratory incubations in soils of a temperate European beech and a Norway spruce forest. Further, we compared temperature dependency of N net mineralization in in situ field incubations with those from laboratory incubations at controlled temperatures. From November to April, in situ N net mineralization of the organic and upper mineral horizons amounted to 10.9 kg N (ha · 6 months)–1 in the spruce soil and to 44.3 kg N (ha · 6 months)–1 in the beech soil, representing 65% (beech) and 26% (spruce) of the annual above ground litterfall. N net mineralization was largest in the Oi/Oe horizon and lowest in the A and EA horizons. Net nitrification in the beech soil [1.5 kg N (ha · 6 months)–1] was less than in the spruce soil [5.9 kg N (ha · 6 months)–1]. In the range of soil temperatures observed in the field (0–8°C), the temperature dependency of N net mineralization was generally high for both soils and more pronounced in the laboratory incubations than in the in situ incubations. We suggest that homogenization of laboratory samples increased substrate availability and, thus, enhanced the temperature response of N net mineralization. In temperate forest soils, N net mineralization during the dormant season contributes substantially to the annual N cycling, especially in deciduous sites with large amounts of litterfall immediately before the dormant season. High Q10 values of N net mineralization at low temperatures suggest a huge effect of future increasing winter temperature on the N cycle in temperate forests.  相似文献   

4.
An improved method is described for incubating intact soil cores in the field, which permits concurrent measurement of net mineralization, nitrification, denitrification and leaching. Cores were enclosed in PVC tubes with minimal disturbance to the physical state or to the natural cycles of wetting/drying, soil temperature and aeration during an incubation lasting 4–5 days. An example of the application of the method is given in which soils with contrasting drainage characteristics were compared. Over a 64-day experimental period, 58% of the mineralized nitrogen (N) in a freely drained soil was nitrified and 36% of the nitrate-N (NO3 -N) was denitrified. In a poorly drained soil, 72% of the mineralized N was nitrified and 63% of the NO3 -N was denitrified. In both soil types, 18% of the remaining NO3 -N was leached. Rates of nitrification were significantly correlated with net mineralization (r 2=0.41 and 0.52) and also closely correlated with denitrification (r 2=0.67 and 0.68) in the freely and poorly drained soils, respectively. Independent measurements of these processes, using alternative techniques (for the same period), compared favourably with measurements obtained with the improved incubation method. Adoption of this method has a number of advantages with respect to field net N mineralization, and also allows interpretation of the impact this may have on other N transformation processes. Received: 18 June 1997  相似文献   

5.
[目的] 研究不同植物与改良方式对重构土壤氮转化率的影响,为提高矿区重构土壤可利用氮素含量提供理论依据。[方法] 以取自内蒙古自治区通辽市扎哈淖尔露天煤矿的采矿剥离物为基质配制重构土壤,分别以鸡粪肥、自制改良剂对其进行改良,并选取4种类型的植物,研究这两个因素对无机氮存在形式、氮净矿化率、净氨化率和净硝化率的影响。[结果] 硝态氮是重构土壤中无机态氮存在的主要形式,改良剂、植物及其交互作用对重构土壤氮净矿化率、净氨化率和净硝化率有极显著影响,自制改良剂改良可以显著提高重构土壤中铵态氮、硝态氮和亚硝态氮的含量及净硝化率,紫花苜蓿可以显著提高重构土壤中硝态氮含量及氮净矿化率。90 d时重构土壤的氮净矿化率最高。[结论] 播种90 d内,重构土壤中无机态氮存在形式由铵态氮向硝态氮转化,添加自制改良剂能够提高重构土壤中无机态氮含量,对矿区重构土壤的净氨化率、净硝化率及氮净矿化率的提高有促进作用。  相似文献   

6.
Previous studies have suggested grazing may alter nitrogen (N) cycling of grasslands by accelerating or decelerating soil net N mineralization. The important mechanisms controlling these fluxes remain controversial, and more importantly, the consequences on carbon storage and site productivity remain uncertain. Here we present results on the seasonal patterns of soil inorganic N pools and net N mineralization and their linkages to ecosystem functioning from a grazing experiment in the Inner Mongolia grassland, which has been maintained for five years with 7 levels of grazing intensity (0, 1.5, 3.0, 4.5, 6.0, 7.5, and 9.0 sheep ha−1). Net N mineralization and nitrification rates were determined using an in situ soil core incubation method. Our findings demonstrated that, in the non-growing season, the net N mineralization rate was reduced by 181% in the lightly and moderately grazed plots (1.5-4.5 sheep ha−1) and by 147% in the heavily grazed plots (6.0-9.0 sheep ha−1), and the net N immobilization was observed in all grazed treatments. In the early growing season, however, it was increased by 107% in the lightly and moderately grazed plots and by 128% in the heavily grazed plots. In the peak growing season, grazing diminished the net mineralization rate by 71% in the lightly and moderately grazed plots and 108% in the heavily grazed plots. The seasonally dependent effects of grazing on soil inorganic N pools and net N mineralization were strongly mediated by grazing-induced changes in soil temperature and moisture, with soil moisture being predominant in the peak growing season. Grazing alterations of soil inorganic N and net N mineralization were closely linked to the changes in aboveground primary productivity, biomass N allocation, N use efficiency, and soil total nitrogen. Based upon the five year study, we conclude that grazing at moderate to high intensities is unsustainable in terms of productivity and soil N cycling and storage in these systems.  相似文献   

7.
Changes of land-use type (LUT) can affect soil nutrient pools and cycling processes that relate long-term sustainability of ecosystem, and can also affect atmospheric CO2 concentrations and global warming through soil respiration. We conducted a comparative study to determine NH4+ and NO3 concentrations in soil profiles (0–200 cm) and examined the net nitrogen (N) mineralization and net nitrification in soil surface (0–20 cm) of adjacent naturally regenerated secondary forests (NSF), man-made forests (MMF), grasslands and cropland soils from the windy arid and semi-arid Hebei plateau, the sandstorm and water source area of Beijing, China. Cropland and grassland soils showed significantly higher inorganic N concentrations than forest soils. NO3-N accounted for 50–90% of inorganic N in cropland and grassland soils, while NH4+-N was the main form of inorganic N in NSF and MMF soils. Average net N-mineralization rates (mg kg1 d1) were much higher in native ecosystems (1.51 for NSF soils and 1.24 for grassland soils) than in human disturbed LUT (0.15 for cropland soils and 0.85 for MMF soils). Net ammonification was low in all the LUT while net nitrification was the major process of net N mineralization. For more insight in urea transformation, the increase in NH4+ and, NO3 concentrations as well as C mineralization after urea addition was analyzed on whole soils. Urea application stimulated the net soil C mineralization and urea transformation pattern was consistent with net soil N mineralization, except that the rate was slightly slower. Land-use conversion from NSF to MMF, or from grassland to cropland decreased soil net N mineralization, but increased net nitrification after 40 years or 70 years, respectively. The observed higher rates of net nitrification suggested that land-use conversions in the Hebei plateau might lead to N losses in the form of nitrate.  相似文献   

8.
Marine benthic macrophytes were examined as possible nitrogen (N) sources for agriculture in Greece in terms of N mineralization and available standing stocks. Net N mineralization patterns were determined over a 30‐week incubation period under aerobic conditions. Ulva sp., Cystoseira barbata C. Agardh, and Posidonia oceanica (L.) Delile storm‐cast material (SC) and harvested leaves (L) were incorporated into acidic, slightly acidic after liming, and alkaline soils and incubated at 35°C. From the initial stage until the 12th week of incubation, ammonification was higher than nitrification in most cases. The decreasing order of mineralized N originating from macrophytes was: Ulva sp. > P. oceanica (SC) > C. barbata > P. oceanica (L). Rates of net N mineralization of the macrophytes were the highest in the alkaline soil, whereas the lowest values were recorded in the strongly acidic soil. Application of Ca into the acidic soil revealed a considerable increase of N mineralization. Immobilization and ammonification were observed after incorporation of Ulva sp. into the acidic soil. As Ulva sp. proved to be the only potential alternative N source for arable crops, its standing stocks in two geographically different Greek lagoons, the Vassova Lagoon (N Greece) and Papas Lagoon (S Greece) were estimated. It was estimated that 2 ha of Ulva could supply adequate N to cultivate approximately 1 ha cotton. Posidonia and Cystoseira did not show potential as an alternative N source for agriculture and especially in plant nutrition.  相似文献   

9.
Abstract

Most measurements of dairy manure nitrogen (N) availability depend on net changes in soil inorganic N concentration over time, which overlooks the cycling of manure N in the soil. Gross transformations of manure N, including mineralization (m), immobilization (i), and nitrification (n), can be quantified using 15N pool dilution methods. This research measures gross m, n, and i resulting from application of four freeze‐dried dairy manures that had distinctly different patterns of N availability. A sandy loam soil (coarse‐loamy, mixed, frigid Typic Haplorthod) was amended with four different freeze‐dried dairy manures and incubated at 25°C with optimal soil water content. The dilution of 15ammonium (NH4+) during a 48‐h interval (7–9 d and 56–58 d after manure application) was used to estimate m, whereas the dilution of 15nitrate (NO3 ?) was used to estimate n. Gross immobilization was calculated as gross minus net mineralization. Gross mineralization in the unamended soil was similar at 7‐ to 9‐d and 56‐ to 58‐d intervals and was significantly increased by the application of manures. For both amended and unamended soil, m was much greater (i.e., three‐ to nine‐fold) than estimated net mineralization, illustrating the degree to which manure N can be cycled in soil. At the early interval, both m and i were directly related to the manure C input, demonstrating the linkage between substrate C availability and N utilization by soil microbes. This research clearly shows that the application of dairy manures stimulates gross N transformation rates in the soil, improving our understanding of the impact of manure application on soil N cycling.  相似文献   

10.
Areca catechu L.–based agroforestry system is practiced by local farmers in which a variety of crops are cultivated along with trees to maximize harvest security. Most farmers do not use inorganic fertilizers to improve crop yields, mainly because they cannot afford to purchase these fertilizers, and for this reason cycling of nutrients through the decomposition of plant residues becomes an important phenomenon in this type of agroforestry system. In this context, a study was carried out to estimate in situ nitrogen (N) and phosphorus (P) mineralization as influenced by soil type and management system. Net N and P mineralization rates were studied on the basis of final concentrations of ammonia, nitrate, and P in soil using a buried‐bag technique for one cropping cycle to examine temporal and depth variations across the three different sites (Harmutty, Nirjuli, and Doimukh). A significant variation in N mineralization was recorded among the three sites. Seasonal changes in N and P mineralization were also observed. The Harmutty site had highest rates of N mineralization during the rainy season and immobilization during spring. Phosphorus mineralization rate was higher during autumn at Doimukh and during winter in Harmutty and Nirjuli sites, whereas greater immobilization was recorded during the rainy season. The Harmutty site recorded a greater ammonification rate during September and immobilization during November and March months, the Nirjuli site recorded maximum ammonification during January and immobilization during November and March, and the Doimukh site had greater immobilization during March and ammonification during January. Nutrient dynamics may prove productive if managed properly in synchronization with mineralization that could result in fairly good crop productivity.  相似文献   

11.
Abstract

Herbicides have potential for economical and efficient site preparation following timber harvest. The effects of tebuthiu‐ron, one of the herbicides approved for this use, on soil nitrogen (N) mineralization and nitrification were determined in laboratory incubations. Tebuthiuron was added at rates from 0 to 1000 μg g‐1 to three soils. There was no effect of tebuthiuron additions of less than 1 μg g‐1 on soil N mineralization and nitrification. Tebuthiuron reduced nitrification in all soils at 1000 μg g‐1 and in two of the soils at 100 μg g‐1 . All soils had increased net mineralization with tebuthiuron added at 100 and 1000 μg g‐1. The addition of 50 μg NH+ 4‐N and 1000 μg tebuthiuron g‐1 resulted in increased net mineralization in the three soils. Nitrification was affected differently in each of the three soils by the addition of both NH+ 4‐N and tebuthiuron. The added NH+ 4‐N either removed the inhibition of nitrification by the herbicide or had no effect on the inhibition in two of the soils. In the third soil, nitrification was reduced by the addition of NH+ 4‐N.

The presence of NO 3‐N in these acid soils and the effects of added NH+ 4‐N on NO 3‐N production suggest that heterotrophic nitrification occurs in at least two of the soils. The findings of this study indicate that any effects of tebuthiuron on N mineralization and nitrification at the currently recommended application rates are likely to be transient and localized.  相似文献   

12.
A study was conducted to examine the responses of microbial activity and nitrogen (N) transformations along an altitudinal gradient. The gradient was divided into three parts. Three areas were sampled: upper part (UP): coniferous forest, corn field, and abandoned corn field; middle part (MP): tropical cloud forest, grassland, and corn field (COL); and lower part (LP): tropical deciduous forest and sugarcane. The results showed that soil microbial biomass carbon (C) and basal respiration were significantly higher in MP and UP than in LP, whereas the microbial quotient (Cmic/Corg) was higher in LP and MP than in UP. The metabolic quotient (qCO2) was similar among gradient parts evaluated. Net N mineralization, ammonification, and nitrification rates were higher in UP than MP and LP. We found that in UP, the forest conversion to cropland resulted in no significant differences in microbial activity and N transformation rates between land uses. In MP, microbial biomass C, ammonification, and net N mineralization rates decreased significantly with conversion to cropland, but Cmic/Corg and nitrification were higher in COL. Basal respiration and qCO2 were significantly lower in COL when compared with other land uses. In LP, lower microbial biomass C, Cmic/Corg, and nitrification rates but higher ammonification and net N mineralization rates were observed in tropical deciduous forest than in sugarcane. No significant differences in basal respiration and qCO2 were found between uses of LP. Clearly, then, soil organic C is not equally accessible to the microbial community along the gradient studied. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
黄土高原北部生长季土壤氮素矿化对植被和地形的响应   总被引:1,自引:1,他引:0  
氮素矿化是陆地生态系统氮循环的重要过程,对氮素有效性有着重要影响。本文在黄土高原北部六道沟小流域选取退耕年限相近的油松和柠条坡地,用原位培养法测定生长季节(4—10月)不同坡位冠层下和冠层外0~10 cm和10~20 cm土层土壤氮素矿化速率,以确定该区氮素矿化的季节动态特征和主要影响因素。结果表明,研究区生长季土壤矿质氮以铵态氮为主,其含量在0~10 cm和10~20 cm土层分别占矿质氮总量的61%和70%,并随生长季的推移而升高。油松林上坡位和中坡位土壤铵态氮显著高于下坡位土壤,柠条林不同坡位铵态氮差异不显著。土壤硝态氮和矿质氮不受坡位的影响,但与林型和采样位置有关,冠层下硝态氮在油松林与冠层外相近,在柠条林则高于冠层外。生长季土壤氮素矿化在0~10 cm土层由硝化作用引起,在10~20 cm土层则由硝化和铵化作用共同引起。铵化速率在生长季初期较高,中期较低,并受坡位、林型和采样位置的影响。土壤硝化和矿化速率在油松林不受采样位置影响,但是在柠条林则以冠层下较高。硝化和矿化速率在冠层下以下坡位土壤最高,在冠层外则以下坡位土壤最低。柠条林促进了冠层下土壤氮素的硝化和矿化过程,有利于矿质氮的积累;油松林对矿质氮和氮素矿化的影响不受采样位置影响。  相似文献   

14.
We evaluated the in situ net nitrogen (N) mineralization in a soil cropped to maize and fertilized for 11 years with cattle slurry or farmyard manure, both common on livestock farms of the Po River valley in Northern Italy. The net N mineralization of the tilled soil layer was measured in six consecutive incubation periods after manure application, for a total of 12 weeks, using the polyethylene buried bags technique. Results showed that net N mineralization was followed by N immobilization and finally, by mineralization whose rate increase until maize flowering. On average, net N mineralization was 70.4 kg N ha−1, with the majority being released during the last measurement period. The time and extent of net N mineralization and plant N uptakes were not affected by fresh manure application. Instead, the effect of past management increased the maximum net N mineralization rate obtained with farmyard manure. The buried bag technique probably underestimates the total amount of mineralized N available for crop growth because it excludes the presence of the plant.  相似文献   

15.
Mineralization contributes significantly to agronomic nitrogen (N) budgets and is difficult to accurately predict. Models for predicting N‐mineralization contributions are needed, and development of these models will require field‐based data. In situ mineralization methods are intended to quantify N mineralization under ambient environmental conditions. This study was conducted to compare soil moisture and temperature in intact soil cores contained in cylinders to those in adjacent bulk soil, compare the effect of two resin‐bag techniques on water content of soil within cylinders, and assess the effect of installation duration on inorganic N retention by resins. The study was conducted at a dryland conventionally tilled corn (Zea mays L.) site and an irrigated no‐tillage corn site in eastern Nebraska. Soil in cylinders was slightly wetter (<0.05 g g?1) and warmer (<1 °C) than adjacent soil. Soil water content was <80% water‐filled pore space (WFPS) at all sampling times and differed little between the two resin‐bag techniques. Greater soil water content and temperature conditions (though small) observed during most of the study period likely enhanced N mineralization within the cylinder compared to N mineralization in adjacent bulk soil, but the magnitude is likely much less than core‐to‐core variation normally observed in a field. Installing cylinders for more than 60 days resulted in loss of inorganic N from resins. Care is needed during installation to ensure that compaction of soil below the cylinder does not impede water movement through the intact soil core. The in situ method utilizing intact soil cores and resin bags replaced at 28‐ to 40‐day intervals is a viable method for measuring N mineralization.  相似文献   

16.
Does net soil nitrogen (N) mineralization change if N‐fertility management is suddenly altered? This study, conducted in a long‐term no‐tillage maize (Zea mays L.) fertility experiment (established 1970), evaluated how changing previous fertilizer N (PN) management influenced in situ net soil N mineralization (NSNM). Net soil N mineralization was measured by incubating undisturbed soil cores with anion and cation exchange resins. In each of three PN fertilizer application plots (0, 84, and 336 kg N ha?1), another three fertilizer application rates (0, 84, and 336 kg N ha?1) were imposed and considered the current fertilizer N (CN) management. Generally, PN‐336 (336 kg N ha?1) had significantly greater NSNM than PN‐0 (0 kg N ha?1) or PN‐84 (84 kg N ha?1), which reflected differences in soil organic‐C (SOC) and soil total‐N (STN). The three CN rates had no significant effect on NSNM when they were applied to PN‐0 or PN‐84, but CN‐336 (336 kg N ha?1) had significantly higher NSNM than CN‐0 (0 kg N ha?1) or CN‐84 (84 kg N ha?1) in the PN‐336 plots. The CN or “added N interaction” used the indigenous soil organic matter (SOM) pool and the added sufficient fertilizer N. Environmental factors, including precipitation and mean air temperature, explained the most variability in average daily soil N mineralization rate during each incubation period. Soil water content at each sampling day could also explain NSNM loss via potential denitrification. We conclude that “added N interaction” in the field condition was the combined effect of SOM and sufficient fertilizer N input.  相似文献   

17.
Nitrogen mineralization and nitrification in the soil of sub-alpine ruderal community of Mount Uludağ, Bursa, Turkey was measured for 1 year, under field conditions with Verbascum olympicum and Rumex olympicus being the dominant pioneer species under dry and wet sites, respectively. Seasonal fluctuations were observed in N mineralization and nitrification. The net N mineralization and nitrification were high in early summer and winter, due to high moisture. The annual net N mineralization rate (for the 0–15 cm soil layer) was higher under R. olympicus (188 kg N ha−1 yr−1) than under V. olympicum (96 kg N ha−1 yr−1). A significant positive correlation between net N mineralization and soil organic C (r2 = 0.166), total N (r2 = 0.141) and water content (r2 = 0.211) was found. Our results indicate that N mineralization rate is high in soils of ruderal communities on disturbed sites and varies with dominant species and, a difference in net N mineralization rate can be attributed to organic C, total N and moisture content of soils.  相似文献   

18.
Accurate prediction of soil N availability requires a sound understanding of the effects of environmental conditions and management practices on the microbial activities involved in N mineralization. We determined the effects of soil temperature and moisture content and substrate type and quality (resulting from long-term pasture management) on soluble organic C content, microbial biomass C and N contents, and the gross and net rates of soil N mineralization and nitrification. Soil samples were collected at 0–10 cm from two radiata pine (Pinus radiata D. Don) silvopastoral treatments (with an understorey pasture of lucerne, Medicago sativa L., or ryegrass, Lolium perenne L.) and bare ground (control) in an agroforestry field experiment and were incubated under three moisture contents (100, 75, 50% field capacity) and three temperatures (5, 25, 40 °C) in the laboratory. The amount of soluble organic C released at 40 °C was 2.6- and 2.7-fold higher than the amounts released at 25 °C and 5 °C, respectively, indicating an enhanced substrate decomposition rate at elevated temperature. Microbial biomass C:N ratios varied from 4.6 to 13.0 and generally increased with decreasing water content. Gross N mineralization rates were significantly higher at 40 °C (12.9 g) than at 25 °C (3.9 g) and 5 °C (1.5 g g–1 soil day–1); and net N mineralization rates were also higher at 40 °C than at 25 °C and 5 °C. The former was 7.5-, 34-, and 29-fold higher than the latter at the corresponding temperature treatments. Gross nitrification rates among the temperature treatments were in the order 25 °C >40 °C >5 °C, whilst net nitrification rates were little affected by temperature. Temperature and substrate type appeared to be the most critical factors affecting the gross rates of N mineralization and nitrification, soluble organic C, and microbial biomass C and N contents. Soils from the lucerne and ryegrass plots mostly had significantly higher gross and net mineralization and nitrification rates, soluble organic C, and microbial biomass C and N contents than those from the bare ground, because of the higher soil C and N status in the pasture soils. Strong positive correlations were obtained between gross and net rates of N mineralization, between soluble organic C content and the net and gross N mineralization rates, and between microbial biomass N and C contents.  相似文献   

19.
The in situ net nitrogen mineralization (Nnet) was estimated in five agricultural soils under different durations of organic farming by incubating soil samples in buried bags. Simultaneously, soil microbial C and N was determined in buried bags and in bulk soil under winter wheat and after harvest. The aim was to check for variations in soil microbial biomass contents and microbial C:N ratios during the incubation period, and their importance for Nnet rates. Microbial C and N contents were highest in soils that had been organically farmed for 41 years, whereas Nnet rates were highest in a short‐term organically managed soil that had been under grassland use until 36 years ago. The mean coefficient of variation in the bulk soil for microbial C estimates ranged from 5 to 12 %. Microbial N contents were similar inside buried bags and in the bulk soil at the end of the incubation periods. Under winter wheat during the incubation period until harvest, microbial C contents and microbial C:N ratios (in 10—27 cm depth only) decreased more strongly inside buried bags than in the bulk soil. Following harvest of winter wheat and ploughing, microbial biomass increased while in situ Nnet decreased, presumably due to N immobilization. The Nnet rates were not correlated with microbial N contents or changes in microbial N contents inside buried bags. At the end of the vegetation period of winter wheat, Nnet rates were negatively correlated with microbial C:N ratios. Because these ratios concurrently decreased more inside buried bags than in the bulk soil, the Nnet estimates of the buried bag method may differ from the Nnet rates in the bulk soil at that time.  相似文献   

20.
Previous plant diversity experiments have mainly reported positive correlations between diversity and N mineralization. We tested whether this relationship can be explained by plant diversity-induced changes i) in the quantity or quality of organic matter or ii) in microclimatic conditions of central European grassland mixtures.We measured ex-situ net ammonification in a laboratory incubation of aboveground plant material and soil sampled in differently diverse plant mixtures. Secondly, in-situ net ammonification was assessed in a field incubation with mineralization cores containing standardized material in four treatments: soil only (control), and soil mixed with field-fresh plant tissue (grass, legume, or tall herb). We used 82 plots with varying species numbers (1, 2, 4, 8, 16, and 60) and numbers of functional groups (1–4; grasses, short herbs, tall herbs, and legumes). We determined the soil water content, total N concentrations of plant and soil, and NH4–N release rates.In the ex-situ incubation under constant climatic conditions, functional group or plant species richness did not influence net ammonification rate constants (k) or the proportion of the organic N pool involved in ammonification (NH4–N0). The presence of legumes in plant mixtures significantly increased NH4–N0 and decreased k indicating elevated N leaching risks in legume-containing grassland mixtures. Mean in-situ net ammonification rates in the mineralization cores decreased in the following order: mixtures of soil with grasses (0.30 ± standard error 0.01 mg NH4–N (g Ninitial)−1 d−1) > tall herbs (0.25 ± 0.01) > legumes (0.22 ± 0.01) > control (0.07 ± 0.00). The type of incubated plant tissue also influenced the soil water content in the mineralization cores at the end of field incubation, likely because of different water retention capacities of the different plant tissue/soil mixtures. Significant plant functional group and species richness effects explained up to 13% of the variance of in-situ net ammonification rates. Because the effect of plant species richness disappeared if the type of incubated plant tissue and the soil water content were accounted for in a sequential ANCOVA, we infer that the soil water content was the main driver underlying the plant species richness effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号