首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Subsurface pipe and open drainage systems were installed in 8 and 5 ha area, respectively in farmers fields at Konanki pilot area in Nagarjuna Sagar project right canal command in India in the year 1999 to combat the problems of waterlogging (depth to water table, 0–3.7 m), salinity and sodicity (ECe, 1.3–18.6 dS/m; pH, 7.2–10.0 and ESP, 14.1–54.6). Two types of envelope materials, nylon mesh and geo-textile were used and two spacings of 30 m (design spacing) and 60 m (double the design spacing) were adopted for the pipe drainage system. The analysis of discharge data from the individual pipe drains revealed that among both the spacings, the drains enveloped with geo-textile performed better (0.45–1.85 mm/day), when compared with those enveloped with nylon mesh (0.25–0.86 mm/day). The effectiveness of drainage systems in the control of waterlogging at the pilot area has been monitored through a network of 61 observation wells. The groundwater table, which used to be almost at the ground surface during the main crop season (October–February) before installation of drainage systems, could be lowered by 0.2–0.35 m due to the installation of drainage systems. A total of 50.4 (@ 6.3 tons/ha) and 115.6 tons (@ 23.1 tons/ha) of salts have been disposed through pipe and open drainage systems, respectively during the period of 3 years (1999–2002).  相似文献   

2.
The YinNan Irrigation District in NingXia, China diverts each year about 1.6 × 109 m3 water from the Yellow River for irrigation use. More than half of that water is discharged back to the downstream channel or some low-lying depressions as a result of agricultural drainage. Several studies have indicated that the District is excessively drained, partially caused by the over-dimensioning of the existing drainage system, and proposed to improve the situation by controlled drainage practice. We subsequently carried out a field experiment of controlled drainage in the rice growing area of the District in 2004–2005. Field observations showed that reduction of the drainage depth of field ditches from 1 to 0.4 m resulted in a drainage flow reduction of 50–60%. Drainage water salinity increased only slightly but was still below the salt tolerance level of rice. Measurements of nitrogen concentrations showed no clear trend of changes as the result of irregular fertilization practice in the experimental site.  相似文献   

3.
Long-term hydrologic simulations are presented predicting the effects of drainage water management on subsurface drainage, surface runoff and crop production in Iowa's subsurface drained landscapes. The deterministic hydrologic model, DRAINMOD was used to simulate Webster (fine-loamy, mixed, superactive, mesic) soil in a Continuous Corn rotation (WEBS_CC) with different drain depths from 0.75 to 1.20 m and drain spacing from 10 to 50 m in a combination of free and controlled drainage over a weather record of 60 (1945-2004) years. Shallow drainage is defined as drains installed at a drain depth of 0.75 m, and controlled drainage with a drain depth of 1.20 m restricts flow at the drain outlet to maintain a water table at 0.60 m below surface level during the winter (November-March) and summer (June-August) months. These drainage design and management modifications were evaluated against conventional drainage system installed at a drain depth of 1.20 m with free drainage at the drain outlet. The simulation results indicate the potential of a tradeoff between subsurface drainage and surface runoff as a pathway to remove excess water from the system. While a reduction of subsurface drainage may occur through the use of shallow and controlled drainage, these practices may increase surface runoff in Iowa's subsurface drained landscapes. The simulations also indicate that shallow and controlled drainage might increase the excess water stress on crop production, and thereby result in slightly lower relative yields. Field experiments are needed to examine the pathways of water movement, total water balance, and crop production under shallow and controlled drainage in Iowa's subsurface drained landscapes.  相似文献   

4.
The introduction of irrigated agriculture in the arid and semi-arid regions of India has resulted in the development of the twin problem of waterlogging and soil salinization. It is estimated that nearly 8.4 million ha is affected by soil salinity and alkalinity, of which about 5.5 million ha is also waterlogged. Subsurface drainage is an effective tool to combat this twin problem of waterlogging and salinity and thus to protect capital investment in irrigated agriculture and increase its sustainability. In India, however, subsurface drainage has not been implemented on a large scale, in spite of numerous research activities that proved its potential. To develop strategies to implement subsurface drainage, applied research studies were set-up in five different agro-climatic sub-regions of India. Subsurface drainage systems, consisting of open and pipe drains with drain spacing varying between 45 and 150 m and drain depth between 0.90 and 1.20 m, were installed in farmers’ fields. The agro-climatic and soil conditions determine the most appropriate combination of drain depth and spacing, but the drain depths are considerably shallower than the 1.75 m traditionally recommended for the prevailing conditions in India. Crop yields in the drained fields increased significantly, e.g. rice with 69%, cotton with 64%, sugarcane with 54% and wheat with 136%. These increases were obtained because water table and soil salinity levels were, respectively, 25% and 50% lower than in the non-drained fields. An economic analysis shows that the subsurface drainage systems are highly cost-effective: cost-benefit ratios range from 1.2 to 3.2, internal rates of return from 20 to 58%, and the pay-back periods from 3 to 9 years. Despite these positive results, major challenges remain to introduce subsurface drainage at a larger scale. First of all, farmers, although they clearly see the benefits of drainage, are too poor to pay the full cost of drainage. Next, water users’ organisations, not only for drainage but also for irrigation, are not well established. Subsurface drainage in irrigated areas is a collective activity, thus appropriate institutional arrangements for farmers’ participation and organisation are needed. Thus, to assure that drainage gets the attention it deserves, policies have to be reformulated.  相似文献   

5.
A survey program was carried out from June 1988 to august 1989 in North-eastern Italy in a pipe drainage area of 61 ha in order to verify if the year of installation (one part of the system has been installed in 1984 and another one year later) and the cover material of drains (pipes were covered with cocofibre for 2/5 of their length and without envelope for 3/5) could influence the functioning of the system. Collected data of drain discharge and water table depth were subjected to an elaborate statistical analysis.A methodological approach to determine the sample size (how many measurements of discharge and watertable depth are required, in space and time, from a statistical stand-point) in drainage experiment is proposed. For drainage systems similar to the considered one, a sample size of 10–12 drains and 6–8 observation wells can be recommended in order to obtain a standard error lower than 10–15% of the mean.  相似文献   

6.
Detailed location maps of tile drains in the Midwestern United States are generally not available, as the tile lines in these areas were laid more than 75 years ago. The objective of this study is to map individual tile drains and estimate drain spacing using a combination of GIS-based analysis of land cover, soil and topography data, and analysis of high resolution aerial photographs to within the Hoagland watershed in west-central Indiana. A decision tree classifier model was used to classify the watershed into potentially drained and undrained areas using land cover, soil drainage class, and surface slope data sets. After masking out the potential undrained areas from the aerial image, image processing techniques such as the first-difference horizontal and vertical edge enhance filters, and density slice classification were used to create a detailed tile location map of the watershed. Drain spacings in different parts of the watershed were estimated from the watershed tile line map. The decision tree identified 79% of the watershed as potential tile drained area while the image processing techniques predicted artificial subsurface drainage in approximately 50% of the Hoagland watershed. Drain spacing inferred from classified aerial image vary between 17 and 80 m. Comparison of estimated tile drained areas from aerial image analysis shows a close agreement with estimated tile drained areas from previous studies (50% versus 46% drained area) which were based on GIS analysis and National Resource Inventory survey. Due to lack of sufficient field data, the results from this analysis could not be validated with observed tile line locations. In general, the techniques used for mapping tile lines gave reasonable results and are useful to detect drainage extent from aerial image in large areas. These techniques, however, do not yield precise maps of the systems for individual fields and may not accurately estimate the extent of tile drainage in the presence of crop residue in agricultural fields and/or existence of other spatial features with similar spectral response as tile drains.  相似文献   

7.
In northeast Italy, a regimen of controlled drainage in winter and subirrigation in summer was tested as a strategy for continuous water table management with the benefits of optimizing water use and reducing unnecessary drainage and nitrogen losses from agricultural fields.To study the feasibility and performance of water table management, an experimental facility was set up in 1996 to reproduce a hypothetical 6-ha agricultural basin with different land drainage systems existing in the region. Four treatments were compared: open ditches with free drainage and no irrigation (O), open ditches with controlled drainage and subirrigation (O-CI), subsurface corrugated drains with free drainage and no irrigation (S), subsurface corrugated drains with controlled drainage and subirrigation (S-CI). As typically in the region free drainage ditches were spaced 30 m apart, and subsurface corrugated drains were spaced 8 m apart.Data were collected from 1997 to 2003 on water table depth, drained volume, nitrate-nitrogen concentration in the drainage water, and nitrate-nitrogen concentration in the groundwater at various depths up to 3 m.Subsurface corrugated drains with free drainage (S) gave the highest measured drainage volume of the four regimes, discharging, on average, more than 50% of annual rainfall, the second-highest concentration of nitrate-nitrogen in the drainage water, and the highest nitrate-nitrogen losses at 236 k ha−1.Open ditches with free drainage (O) showed 18% drainage return of rainfall, relatively low concentration of nitrate-nitrogen in the drainage water, the highest nitrate-nitrogen concentration in the shallow groundwater, and 51 kg ha−1 nitrate-nitrogen losses.Both treatments with controlled drainage and subirrigation (O-CI and S-CI) showed annual rainfall drainage of approximately 10%. O-CI showed the lowest nitrate-nitrogen concentration in the drainage water, and the lowest nitrogen losses (15 kg ha−1). S-CI showed the highest nitrate-nitrogen concentration in the drainage water, and 70 kg ha−1 nitrate-nitrogen losses. Reduced drained volumes resulted from the combined effects of reduced peak flow and reduced number of days with drainage.A linear relationship between daily cumulative nitrate-nitrogen losses and daily cumulative drainage volumes was found, with slopes of 0.16, 0.12, 0.07, and 0.04 kg ha−1 of nitrate-nitrogen lost per mm of drained water in S-CI, S, O, and O-CI respectively.These data suggest that controlled drainage and subirrigation can be applied at farm scale in northeast Italy, with advantages for water conservation.  相似文献   

8.
Recent community based actions to ensure the sustainability of irrigation and protection of associated ecosystems in the Murrumbidgee Irrigation Area (MIA) of Australia has seen the implementation of a regional Land and Water Management Plan. This aims to improve land and water management within the irrigation area and minimise downstream impacts associated with irrigation. One of the plan objectives is to decrease current salt loads generated from subsurface drainage in perennial horticulture within the area from 20 000 tonnes/year to 17 000 tonnes/year. In order to meet such objectives Controlled Water table Management (CWM) is being investigated as a possible ‘Best Management Practice’, to reduce drainage volumes and salt loads.During 2000–2002 a trial was conducted on a 15 ha subsurface drained vineyard. This compared a traditional unmanaged subsurface drainage system with a controlled drainage system utilizing weirs to maintain water tables and changes in irrigation scheduling to maximize the potential crop use of a shallow water table. Drainage volumes, salt loads and water table elevations throughout the field were monitored to investigate the effects of controlled drainage on drain flows and salt loads.Results from the experiment showed that controlled drainage significantly reduced drainage volumes and salt loads compared to unmanaged systems. However, there were marked increases in soil salinity which will need to be carefully monitored and managed.  相似文献   

9.
A transient drainage simulation model,SWAP, was used to evaluate the performanceof drainage systems in (semi-) arid zones.Before application, the model wascalibrated by using 14-months datacollected from two sample fields of theFourth Drainage Project (FDP), Punjab,Pakistan. During the calibration process,emphasis was given to the accuratedetermination of soil hydraulic parameters,reference evapotranspiration, drainage fromsample fields and bottom boundarycondition. Laboratory determined soilhydraulic parameters were foundnon-representative of the field conditions.Difference between laboratory and fielddetermined soil water retention curves werefound significant. The pressure heads andsoil water contents measured in depthincrements of 15 cm were in good agreementwith the simulated values after applying afield measured retention curve. A closeproximity was also found between measuredand simulated average root zone salinity at0–1.0 m depth. The referenceevapotranspiration calculated by thePriestly-Taylor (PT-ET o) methodwas found physically more realistic thanthe Penman-Monteith (PM-ET o)method due to ignorance of the feed backmechanism of vapor pressure deficit onstomatal closure. The simulated cumulativedrainage from two sample fields wascomparable with the calculated values. Theanalysis of piezometer data shows thatthere is a negligible water exchangebetween the deep aquifer and theunsaturated zone. Therefore for scenarioanalysis, no flow conditions at the bottomof the soil profile can be applied as abottom boundary.  相似文献   

10.
Chloride mass balance (steady state or transient state) models are used extensively in Vertisols of Queensland and New South Wales (NSW) in Australia to estimate deep drainage. The aim of this study was to compare deep drainage estimated assuming steady state and transient state conditions with chloride mass balance models in irrigated cotton (Gossypium hirsutum L.)-based farming systems in the lower Namoi Valley of North Western NSW. Drainage was estimated at seven sites, and treatments included rotation crops such as wheat (21–62 mm/year) (Triticum aestivum), sorghum (12–47 mm/year) (Sorghum bicolor) and dolichos (12–21 mm/year) (Lablab purpureus), minimum tillage (62–83 mm/year), where cotton was sown into standing wheat stubble, and conventional tillage where stubble was incorporated (35–78 mm/year). Soil water content was measured with a neutron moisture meter in the 0.2–1.2 m depth. Soil was sampled before sowing and after harvest to a depth of 1.2 m along diagonal transects. The soil chloride concentration was determined by titration with AgNO3. Irrigation water was also analysed for chloride. The deep drainage estimates were compared using regression analysis and students paired t-test. In addition, a paired t-test of the soil chloride concentration before sowing and after harvest was used to determine if the soil chloride flux was either in a steady state or transient state. In 9 out of the 13 data sets (69%), drainage estimated with the models agreed with changes between pre- and post-season soil chloride concentrations. Under frequently irrigated summer crops such as cotton and sorghum and in better structured soils chloride flux reached steady state conditions whereas under partially-irrigated crops or where soil structure was poorer, the chloride flux deviated markedly from steady-state conditions. The latter observation may be due to preferential flow via deep cracks in infrequently irrigated soil. Deep cracking would be due to the more intense shrinking and swelling in partially irrigated soil in comparison with frequently-irrigated crops. Comparison of estimated deep drainage with pre- and post-season soil chloride concentrations showed that the steady state mass balance model best estimated deep drainage under cotton crops which were irrigated more frequently or wheat crops which had better soil structure.
T. B. WeaverEmail: Phone: +61-2-67991570Fax: +61-2-67991503
  相似文献   

11.
为了研究不同棉田暗管布置方式对暗管排水中硝态氮流失量的影响,结合2007—2009年在湖北荆州丫角排灌试验站的控制排水试验,采用DRAINMOD田间水文模型进行数值模拟。结果表明,暗管出口高程和暗管间距对暗管排水中的硝态氮流失量均有极显著的影响,是进行农田控制排水设计的关键因素。具体而言,暗管排水中硝态氮的流失量随着暗管出口高程的减小而减小,随着暗管间距的增大而减小。因此,在进行农田控制排水设计时,应根据当地的环境要求以及作物的具体生长要求,调整暗管的出口高程和暗管间距,做到作物高产和环境保护的统一。  相似文献   

12.
This paper discusses the introduction of subsurface drainage as a tool to improve rice production in low land areas of acid sulphate soils. Pipe drains with 15 and 30 m spacing were installed in farmers fields in coastal lowlands of Kerala, India, at Kuttanad. Soil conditions improved within 2 years after the introduction of the subsurface drainage and significantly improved the crop yield. Data collected over a period of 14 years, showed a yield increase of 1.1 t/ha (43%) compared to non-drained areas. An economic analysis indicated that subsurface drainage is feasible with a benefit–cost ratio of 2.45, an internal rate of return of 47% and a net present value of Rs 5.17 million. The poor financial status of the farmers, however, is the main constraint for the large-scale adoption of the comparatively capital-intensive subsurface drainage systems in the acid sulphate soils of Kerala.  相似文献   

13.
The system of rice intensification (SRI) developed in Madagascar in the 1980s has been promoted as an integrated crop and resource management approach to rice-cultivation, especially for resource-limited smallholder farms. While advocates have claimed that SRI could boost rice yields with less external input, many criticisms have challenged its effectiveness regarding yields and applicability to larger-scale rice farming systems. In this study, we conducted a field survey and on-farm experiments to assess rice yield performance and key management practices on a few of the early SRI-practicing smallholder farms in the central highland of Madagascar.Rice grain yields at the survey fields were 9.9 t ha−1 maximum without using mineral fertilizer. Deep plowing to the depth of 25–30 cm as well as SRI practices have been conducted continuously since the early 1990s. In addition, an effective drainage system facilitated intensive water management at these high-yielding fields. On-farm experiments demonstrated some yield increases with no interaction for the examined SRI practices, though the effects were not great enough to explain the high yields at these fields. The soils of these high-yielding fields contained relatively large amounts of soil organic carbon (SOC) from the surface to the deep soil layers, and the soil mineralizable nitrogen was closely correlated with rice grain yields.The results indicated that the high yields at the fields of those who were early to adopt SRI were mainly due to the soil fertility associated with great nitrogen-supplying ability, rather than ‘synergetic effects’ of the SRI components. This high N-supplying ability of the soil and accumulated SOC from surface to deep soil layers were attributable to the long-term combined practices of extensive organic applications and deep plowing. Soil hydrology could be another key factor stimulating high rates of soil N-mineralization.These management practices were, however, only applied to the limited numbers of fields within less than 1.0 ha of total landholdings of these farmers due to the great demand in labor and organic resources and the difficulty in controlling irrigation water. Intensive weeding and widely spaced transplanting of young seedlings were also performed in the fields with irrigation and drainage systems sufficient to avoid yield losses from flooding and drought. Although extensive and long-term systematic research is further required to fully assess the benefits of this sort of intensive management as opposed to conventional methods, the preferential allocation of intensive management by the successful SRI-adopters might be the implication of its location-specificity and difficulty in scaling up even within the resource-limited smallholder farms.  相似文献   

14.
Summary A neutron moisture meter was field calibrated in a cracking grey clay prepared for furrow irrigation at Narrabri, N.S.W. Neutron counts were taken in successive 0.1 m increments between the 0 and 1.5 m depths. Concomitant measurements using undisturbed soil cores provided independent estimates of volumetric water content. Separate linear calibrations were required for the 0–0.1 m, 0.1–0.2 m and 0.2–1.5 m depth increments. Correction for bias due to cracking and changes in bulk density slightly improved the calibrations. The accuracy of predicted soil water content was improved relative to previous calibrations. A precision of ±0.01 m3m–3 required 3 samples per mean by the neutron method or 11 samples per mean by the core sampling method.  相似文献   

15.
A study was conducted in three wet inland valley bottoms, namely, high (MHW), medium (MMW) and low (MLW) watertable sites to evaluate the effect of drained (D) and control (Do), and mound-tillage (MT), ridge-tillage (RT) and no-tillage (NT) treatments on watertable depth and yield of maize in 1990 wet and 1990/1991 dry season in southwestern Nigeria. The watertable depth averaged 30.0 cm in the drained plot and <15.0 cm in the control plot in 1990. The watertable tended toward its lowest depth averaging 44.8 cm in the drained and 26.2 cm in the control plot in 1990/1991. Soil moisture content was lower (P<0.01) and air-filled porosity greater (P<0.01) in the mound-tilled compared with the ridge tilled and no-till soils in both drained and control plots in 1990 and 1990/1991. Equally, green maize yield from the mound-tillage and ditch drainage system was greater (P<0.01) than the ridge-tillage and no-tillage systems in both seasons. Maize may be grown successfully with a ditch drainage and mound-tillage system in the wet soils in inland valley bottoms regardless of their watertable regimes in southwestern Nigeria.  相似文献   

16.
An ontology-based simulation (OntoSim) is a unique data modeling environment where soil–plant-nutrient processes are represented as database objects and the user-defined relationships among objects are used to generate computer code (Java) for running the simulation. The aim of this study was to model hydrologic processes of sugarcane-grown organic soils utilizing OntoSim in the Everglades Agricultural Area (EAA) of South Florida. This OntoSim-Sugarcane model describes the complex hydrology of sub-irrigation and open ditch drainage commonly used on Florida farms.Model calibration was conducted by (i) selecting rectangular farm water management units (<12 ha), which are encompassed with farm ditches, from two farms in the EAA, (ii) assembling all relevant input data including water tables (WT) recorded at the monitoring farm well of each unit, and (iii) optimizing the fits between the simulated and observed daily WT during two consecutive water years (WY). By calibrating two site-specific parameters – lateral saturated hydraulic conductivities of soil profiles and vertical saturated hydraulic conductivity of the underlying limestone bedrock – good agreement between simulated and observed daily WT was obtained (Nash–Sutcliffe efficiency coefficient >0.65; coefficient of residual mass <1%) within the units during WY96–97 (May 1995–April 1997). The validation of the model during subsequent WY98–99 at both units also showed Nash–Sutcliffe efficiency >0.55 and coefficient of residual mass <3%. It indicated that OntoSim-Sugarcane is able to simulate daily fluctuations of WT within the farm units and estimate lateral drainage/sub-irrigation and deep seepage that significantly contribute to the water balance at farms in the EAA. Thus, it can be a promising management tool to provide farmers with accurate assessment of water movement in this agricultural area.  相似文献   

17.
A detailed field experiment was carried out in the Jordan Valley, south of Lake Kinneret, Israel for evaluation of the water management model DRAINMOD. This field was chosen to represent the local agro-climate conditions of that zone. Banana crop was grown and was irrigated daily with about 3200 mm/year and 0.5 leaching fraction. Subsurface drainage system with 2.5 m drain depth and 160 m drain spacing existed in the field. The water table depth was measured with about 100 piezometers, in which most of them were observed weekly, and four were continuosly recording piezometers. Five identical drainage plots were selected, out of 10 existing, as replicates for the evaluation of DRAINMOD. Deviations in a range of 0.3–1.7 m between observed water table depth and that simulated by DRAINMOD were found in four out of the five replicates. A reasonable agreement was found only in one drainage plot out of the five tested. These findings contradict the world wide convention that DRAINMOD simulation is in a good agreement with observed field data. An additional study was therefore conducted to explore the reasons for these large deviations. Three reasons were suggested: (i) a strong side effect by the Jordan River, which flows some 350 m west to the test field; a very steep 4.6% gradient was found toward the Jordan River; (ii) presence of sandy permeable layers below the depth of the drains which magnifies the boundary condition effect of the Jordan River; (iii) a very significant component of deep and lateral seepage (more than 50% of the yearly irrigation plus rainfall). A combination of these three reasons was suggested as an explanation to the apparent large disagreement. It was therefore recommended not to use DRAINMOD or similar vertical flow models for simulation of water table depths in irrigated fields with subsurface drain pipe systems in the Jordan Valley.  相似文献   

18.
Relative performance of artificial neural networks (ANNs) and the conceptual model SALTMOD was studied in simulating subsurface drainage effluent and root zone soil salinity in the coastal rice fields of Andhra Pradesh, India. Three ANN models viz. Back Propagation Neural Network (BPNN), General Regression Neural Network (GRNN) and Radial Basis Function Neural Network (RBFNN) were developed for this purpose. Both the ANNs and the SALTMOD were calibrated and validated using the field data of 1998–2001 for 35 and 55 m drain spacing areas. Data on irrigation depth, evapotranspiration, drain discharges, water table depths, mean monthly rainfall and temperature and drainage effluent salinity were used for ANN model training, testing and validation. It was observed that the BPNN model with feed forward learning rule with 6 processing elements in input layer and 1 hidden layer with 12 processing elements performed better than the other ANN models in predicting the root zone soil salinity and drainage effluent salinity. Considering coefficient of determination, model efficiency and variation between the observed and predicted salinity values as the evaluation parameters, the SALTMOD performed better in predicting root zone soil salinity and the BPNN performed better in predicting the drainage effluent salinity. Therefore, it was concluded that the BPNN with feed forward learning algorithm was a better model than SALTMOD in predicting salinity of drainage effluent from salt affected subsurface drained rice fields.  相似文献   

19.
为了探索平原湖区渍害低产稻田的合理排灌模式,我们从1988~1990年连续三年采用了以明(沟)暗(沟、管)结合的排水方式和浅湿灌溉控制供水的灌溉方式进行治渍试验。本文对平原湖区渍害的低产田,田间排水系统的不同方式进行了比较,并在试区内推行水稻节水灌溉技术,取得了明显的治渍效果。  相似文献   

20.
Kuttanad, the low-lying tract in Kerala State of south-west India, is a place where drainage problems have caused the agricultural production to remain low. The problem is more severe in the acid sulphate soils of Kuttanad. Besides the problems inherent to acid sulphate soils, the area also experiences problems of flooding, lack of fresh water and intrusion of saline water from the Arabian Sea. A subsurface drainage system consisting of 10 cm diameter clay tiles, each of 60 cm length, was installed at a depth of 1 m with two different spacings of 15 and 30 m for evaluating its influence in improving soil quality and crop production. Many of the critical crop growth parameters in the subsurface drained area, particularly the grain yield and 100 grain weight, were significantly superior to that of the ill-drained areas. Drain spacings up to 30 m was found to significantly improve the productivity of the area. The overall increase in rice yield due to subsurface drainage was 1.36 t/ha. It was also found that subsurface drainage could remove the chemical heterogeneity of soil which is the root cause for patchy crop growth and uneven ripening of rice crop in the area. Acidity in the subsurface drained area was always lower throughout the cropping season. The salinity in the soil could be controlled considerably by subsurface drainage. The iron transformations were not serious enough to cause concern for rice cultivation when subsurface drainage was adopted. Accumulation of sulphates in insoluble form occurred during drainage due to the oxidation of pyrite. Subsurface drainage was also very efficient in leaching sodium, calcium and magnesium. Chloride content in soil decreased drastically during drainage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号