首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Isotopically exchangeable cadmium and zinc (‘E values’) were measured on soils historically contaminated by sewage sludge and ones on zinc‐rich mine spoil. The E‐value assay involves determining the distribution of an added metal isotope, e.g. 109Cd, between the solid and solution phases of a soil suspension. The E values for both metals were found to be robust to changes in the position of the metal solid?solution equilibrium, even though the concentration of dissolved metal varied substantially with electrolyte composition and soil:solution ratio. Concentration of labile metal was also invariant over isotope equilibration times of 2–6 days. The use of a submicron filtration procedure, in addition to centrifuging at 2200 g , proved unnecessary if 0.1 m Ca electrolyte was used to suspend the soils. The proportion of ‘fixed’ metal, in non‐labile forms, apparently increased with increasing pH, although there was considerable variation in both sets of contaminated soil. Zinc and cadmium in the sludged soils were similarly labile. Several possible methods for the measurement of chemically reactive metal were explored for comparison with E values, including single extraction with 1 m CaCl2 and a ‘pool depletion’ (PD) method. The latter involves comparing solid?solution metal equilibria in two electrolytes with differing degrees of (solution) complex formation, 0.1 m Ca(NO3)2 and CaCl2. Both the single extraction and the PD method gave good estimates of E value for Cd, although the single extraction was more consistent. Neither technique was a useful substitute for determining labile Zn, because of weak chloro‐complexation of Zn2+. We therefore suggest that 1 m CaCl2 extraction of Cd alone be used as an alternative to E values to avoid the inconvenience of isotopic dilution procedures.  相似文献   

2.
In the present study, a laboratory experiment was designed to compare the 0.01 M calcium chloride (CaCl2) and diethylenetriaminepentaacetic acid (DTPA) extraction methods for their ability to predict cadmium (Cd), copper (Cu), iron (Fe), Manganese (Mn), nickel (Ni), and zinc (Zn) availability and mobility in five calcareous soils. The soils were spiked with different amounts of metals (0, 50, 100, 200, and 400 mg kg?1) both in binary (Cu and Zn; Ni and Cd; Fe and Mn) and in multi-systems (Cd, Cu, Fe, Mn, Ni, and Zn) and incubated for 1 months at field capacity. In metal-spiked soils, both extraction methods showed a linear relationship of extractable to total metals for all soils. The fraction of total metals extracted by DTPA was much higher than the fraction extracted by CaCl2, which was attributed to the formation of soluble metal-complexes in the complexing extracts calculated by the Visual Minteq program. DTPA extraction method showed higher selectivity for Cu over other metals both in binary and in multi-systems. Different order of metals extractability was found in binary and multi-systems for both extraction methods. Solid/solution distribution coefficient (Kd) was calculated by the ratio of the solid phase to soil solution concentration of metals extracted by CaCl2 or DTPA extraction methods. Both in binary and in multi-systems, the average Kd (l kg?1) of metals by soils were in the order of Mn (5398) > Fe (4413) > Zn (3376) > Cu (2520) > Ni (969) > Cd (350) in the CaCl2-extractable metals and Fe (35) ≥ Ni (34) > Zn (18) > Mn (11.2) > Cu (6.3) > Cd (4) in the DTPA-extractable metals. Results showed that among the six studied metals, Cd had the lowest Kd, implying a relative higher mobility in these calcareous soils. The Visual Minteq indicated that in the CaCl2-extraction method and in both binary and multi-systems the dominant species for Cu, Mn, Ni, and Zn were Cu2+, Mn2+, Ni2+ and Zn2+, respectively, while for Cd and Fe, the dominant species were CdCl+ and Fe(OH)2+, respectively.  相似文献   

3.
Prediction of the fate of metals in soil requires knowledge of their solid–liquid partitioning. This paper reviews analytical methods and models for measuring or predicting the solid–liquid partitioning of metals in aerobic soils, and collates experimental data. The partitioning is often expressed with an empirical distribution coefficient or Kd, which gives the ratio of the concentration in the solid phase to that in the solution phase. The Kd value of a metal reflects the net effect of various reactions in the solid and liquid phases and varies by orders of magnitude among soils. The Kd value can be derived from the solid–liquid distribution of added metal or that of the soil‐borne metal. Only part of the solid‐phase metal is rapidly exchangeable with the solution phase. Various methods have been developed to quantify this ‘labile’ phase, and Kd values based on this phase often correlate better with soil properties than Kd values based on total concentration, and are more appropriate to express metal ion buffering in solute transport models. The in situ soil solution is the preferred solution phase for Kd determinations. Alternatively, water or dilute‐salt extracts can be used, but these may underestimate in situ concentrations of dissolved metals because of dilution of metal‐complexing ligands such as dissolved organic matter. Multi‐surface models and empirical models have been proposed to predict metal partitioning from soil properties. Though soil pH is the most important soil property determining the retention of the free metal ion, Kd values based on total dissolved metal in solution may show little pH dependence for metal ions that have strong affinity for dissolved organic matter. The Kd coefficient is used as an equilibrium constant in risk assessment models. However, slow dissociation of metal complexes in solution and slow exchange of metals between labile and non‐labile pools in the solid phase may invalidate this equilibrium assumption.  相似文献   

4.
贵州铅锌冶炼区农田土壤镉铅有效性评价与预测模型研究   总被引:2,自引:1,他引:2  
张厦  宋静  高慧  张强  刘赣 《土壤》2017,49(2):328-336
农田土壤重金属的不同活性库分布和土壤-溶液分配模型能够提供重金属的生物有效性和浸出能力等信息,因而在风险评价和修复实践中非常重要。本研究采集毕节铅锌冶炼区30个历史污染农田土壤,同时在贵州省范围内采集5种类型背景土壤制成不同浓度Pb/Cd单一污染土壤;经3个月老化,分别测定由0.43 mol/L HNO_3、0.1 mol/L HCl和0.005 mol/L DTPA提取态表征的重金属反应活性库以及由0.01 mol/L CaCl_2提取态表征的直接有效库;分析铅锌冶炼区农田土壤Cd、Pb不同有效库的分布特征,建立土壤-溶液分配模型,并讨论土壤理化性质的影响。结果表明:历史污染土壤中Cd和Pb的直接有效库占全量比例分别比人工污染土壤低4倍和223倍,然而历史污染土壤Cd和Pb的反应活性库(0.43 mol/L HNO_3提取态)占全量比例要高于相应人工污染土壤中的比例。拓展Freundlich形式吸附方程能够准确描述各提取态表征的Cd和Pb活性库与土壤全量Cd和Pb的关系,尤其0.43 mol/L HNO_3提取方法能够克服土壤理化性质对土壤Cd和Pb提取的影响而与总量建立极显著的相关关系。pH依附性Freundlich吸附方程准确描述了Cd和Pb的总反应活性库分别与土壤溶液Cd和Pb的关系,对于Pb而言,还要考虑土壤有机质和有效磷的影响。本研究可为矿区农田土壤重金属污染评价、修复以及农田有效态标准的推导提供参考。  相似文献   

5.
Background, aim, and scope  Ongoing industrialization has resulted in an accumulation of metals like Cd, Cu, Cr, Ni, Zn, and Pb in paddy fields across Southeast Asia. Risks of metals in soils depend on soil properties and the availability of metals in soil. At present, however, limited information is available on how to measure or predict the directly available fraction of metals in paddy soils. Here, the distribution of Cd, Cu, Cr, Ni, Zn, and Pb in 19 paddy fields among the total, reactive, and directly available pools was measured using recently developed concepts for aerated soils. Solid-solution partitioning models have been derived to predict the directly available metal pool. Such models are proven to be useful for risk assessment and to derive soil quality standards for aerated soils. Material and methods  Soil samples (0–25 cm) were taken from 19 paddy fields from five different communities in Taiwan in 2005 and 2006. Each field was subdivided into 60 to 108 plots resulting in a database of approximately 3,200 individual soil samples. Total (Aqua Regia (AR)), reactive (0.43 M HNO3, 0.1 M HCl, and 0.05 M EDTA), and directly available metal pools (0.01 M CaCl2) were determined. Solid-solution partitioning models were derived by multiple linear regressions using an extended Freundlich equation using the reactive metal pool, pH, and the cation exchange capacity (CEC). The influence of Zn on metal partitioning and differences between both sampling events (May/November) were evaluated. Results  Total metals contents range from background levels to levels in excess of current soil quality standards for arable land. Between 3% (Cr) and 30% (Cd) of all samples exceed present soil quality standards based on extraction with AR. Total metal levels decreased with an increasing distance from the irrigation water inlet. The reactive metal pool relative to the total metal content is increased in the order Cr << Ni = Zn < Pb < Cu < Cd and ranged from less than 10% for Cr to more than 70% for Cd. Despite frequent redox cycles, Cd, Pb, and Cu appear to remain rather reactive. The methods to determine the reactive metal pool in soils yield comparable results, although the 0.43 M HNO3 extraction is slightly stronger than HCl and EDTA. The close correlation between these methods suggests that they release similar fractions from soils, probably those reversibly sorbed to soil organic matter (SOM) and clay. The average directly available pool ranged from less than 1% for Cu, Pb, and Cr to 10% for Ni, Zn, and Cd when compared to the reactive metal pool. For Cd, Ni, Zn, and to a lesser extent for Cu and Pb, solid-solution partitioning models were able to explain up to 93% (Cd) of the observed variation in the directly available metal pool. CaCl2 extractable Zn increased the directly available pool for Ni, Cd, and Cu but not that of Pb and Cr. In the polluted soils, the directly available pool was higher in November compared to that in May. Differences in temperature, rainfall, and changes in soil properties such as pH are likely to contribute to the differences observed within the year. The solid-solution partitioning model failed to explain the variation in the directly available Cr pool, probably because Cr is present in precipitates rather than being adsorbed onto SOM and clay. Despite obvious differences in parent material, source of pollution, climate, and land use, solid-solution partitioning of Cd in paddy fields studied here was similar to that in soils from Belgium and the Netherlands. Discussion  To assess risks of metals in soils, both analytical procedures as well as models are needed. The three methods tested here to determine the reactive metal pool are highly correlated and either of these can be used. The directly available pool was predicted most accurately by the 0.43 M HNO3 method. The similarity of metal partitioning in paddy soils compared to well-drained soils suggests that changing redox conditions in paddy fields have a limited effect on the geochemical behavior of metals like Cd, Ni, and Zn. Small but significant differences in the directly available metal pool during the year suggest that redox cycles as well as differences in rainfall and temperature affect the size of the directly available metal pool. The large observed spatial heterogeneity of contaminant levels requires ample attention in the setup of soil monitoring programs. Conclusions  The directly available pool (0.01 M CaCl2) of Cd, Zn, and Ni in paddy fields can be described well by an extended Freundlich model. For Cu and Pb, more information on dissolved organic carbon is needed to obtain a more accurate estimate of the directly available pool. Recommendations and perspectives  Soil testing protocols and models used in risk assessment consider the availability of pollutants rather than the total metal content. Results from extensive testing indicate that approaches developed for nontropical regions can be applied in paddy fields as well for metals like Cd, Ni, and Zn. This study shows that the chemical behavior under drained conditions in paddy fields is comparable to that observed in soils across the European Union, which allows regions with large scale soil pollution including Taiwan to apply such concepts to derive meaningful experimental protocols and models to assess risks of metals in soils.  相似文献   

6.
The determination of radio‐labile metals in soil has gained renewed interest for predicting metal availability. There is little information on to what extent the fraction of labile metal is affected by the soil properties and the source of metal contamination. The radio‐labile content (E value) of Cd and Zn was measured in field‐collected soils with Cd and Zn originating from different sources. The E values were erratic and sometimes even exceeded total metal content when the concentration in the soil extract was less than 8 μg Zn l?1 or less than 3 μg Cd l?1. Addition of EDTA (0.1 mm ) to the radio‐labelled soil suspension resulted in larger concentrations of Cd and Zn in solution and smaller E values for these soils. The E values were, however, unaffected by the presence of EDTA (0.1 mm ) in soils with larger concentrations of Cd and Zn in solution. The %E values (E value relative to metal soluble in aqua regia) ranged from 9% to 92% (mean 61%) for Cd and from 3% to 72% (mean 33%) for Zn. No correlation between soil properties and %E was observed for Cd, and the %E of Zn was negatively correlated with soil pH (r = ?0.65). There was a strong negative correlation between pH and %E in soils enriched with metals in soluble form (e.g. metal salts, corrosion of galvanized structures). In soils where Cd or Zn were added in a less soluble form, no such correlation was found, and %E values were generally less than in soils spiked with metal salts, suggesting that the source of the contamination controls mainly the labile fractions of Cd and Zn.  相似文献   

7.
Recently, application of sewage sludge or effluents resulted in raising the concentrations of some heavy metals in some agricultural soils of Iran. Experiments were conducted to evaluate the competitive adsorption of lead (Pb), copper (Cu), zinc (Zn), and cadmium (Cd) on six calcareous soils. Adsorption characteristics were evaluated by equilibration of 1 g of each soil sample with 20 ml of 0, 10, 20, 30, 40, 50, 100, or 200 mg L?1 of their nitrate solutions and 0.01 M NaNO3 as background electrolyte. Furthermore, solid/liquid distribution coefficients (Kd) of studied metals, as an index of soil capacity to resist a change of the soil solution concentration, were calculated. Results indicated that amounts of adsorbed Pb, Cu, Zn, and Cd increased with increase in their concentrations in the contact solutions, but this trend was more pronounced for Pb and Cu than the others. For all studied soils and metals, Langmuir equation described the adsorption behavior fairly well. Furthermore, Langmuir and Freundlich equation parameters were positively correlated to cation exchange capacity (CEC) and smectite contents; whereas, they were negatively correlated to sand content. Considering Kd values, the selectivity sequence of the metal adsorption was Pb > Cu > Zn > Cd. Therefore, the risk of leaching and also plant uptake of Zn and Cd will be higher as compared to those of the other elements.  相似文献   

8.
Leaching of Cd and Zn in polluted acid, well‐drained soils is a critical pathway for groundwater pollution. Models predicting future groundwater contamination with these metals have rarely been validated at the field scale. Spodosol profiles (pH 3.2–4.5) were sampled in an unpolluted (reference) field and in a field contaminated with Cd and Zn through atmospheric deposition near a zinc smelter. Average metal concentrations in the upper horizons were 0.2 mg Cd kg?1 and 9 mg Zn kg?1 in the unpolluted field, and 0.8 mg Cd kg?1 and 71 mg Zn kg?1 in the contaminated field. Isotopic dilution was used to measure the labile concentration of Cd and Zn, and the metal transport was modelled using measured sorption parameters that describe the distribution between the labile metal pool (instead of the total metal pool) and the solution phase obtained by centrifugation. Solutions were also collected by wick samplers in two polluted and one unpolluted profile at a depth of 70 cm. Concentrations in these solutions were in the order of 15 µg Cd litre?1 and 0.8 mg Zn litre?1 for the polluted profiles, and 1 µg Cd litre?1 and 0.04 mg Zn litre?1 for the unpolluted profile. The concentrations in these solutions agreed well with those in soil solutions obtained by centrifugation, which supported the use of the local equilibrium assumption (LEA). Present‐day Cd profiles in the polluted field were calculated with the LEA, based on the emission history of the nearby smelter and taking spatial variability into account. Observed and predicted depth profiles agreed reasonably well, but total Cd concentrations in the topsoil were generally underestimated by the model. This may be attributed to the presence of non‐labile Cd in the atmospheric deposition, which was not accounted for in the retrospective modelling. The large concentrations of non‐labile Zn in the topsoil of the polluted field were also indicative that metals in the atmospheric deposition were (partly) in a sparingly soluble form, and that release of these non‐labile metals is a slow process. The presence of non‐labile metals should be taken into account when evaluating metal mobility or predicting their transport.  相似文献   

9.
水稻子实对不同形态重金属的累积差异及其影响因素分析   总被引:3,自引:0,他引:3  
在分析成都平原核心区土壤重金属(Cd、Cr、Pb、Cu、Zn)全量、各形态含量及相应点位种植的水稻子实重金属含量的基础上,通过统计分析、空间插值及线性回归方程的模拟,研究了土壤Cd、Cr、Pb、Cu、Zn全量的空间分布状况、各形态重金属含量统计特征,以及水稻子实对重金属各形态的累积差异及其影响因素。结果表明,成都平原水稻土重金属污染较轻,除Cd外,均低于国家土壤环境质量二级标准。土壤中重金属的可交换态含量均较低,Cd主要以铁锰氧化态存在,Cr、Cu、Zn、Pb主要以残渣态存在。水稻子实对5种重金属的累积效应顺序为:Cd>Zn>Cu>Pb>Cr。与水稻重金属累积关系密切的重金属活性形态(可交换态、碳酸盐结合态、铁锰氧化物结合态和有机物结合态)主要有:Cd的碳酸盐结合态、Cr的可交换态、Pb的有机物结合态和Cu的碳酸盐结合态含量;Zn各活性形态对水稻子实含量的影响不明显。土壤理化性质对不同活性形态重金属元素的影响效应各不相同。活性态Cd主要受有机质、pH和容重的影响;活性态Cr与pH、有机质、CEC和容重密切相关;活性态Pb与有机质、容重、中细粉粒、砂粒等均有密切的关系;Cu的活性主要受粘粒、有机质含量的影响;Zn的有效性主要受pH、有机质、砂粒、容重的影响。总的看来,对土壤Cd、Cr、Pb、Cu、Zn各活性形态含量影响效应较强的是有机质、pH、容重,而与土壤吸附性能密切相关的颗粒组成、CEC的影响不甚明显。  相似文献   

10.
Rhizosphere processes involved in hyperaccumulation and exclusion of metals are still largely unknown. Therefore, we conducted a rhizobag experiment on contaminated and non‐contaminated soils to investigate the chemical changes in the rhizosphere of the hyperaccumulators Thlaspi goesingense and T. caerulescens, and the metal‐excluder T. arvense. Root growth was restricted to the rhizobags separated by a nylon membrane (7 μm \x 25 μm mesh size) from surrounding bulk soil. Depletion of labile Zn in rhizosphere could not explain the amount of metals accumulated in T. caerulescens, whereas the difference in EDTA‐extractable Zn even exceeded total plant uptake. Substantially increased DOC in T. arvense rhizosphere indicates alleviation of phytotoxicity by formation of metal‐organic complexes. Hyperaccumulation and depletion of labile Zn in the rhizosphere was observed for T. goesingense grown on contaminated soil. On non‐contaminated soil, Zn was accumulated but labile Zn in rhizosphere was not changed. Nickel present in background concentrations in both soils was accumulated by T. goesingense only when grown on non‐contaminated soil. In contrast, labile Ni in the rhizosphere was increased in both soils, suggesting a general tendency of Ni mobilization by T. goesingense.  相似文献   

11.
Aim of this study was to determine effects of heavy metals on litter consumption by the earthworm Lumbricus rubellus in National Park the “Brabantsche Biesbosch”, the Netherlands. Adult L. rubellus were collected from 12 polluted and from one unpolluted field site. Earthworms collected at the unpolluted site were kept in their native soil and in soil from each of the 12 Biesbosch sites. Earthworms collected in the Biesbosch were kept in their native soils. Non-polluted poplar (Populus sp.) litter was offered as a food source and litter consumption and earthworm biomass were determined after 54 days. Cd, Cu and Zn concentrations were determined in soil, pore water and 0.01 M CaCl2 extracts of the soil and in earthworms. In spite of low available metal concentrations in the polluted soils, Cd, Cu and Zn concentrations in L. rubellus were increased. The litter consumption rate per biomass was positively related to internal Cd and Zn concentrations of earthworms collected from the Biesbosch and kept in native soil. A possible explanation is an increased demand for energy, needed for the regulation and detoxification of heavy metals. Litter consumption per biomass of earthworms from the reference site and kept in the polluted Biesbosch soils, was not related to any of the determined soil characteristics and metal concentrations.  相似文献   

12.
Ectomycorrhizal fungi have been shown to affect metal transfer from the soil to the host plant, but the use of these fungi for increased phytoextraction of heavy metals has been scarcely investigated. Therefore, a two‐factorial pot experiment was conducted with Salix × dasyclados and (1) two contaminated soils with different concentrations of NH4NO3‐extractable metals and (2) two strains of the ectomycorrhizal fungus Paxillus involutus (one strain originating from a noncontaminated site—Pax1, and another from a contaminated site—Pax2). The inoculation with Pax2 increased the phytoavailability of Cd in the soils. Inoculation with both fungal strains increased the stem and root biomass, but had no effect on metal concentrations in the stems. Decreased Cd and increased Cu concentrations were observed in the roots of inoculated willows. The inoculation with P. involutus increased Cd (up to 22%), Zn (up to 48%), and Cu content in the stems. Decreased Pb content (Cu and Pb content were always <1 mg per plant) occurred in the stems from plants at the soil with the higher concentration of NH4NO3‐extractable metals. Contrary to this, in the soil with lower concentrations of NH4NO3‐extractable metals, the inoculation had no significant effects on the total uptake of Zn and Cu and even caused decreased Cd (Pax2) and Pb (Pax1) contents in the stems. Strain Pax2 had higher colonization densities, but the plants had lower mycorrhizal dependencies in the contaminated soils than after inoculation with the strain Pax1. Generally, metal extractability in the soils substantially affected the mycorrhizal dependency and heavy‐metal uptake of the willows. We concluded, that the inoculation with P. involutus offers an opportunity to particularly increase the phytoextraction of Zn, but the metal extractability and fungal strain effects have to be tested.  相似文献   

13.
The success of risk assessment of metal contaminated soils depends on how precisely one can predict the bio-availability of metals in soil and transfer to the human food chain. In the present investigation, we tested several formulations of the ‘free-ion activity model (FIAM)’ to predict uptake of Cd, Zn and Cu by perpetual spinach (Beta vulgaris, Cicla) grown on a range of soils amended with sewage sludge. The model was parameterised using data measured on samples of pore water extracted by centrifugation and with porous Rhizon samplers installed within the rhizosphere of the growing plants. Free ion activities (M2+) were estimated following speciation of solution data using version 6 of the ‘Windermere Humic Aqueous Model (WHAM-VI). For all three metals, the best formulation of the FIAM appeared to require only one hypothetical root sorption site without competition from protons. Values of (M2+) could also be predicted satisfactorily from a pH-dependent Freundlich relation. Thus, from a combined FIAM–Freundlich relation and population dietary information, it was possible to estimate risk (hazard quotients) to consumers from very simple soil measurements: extractable metal content (0.05 M EDTA (Zn and Cu) or 1 M CaCl2 (Cd)), soil humus content and pH. The role of increased soil organic matter content and soil pH, in reducing risk to consumers, is illustrated for Cd in a hypothetical soil at the current UK statutory Cd limit for sludge application to agricultural land.  相似文献   

14.
Soil pH, soil organic matter (SOM), dissolved organic carbon (DOC) and total trace metal concentration (M(tot)) control the solubility of metals in the soil. Several regression models have included these soil chemical variables for the prediction of metal solubility and free metal ion (FMI) concentrations in contaminated soils. We hypothesize that models developed on contaminated soils (after optimization of the coefficients) can be used on samples from uncontaminated sites. Soil samples were collected from unpolluted agricultural and forest soils located in Eastern Croatia and extracted with water to determine the concentrations of Cd, Cu, Pb and Zn. We used these data to test the applicability of three regression models on existing conditions under different land uses. The same predictors issued in the three models and the same regression coefficients were utilized in the present study. The results showed a good correlation between the observed and predicted values of metal solubility. However, the models overestimate the total solution concentration (M(sol)) and the concentrations of free metal ions (FMI) in solution, and therefore the same regression coefficients were optimized to fit our own observations. This was found to be very successful. The results showed that pH and DOC played a very important role in controlling metal solubility, while SOM and CEC were somewhat less significant. The impact of total soil concentration of metals (M(tot)) was rather minor. However, we feel that to carry out good predictions of M(sol) and FMI, the M(tot) is needed in such regression models.  相似文献   

15.
植物吸取修复及钝化处理对后茬水稻镉吸收的影响   总被引:2,自引:0,他引:2  
采集湖南湘潭县某地镉(Cd)污染酸性农田土壤及其经伴矿景天分别吸取修复两季和三季后的土壤,采用盆栽试验研究了经伴矿景天修复及钝化改良与否对土壤pH、有效态Cd、Zn以及水稻生长和稻米Cd、Zn浓度的影响。结果表明:未改良的处理,随着修复次数的增加,土壤pH显著降低,降低幅度为0.26~0.38个单位;且修复两季、三季土壤CaCl_2提取态Cd浓度较未修复土壤分别降低19.4%、24.0%;修复后土壤种植水稻品种W184,其糙米中Cd浓度显著降低,但依然超标;修复三季土壤种植低积累水稻品种IRA7190,其糙米中Cd由0.47 mg/kg降为0.03 mg/kg。施加钝化剂海泡石和石灰(10 g/kg+1 g/kg)后,修复两季、三季土壤的pH显著升高,较未施钝化剂处理土壤pH分别提高0.95、0.72;土壤CaCl_2提取态Cd浓度分别降低79.8%、79.5%;修复两季、三季土壤上水稻W184糙米的Cd浓度与未施加钝化剂相比,分别降低27.3%、44.4%,均降至国家食品安全限值0.2 mg/kg以下;无论是否添加钝化剂,伴矿景天吸取修复三季的土壤上水稻IRA7190糙米中Cd浓度均仅0.03 mg/kg。  相似文献   

16.
Field-based partition coefficients for trace elements in soil solutions   总被引:4,自引:0,他引:4  
A total of 48 elements was detected in the soil solutions centrifuged from two acid sandy (humus-iron podzol) profiles from southern England. Concentrations ranged from mm for the major ions to mm for trace metals such as U and the rare earth elements. Field-based solid/solution partition coefficients, Kd, were determined by calculating the ratio of the amount of an element extracted by 0.43 m HNO3 or a neutral salt (0.01 m CaCl2 or 0.1 m Ba(NO3)2) to the concentration in the soil solution. These partition coefficients did not show the expected trend in selectivity. For example, Cd consistently had one of the highest Kd values, higher even than Cu. This was thought to be due in part to the nature of the Kd which reflects a balance between binding to the soil solids and to the dissolved organic carbon (DOC), which is present at relatively high concentrations (1–20 mm ) in the soil solutions. Because of the underlying functional similarity between metal binding by the solid and dissolved organic matter, the partition coefficient (and hence element mobility) will be relatively insensitive to changes in pH and metal-ion activity in the soil solution.  相似文献   

17.
Nie  Xinxing  Zhang  Zhiyi  Xia  Xiange  Yang  Li  Fan  Xianpeng  Zheng  Manjie 《Journal of Soils and Sediments》2020,20(4):2043-2052
Purpose

Magnetic removal techniques using functionalized magnetic nanoparticles as adsorbents have been frequently tested for use in the removal of heavy metals in aqueous solution, but seldom in farmland soil. Here, a novel magnetic microparticle solid chelator (MSC) was employed as the adsorbent for magnetic removal and/or immobilization of Cd and Zn in a paddy soil (PS), an upland soil (US), and a paddy–upland rotation soil (RS) with different degrees of pollution.

Materials and methods

MSC was applied to 14 kg air-dried soil samples (PS, US, and RS) at the dosage of 1% (w/w), and then watered, and intermittently stirred. Finally, the MSC–metal complexes were retrieved using a magnetic device (MCR treatment) or not (MC treatment), and the removal efficiency of soil Cd and Zn in MCR treatment was evaluated. After magnetic separation of MSC–metal complexes, pot experiments were performed to investigate the impacts of the magnetic remediation process on rice growth, the phytoavailability of soil Cd and Zn, and the accumulation of Cd and Zn in rice plants.

Results and discussion

The MCR treatment exhibited recovery rates of 55.4%, 49.6%, and 19.0% for MSC–metal complexes in PS, US, and RS, respectively, which brought about removal efficiencies of 2.2–12.2% for Cd and 1.9–4.6% for Zn. The MC and MCR treatments substantially decreased the availability of soil Cd, but not soil Zn; this effect was more remarkable when using CaCl2 instead of DTPA as the extractant for determination of bioavailable metals. Furthermore, the CaCl2-extractable Cd and Zn had a more significant relationship with Cd and Zn concentrations in rice roots. The MC and MCR treatments led to dramatic reductions in rice grain Cd of 23.9–72.1% and 37.3–63.9%, respectively, in the three soils relative to the respective controls. The MC and MCR treatments also exhibited an inhibitory effects on rice grain Zn accumulation in US (10.6% and 4.3% decreases, respectively) and RS (9.3% and 19.5% decreases, respectively), but not in PS. Moreover, the grain yield was unaffected under the MCR treatment in the three soils, and significantly increased by 29.8% under the MC treatment in US.

Conclusions

Our study suggests that MSC-based magnetic remediation technique can effectively immobilize and/or remove Cd and Zn in farmland soils, decreasing their uptake by rice plants, with no adverse effects on grain yield.

  相似文献   

18.
This study was conducted to determine the chemical distribution and plant availability of Cd, Zn and Ni in eight metal-polluted soils in southern Ontario, Canada. There were altogether 30 different soil samples because two of the soils had received various sewage sludge treatments. The soils were sequentially extracted with 1 m ammonium acetate to remove soluble plus exchangeable metals, with 0.125 m Cu(II) acetate to remove complexed metals, and with 1 m HNO3 to dissolve chemisorbed or occluded metals and precipitates such as oxides and carbonates. Expressed as a percentage of the metal so extracted, exchangeable Cd and Zn and Ni; complexed Cd and Zn>Ni and Ni>Zn>Cd in the acid-soluble pool. With a few exceptions (soils with high organic matter content or low pH) at least 50 per cent of the extracted metal was in the acid-soluble pool. The percentage of metal complexed was significantly correlated with organic matter content. The percentage of metal in the acid-soluble fraction was significantly correlated with soil pH. Preliminary findings based on the results with two soils suggested that for Cd and Zn plant availability was correlated with the concentrations of exchangeable, complexed or acid-soluble pools of Cd and Zn.  相似文献   

19.
Behaviour of heavy metals in soils. 2. Extraction of mobile heavy metals with CaCl2 and NH4NO3 156 soil samples from arable fields, grassland and forest stands were analysed for the CaCl2? and NH4NO3? extractable contents of Cd, Zn, Mn, Cu and Pb. The average amounts of Cd, Zn, Cu and Pb extracted with CaCl2 are higher compared with NH4NO3 whereas the relation for Mn is vice versa. The proportion of the NH4NO3? extractable contents in percent of the CaCl2? extractable contents of Cd, Zn and Pb decrease with increasing pH, whereas the contents of Mn and Cu increase. Inspite of a differing extraction behaviour of the two salt solutions the CaCl2? and NH4NO3? extractable amounts of Cd, Mn, Zn und Pb are highly correlated and can be converted one into another. The mobile (CaCl2, NH4NO3) proportion of the corresponding total, EDTA and DTPA heavy metal contents is in close relation to the pH of the soils. Using CaCl2 solution the threshold pH values for an increasing mobility decrease in the order Cd > Mn > Zn > Cu > Pb, using NH4NO3 as extractant the order is Mn > Cd > Zn > Cu > Pb. In the case of CaCl2 as extractant soluble chloro-Cd-complexes will be formed so that the Cd mobility in soils will be overestimated in most cases.  相似文献   

20.
Assessing the accumulation and transport of trace metals in soils and the associated toxicological risks on a national scale requires generally applicable sorption equations. Therefore Freundlich equations were derived for Cd, Zn and Cu using multiple linear regression on batch sorption data from the literature with a wide variety of soil and experimental characteristics, and metal concentrations ranging over five orders of magnitude. Equations were derived based on both total dissolved metal concentrations and free metal activities in solution. Free metal activities were calculated from total metal concentrations taking into account ionic activity, and inorganic (all metals) and organic complexation (Cu only). Cadmium and Zn were present in solution predominantly as free ions, while Cu was present as organic complexes. Since actual dissolved organic carbon (DOC) concentrations were not available they were estimated using an empirical field relation between DOC and organic matter content. The logarithmic transformation of the Freundlich constant for Cd was regressed on the logarithmic transformations of cation exchange capacity (CEC) (H+) and dissolved Ca, and for Zn with CEC and (H+). For Cu the log–log regression model of the Freundlich constant included the solid:solution ratio of the batch to account for dilution of DOC in the batch as compared with the field. The explained variance for the fitted Freundlich equations was 79% for Cd, 65% for Cu and 83% for Zn, using log-transformed adsorbed concentrations and soil solution activities. The Freundlich adsorption models underestimated metal contents determined from 1 m HNO3 digestion on field samples, up to a factor of 6 (Cd and Cu) or 10 (Zn).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号