首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 0 毫秒
1.
2.
Abstract –  Stable isotope analysis (SIA) and gut contents analysis (GCA) are commonly used in food web studies, but few studies analyse these data in concert. We used SIA (δ15N) and GCA (% composition) to identify diets and trophic position (TP) of six stream fishes and to compare TP estimates between methods. Ordination analysis of gut contents identified two primary trophic groups, omnivores and predators. Significant differences in TPGCA and TPSIA were similar in direction among-species and among-trophic groups; neither method detected seasonal changes in omnivore diets. Within-species TPGCA and TPSIA were similar except for one omnivore. TPGCA was less variable than TPSIA for predators, but variation between methods was similar for omnivores. While both methods were equally robust at discriminating trophic groups of fishes, TPSIA is less laborious to estimate and may facilitate cross-stream comparisons of food web structure and energy flow.  相似文献   

3.
应用同位素分析黑龙江中游主要鱼类营养层次   总被引:2,自引:0,他引:2  
2010年5月—2011年10月对黑龙江中游采集的32种鱼类和6种底栖无脊椎动物,运用稳定碳、氮同位素方法进行水生态营养层次的分析。结果显示,鱼类δ13C值为-32.00‰~-17.32‰,相差14.68‰;δ15N值为7.58‰~14.78‰,差值达6.80‰,跨度都很大。底栖无脊椎动物δ13C值和δ15N值的跨度不大,δ13C值为-29.64‰~-26.10‰,相差3.54‰;δ15N值为7.09‰~9.91‰,相差2.82‰。通过δ15N值计算出黑龙江中游32种主要鱼类和6种底栖无脊椎动物食物网营养层次,其中肉食性鱼类鳇(Huso dauricus)占据了黑龙江中游鱼类中最高的营养位置。通过分析初步建立了水体食物网连续营养谱,并结合底栖无脊椎动物同位素数据勾勒出黑龙江中游食物网营养结构图。  相似文献   

4.
Abstract  Stable isotope analysis was used to determine trophic position and the relative contributions of terrestrial-derived carbon (TDC) and marine-derived carbon for Chinook, Oncorhynchus tshawytscha (Walbaum), pink, Oncorhynchus gorbuscha (Walbaum), and chum, Oncorhynchus keta (Walbaum) salmon fry in near-shore marine habitats. Chum fry were enriched in δ 13C relative to pink fry, and enriched in δ 15N relative to both Chinook and pink fry. Between 5.5 and 39.7% of the carbon in the three species was TDC. The TDC was higher in chum fry (28.7 ± 4% SD) than in pink fry (24.9 ± 4.4% SD), but TDC did not differ between Chinook fry (27.8 ± 9.5% SD) and either chum or pink fry. The fry of these three species of Pacific salmon may form a trophic hierarchy with chum fry occupying the highest trophic position and the three species may also partition resources according to carbon source.  相似文献   

5.
6.
For developing efficient diets, two sets of experiments examined whether the use and allocation of dietary protein can be traced by labelling with stable isotopes (15N and 13C) in two culture fish ( Oncorhynchus mykiss and Sparus aurata) . In the first experiment, natural abundance and tissue distribution of these isotopes were determined, by measuring the δ13C and δ15N values by isotopic ratio mass spectrometry, in fingerlings (14–17 g) adapted to diets differing in the percentage of fish meal replacement by plant protein sources. For both species, δ15N and δ13C were greater in tissues with higher protein and lower lipid content. Delta 15N of diets and tissues decreased as replacement increased, suggesting δ15N can be used as a marker for dietary protein origin. The 15N fractionation (δ15N fish − δ15N diet) differed between groups, and could thus be used to indicate protein catabolism. In the second experiment, fish (75–90 g) of each species ingested a diet enriched with 15N-protein (10 g kg−1 diet) and 13C-protein (30 g kg−1 diet). These proportions were suitable for determining that the delta values of tissue components were high enough above natural levels to allow protein allocation to be traced at 11 and 24 h after feeding, and revealed clear metabolic differences between species.  相似文献   

7.
2016年2月和5月在浙江南部近海拖网采集到33种鱼类和18种无脊椎动物,利用稳定同位素技术测定渔业生物的稳定碳、氮同位素比值(δ~(13)C、δ~(15)N),并以此估算其营养级。研究结果表明:(1)浙江南部近海主要渔业生物同位素比值跨度范围大,δ~(13)C值范围为–19.71‰~–14.01‰(跨度5.70‰),δ15N值范围为7.05‰~13.69‰(跨度6.64‰),其中鱼类的碳、氮同位素跨度范围最大;(2)以滤食性双壳类为基线生物估算浙江南部近海鱼类平均营养级范围为2.66~4.21,甲壳类营养级范围为3.08~3.72,头足类营养级范围为2.83~3.49,腹足类营养级范围为3.54~3.62,渔业生物营养级主要处于3.0~4.0营养级,以初级和中级肉食性种类为主;(3)根据聚类和食性文献资料分析浙江南部近海主要渔业生物存在5种食性类型,包括浮游动物食性、杂食性、底栖生物食性、混合食性和游泳动物食性;(4)根据营养结构特征,浙江南部近海食物网营养结构可划分为4个营养群,初级消费者主要为杂食性种类,次级消费者主要为小型鱼类、虾类及头足类,中级消费者主要为底栖蟹类、腹足类和混合食性鱼类,高级消费者为凶猛肉食性鱼类。本研究建立了浙江南部近海主要渔业生物的连续营养谱,为生态系统的食物网能量流动和物质循环研究提供科学参考。  相似文献   

8.
This study proposed the use of the stable isotope technique to track the type of food utilized by pacu Piaractus mesopotamicus larvae during their development, and to identify the moment when the larvae start using nutrients from the dry diet by retaining its carbon and nitrogen atoms in their body tissues. Five‐day‐old pacu larvae at the onset of exogenous feeding were fed Artemia nauplii or formulated diet exclusively; nauplii+formulated diet during the entire period; or were weaned from nauplii to a dry diet after 3, 6 or 12 days after the first feeding. δ13C and δ15N values for Artemia nauplii were ?15.1‰ and 4.7‰, respectively, and ?25.0‰ and 7.4‰ for the dry diet. The initial isotopic composition of the larval tissue was ?20.2‰ and 9.5‰ for δ13C and δ15N respectively. Later, at the end of a 42‐day feeding period, larvae fed Artemia nauplii alone reached values of ?12.7‰ and 7.0‰ for δ13C and δ15N respectively. Larvae that received the formulated diet alone showed values of ?22.7‰ for δ13C and 9.6‰ for δ15N. The stable isotope technique was precise, and the time at which the larvae utilized Artemia nauplii, and later dry diet as a food source could be clearly defined.  相似文献   

9.
利用氮稳定同位素示踪技术,对2005年4-5月长江口及南黄海毗邻水域拖网渔获物的营养级进行了研究。结果表明,长江口海域主要生物资源种类的营养级处于3.19~5.11,集中在3.70~4.65;南黄海海域主要生物资源种类的营养级处于2.46~4.88,集中在3.90~4.40。基于系统基线生物稳定同位素比值的影响,相对南黄海,长江口海域55%生物的相对营养级增加,增加幅度为0.01~0.63,集中在0.01~0.06,其生物数量占了总生物数量的30%;40%生物的相对营养级减少的,减少幅度为0.02~0.74,集中在0~0.21,其生物数量占总生物数量的30%;以上结果接近用胃含物分析法得到的生物营养级空间变幅绝对值。将营养级的胃含物分析结果与氮稳定同位素计算结果相比,长江口9种鱼类2种方法计算结果变幅绝对值为0.01~1.21;南黄海11种鱼类2种方法计算结果变幅绝对值为0.08~1.26;两海域的计算结果变幅绝对值差异较小。结论认为,两海域生物资源种类的营养级存在空间差异,随生物种类差异有所不同;稳定同位素法与胃含物分析法的计算结果差异较小。  相似文献   

10.
Carbon and nitrogen stable isotope ratios in the muscle of Dall’s porpoises were measured. Samples were collected from the catches of the hand harpoon fishery, incidental catches of drift net, and scientific research on the use of drift nets. Samples were from the North Pacific, Sea of Japan, Sea of Okhotsk, and Bering Sea. Although no variation in δ15N was observed, δ13C was significantly different between population groups near Japan and the oceanic North Pacific and Bering Sea. The difference may be due not only to local variation in prey species, but also to an overall difference in carbon stable isotope ratios that originate from coastal benthic or oceanic pelagic‐based food webs. We differentiated Dall’s porpoise population groups from both areas using carbon stable isotope ratios with an error rate of <5%. Although further study is needed, our results suggest that carbon stable isotope ratios could possibly be an indicator of whether a Dall’s porpoise belongs to a coastal benthic or oceanic pelagic food web.  相似文献   

11.
Variation in trophic position can be caused by structural changes in food webs that may affect the presence of, or be affected by the presence of, individual species. We examined variation in the trophic position of fishes across 14 stream sites in the Bear River drainage, WY, USA. This drainage is the focus of ongoing conservation of northern leatherside chub (Lepidomeda copei). Our goals were (i) to describe variation in trophic position of individual species and (ii) to determine whether these measures differed between sites with and without northern leatherside chub. Mean trophic position of individual fish species varied between 0 and 3 trophic positions across sites. For two of these species, trophic position declined at sites without northern leatherside chub. Importantly, habitat surveys from a previous study at 10 of these sites revealed no differences in habitat suitability for northern leatherside chub. This suggests that trophic position revealed systematic differences among sites that were not apparent based on traditional species‐habitat modelling. We outline possible mechanisms behind these patterns and argue that monitoring variation in trophic position can complement traditional, habitat‐based methods for understanding species distributions.  相似文献   

12.
Muskellunge (Esox masquinongy Mitchill), northern pike (Esox lucius L.) and walleye (Sander vitreus Mitchill) often coexist in lake communities, yet uncertainty exists about the potential for interspecific competition among these top predators. Stable isotope data were used to assess niche overlap and diets of these predators in Elk Lake (Minnesota, U.S.A). δ13C indicated primary production sources (e.g. pelagic v. littoral) and δ15N indicated trophic position; the bivariate distribution of these isotopes defined the species’ isotopic niche. Niche overlap probabilities were calculated and stable isotope mixing models were used to quantify diet proportions. Muskellunge and northern pike niches overlapped little (<10%), while walleye overlapped muskellunge (15%–60%) and northern pike (33%–53%) more extensively. Muskellunge diets focused (50%) on cisco (Coregonus artedi Lesueur), walleye primarily assimilated non-cisco prey fish (80%), and northern pike diets were dominated by non-cisco prey fish (45%) and invertebrates (40%). The presence of a cisco population and the flexibility of northern pike to use invertebrate resources may decrease potential competition among these predators. However, cisco are threatened by climate change and eutrophication, and our results suggest that extirpation of cisco may cause major changes in potential competitive interactions among these top predators. Moreover, cisco were unique among prey species in their ability to exploit pelagic energy, such that loss of cisco will likely alter energy flow in lake food webs where they currently exist.  相似文献   

13.
The effects of climate events on the feeding ecology and trophic dynamics of Pacific salmon (Oncorhynchus spp.) in offshore waters of the central Gulf of Alaska were investigated during early summers (1994–2000), based on analyses of stomach contents, and carbon and nitrogen stable isotopes (δ13C and δ15N). Gonatid squids (mainly Berryteuthis anonychus) were the dominant prey of all salmon species except for chum salmon (O. keta). During the 1997 El Niño event and the 1999 La Niña event, squids decreased sharply in the diets of all Pacific salmon except coho salmon (O. kisutch) in the Subarctic Current, and chum salmon diets changed from gelatinous zooplankton (1995–97) to a more diverse array of zooplankton species. A δ13C and δ15N analysis indicated that all salmon species occupied the same branch of the food web in 1999–2000. We hypothesize that high‐seas salmon adapt to climate‐induced changes in their prey resources by switching their diets either within or between trophic levels. To understand the effects of climate change on Pacific salmon in the Gulf of Alaska, biological oceanographic research on B. anonychus and other important prey resources is needed.  相似文献   

14.
Concentrations of heavy metals, including Hg, Cu, Pb and Zn, in sediment and different organisms as well as the transference through the food web in a polyculture pond were investigated. The δ15N values of consumers showed a gradual enrichment with increasing trophic positions from the filter‐feeding bivalves (δ15N = 10.93 on average) to the predators (δ15N ≥ 12.59 for all crustacean and fish). Concentrations of heavy metals in sediments followed the decreasing order: Cu ≈ Zn > Pb > Hg, while in organisms, the order was Zn > Cu > Pb > Hg. Concentration of Cu was negatively related to the δ15N values of the animal tissues (P < 0.05), indicating the decrease in the Cu concentration with increasing trophic positions. Concentrations of Hg, Pb or Zn did not show significant relationship to the trophic positions. Food sources and feeding guilds of organisms might be more important factors determining the heavy metal concentrations in the body tissues of aquatic animals than their trophic positions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号