首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Euro-American logging practices, intensive grazing, and fire suppression have increased the amount of carbon that is stored in ponderosa pine (Pinus ponderosa Dougl. Ex Laws) forests in the southwestern United States. Current stand conditions leave these forests prone to high-intensity wildfire, which releases a pulse of carbon emissions and shifts carbon storage from live trees to standing dead trees and woody debris. Thinning and prescribed burning are commonly used to reduce the risk of intense wildfire, but also reduce on-site carbon stocks and release carbon to the atmosphere. This study quantified the impact of thinning on the carbon budgets of five ponderosa pine stands in northern Arizona, including the fossil fuels consumed during logging operations. We used the pre- and post-treatment data on carbon stocks and the Fire and Fuels Extension to the Forest Vegetation Simulator (FEE-FVS) to simulate the long-term effects of intense wildfire, thinning, and repeated prescribed burning on stand carbon storage.The mean total pre-treatment carbon stock, including above-ground live and dead trees, below-ground live and dead trees, and surface fuels across five sites was 74.58 Mg C ha−1 and the post-treatment mean was 50.65 Mg C ha−1 in the first post-treatment year. The mean total carbon release from slash burning, fossil fuels, and logs removed was 21.92 Mg C ha−1. FEE-FVS simulations showed that thinning increased the mean canopy base height, decreased the mean crown bulk density, and increased the mean crowning index, and thus reduced the risk of high-intensity wildfire at all sites. Untreated stands that incurred wildfire once within the next 100 years or once within the next 50 years had greater mean net carbon storage after 100 years compared to treated stands that experienced prescribed fire every 10 years or every 20 years. Treated stands released greater amounts of carbon overall due to repeated prescribed fires, slash burning, and 100% of harvested logs being counted as carbon emissions because they were used for short-lived products. However, after 100 years treated stands stored more carbon in live trees and less carbon in dead trees and surface fuels than untreated stands burned by intense wildfire. The long-term net carbon storage of treated stands was similar or greater than untreated wildfire-burned stands only when a distinction was made between carbon stored in live and dead trees, carbon in logs was stored in long-lived products, and energy in logging slash substituted for fossil fuels.  相似文献   

3.
Antelope bitterbrush is a dominant shrub in many interior ponderosa pine forests in the western United States. How it responds to prescribed fire is not well understood, yet is of considerable concern to wildlife and fire managers alike given its importance as a browse species and as a ladder fuel in these fire-prone forests. We quantified bitterbrush cover, density, and biomass in response to repeated burning in thinned ponderosa pine forests. Low- to moderate-intensity spring burning killed the majority of bitterbrush plants on replicate plots. Moderately rapid recovery of bitterbrush density and cover resulted from seedling recruitment plus limited basal sprouting. Repeated burning after 11 years impeded the recovery of the bitterbrush community. Post-fire seed germination following the repeated burns was 3–14-fold lower compared to the germination rate after the initial burns, while basal sprouting remained fairly minor. After 15 years, bitterbrush cover was 75–92% lower on repeated-burned compared to unburned plots. Only where localized tree mortality resulted in an open stand was bitterbrush recovery robust. By controlling bitterbrush abundance, repeated burning eliminated the potential for wildfire spread when simulated using a customized fire behavior model. The results suggest that repeated burning is a successful method to reduce the long-term fire risk imposed by bitterbrush as an understory ladder fuel in thinned pine stands. Balancing the need to limit fire risk yet provide adequate bitterbrush habitat for wildlife browse will likely require a mosaic pattern of burning at the landscape scale or a burning frequency well beyond 11 years to allow a bitterbrush seed crop to develop.  相似文献   

4.
Little is known about ponderosa pine forest ecosystem responses to restoration practices in the Northern Rocky Mountains, USA. In this study, restoration treatments aimed at approximating historical forest structure and disturbances included modified single-tree selection cutting, with and without prescribed burning. We compared the effectiveness of restoration treatments on growth, vigor, and composition of recruitment responses with untreated controls. We used a randomized block design to detect treatment differences in mean individual tree basal area increment (BAInc10), growth efficiency (GE), and recruitment abundance between two restoration treatments (Cut-only and Cut-burn) and a Control. We further examined treatment effects by tree age-class (Young, Mature, Presettlement) using a spatial ANOVA model that incorporates the spatial autocorrelation among trees within experimental units. Ten years after implementing restoration treatments, mean individual tree BAInc10 and GE were significantly higher for treated units relative to Control units; all three age-classes benefited similarly from restoration treatments relative to the Control, with the greatest response in the Cut-only and moderate response in the Cut-burn. When treated units were compared, Cut-burn negatively affected BAInc10 and GE relative to Cut-only. Presettlement trees responded positively to treatment relative to the Control, particularly for BAInc10, demonstrating the potential of these old trees to respond to reduced competition. The Cut-burn treatment, in contrast, negatively affected the BAInc10 and GE response of postsettlement trees when compared to Cut-only. Restoration treatments did not reduce the amount of Douglas-fir recruits. In addition, the recruitment of both ponderosa pine and Douglas-fir species was associated with the proximate cover of woody debris in Cut-only and Control treatments. Finally, special consideration needs to be taken for spring Cut-burn treatments, which appeared to dampen growth and vigor, relative to Cut-only, particularly for Young and Mature trees, and increased recruitment of ponderosa pine and particularly Douglas-fir.  相似文献   

5.
Southwestern USA ponderosa pine (Pinus ponderosa C. Lawson var. scopulorum Engelm.) forests evolved with frequent surface fires and have changed dramatically over the last century. Overstory tree density has sharply increased while abundance of understory vegetation has declined primarily due to the near cessation of fires. We examined effects of varying prescribed fire-return intervals (1, 2, 4, 6, 8, and 10 years, plus unburned) on the abundance and composition of understory vegetation in 2007 and 2008 after 30+ years of fall prescribed burning at two ponderosa pine sites. We found that after 30 years, overstory canopy cover remained high, while understory plant canopy cover was low, averaging <12% on all burn intervals. We attributed the weak understory response to a few factors – the most important of which was the high overstory cover at both sites. Graminoid cover and cover of the major grass species, Elymus elymoides (squirreltail), increased on shorter fire-return intervals compared to unburned plots, but only at one site. Community composition differed significantly between shorter fire-return intervals and unburned plots at one site, but not the other. For several response variables, precipitation levels appeared to have a stronger effect than treatments. Our findings suggest that low-severity burn treatments in southwestern ponderosa pine forests, especially those that do not decrease overstory cover, are minimally effective in increasing understory plant cover. Thinning of these dense forests along with prescribed burning is necessary to increase cover of understory vegetation.  相似文献   

6.
Due to increases in tree density and hazardous fuel loading in Sierra Nevadan forests, land management is focusing on fuel reduction treatments to moderate the risk of catastrophic fires. Fuel treatments involving mechanical and prescribed fire methods can reduce surface as well as canopy fuel loads. Mastication is a mechanical method which shreds smaller trees and brush onto the surface fuel layer. Little data exist quantifying masticated fuel beds. Despite the paucity of data on masticated fuels, land managers desire fuel loading, potential fire behavior and fire effects such as tree mortality information for masticated areas. In this study we measured fuel characteristics before and after mastication and mastication plus prescribed burn treatments in a 25-year old ponderosa pine (Pinus ponderosa C. Lawson) plantation. In addition to surface fuel characteristics and tree data collection, bulk density samples were gathered for masticated material. Regressions were created predicting masticated fuel loading from masticated fuel bed depth. Total masticated fuel load prior to fire treatment ranged from 25.9 to 42.9 Mg ha−1, and the bulk density of masticated fuel was 125 kg m−3. Mastication treatment alone showed increases in most surface fuel loadings and decreases in canopy fuel loads. Masticated treatment in conjunction with prescribed burning reduced both surface and canopy fuel loads. Detailed information on fuel structure in masticated areas will allow for better predictions of fire behavior and fire effects for fire in masticated fuel types. Understanding potential fire behavior and fire effects associated with masticated fuels will allow managers to make decisions on the possibility of mastication to create fuel breaks or enhance forest health.  相似文献   

7.
  • ? Both burning and harvesting cause carbon and nutrient removals from forest ecosystems, but few studies have addressed the combination of these effects. For a Pinus jeffreyii forest in the Sierra Nevada Mountains of California, we posed the question: what are the relative impacts of thinning and subsequent burning on carbon and nutrient removals?
  • ? The thinning methods included whole-tree thinning (WT, where all aboveground biomass was removed) cut to length (CTL, where branches and foliage were left on site in a slash mat on top of skid trails) and no harvest (CONT). Total C and nutrient exports with thinning and burning were greater in the WT and CTL than in the CONT treatments. Total C and N removals were approximately equal for the WT and CTL treatments, although harvesting dominated exports in the WT treatment and burning dominated exports in the CTL treatment. Total removals of P, K, Ca, Mg and S were greatest in the WT treatments, where harvesting dominated removals.
  • ? Comparisons of nutrient removals with ecosystem capital and calculations of potential replenishment by atmospheric deposition suggested that N is the nutrient likely to be most depleted by harvesting and burning treatments.
  •   相似文献   

    8.
    Forest thinning utilizing cut-to-length and whole-tree harvesting systems with subsequent underburning were assessed for their impacts on water storage in the extensible tissues of dominant and codominant trees in an uneven-aged Jeffrey pine (Pinus jeffreyi Grev. & Balf.) stand on the east slope of the Sierra Nevada. Prior to the onset of the third growing season following thinning and the second season after burning, manual band dendrometers were installed at breast height on the selected trees and readings of diurnal fluctuation in stem circumference, an indication of bole water status, were taken monthly for one year. Diameter and relative diameter fluctuation were calculated from the circumference measurements. Overall, thinning had a positive influence on stem water recharge capacity, with the most pronounced effects evident in the latter part of the growing season. During this period, bole contraction in thinned stand portions was 49 to 55% greater than in the unthinned control, suggesting that both a greater volume of stored water was available for transpiration and was transpired in trees of the former treatment. There was no clear evidence that harvesting method affected stem water storage and influences of underburning were also absent entirely. Seasonal effects on diurnal changes in stem diameter were prominent, as the extent to which boles contracted generally increased over the course of the growing season, whereas fluctuations were at a minimum during the colder months. The magnitude of stem dimensional flux was found to be negatively correlated with initial tree DBH in one instance, while negative relationships between the former and live crown length as well as percentage were also revealed, albeit infrequently. Changes in bole size were positively correlated with residual basal area in some cases. These results suggest that improvement in water relations can be realized from density management in a dry site forest type with no apparent compromise of this benefit by broadcast underburning.  相似文献   

    9.
    Soil respiration is controlled by soil temperature, soil water, fine roots, microbial activity, and soil physical and chemical properties. Forest thinning changes soil temperature, soil water content, and root density and activity, and thus changes soil respiration. We measured soil respiration monthly and soil temperature and volumetric soil water continuously in a young ponderosa pine (Pinus ponderosa Dougl. ex P. Laws. & C. Laws.) plantation in the Sierra Nevada Mountains in California from June 1998 to May 2000 (before a thinning that removed 30% of the biomass), and from May to December 2001 (after thinning). Thinning increased the spatial homogeneity of soil temperature and respiration. We conducted a multivariate analysis with two independent variables of soil temperature and water and a categorical variable representing the thinning event to simulate soil respiration and assess the effect of thinning. Thinning did not change the sensitivity of soil respiration to temperature or to water, but decreased total soil respiration by 13% at a given temperature and water content. This decrease in soil respiration was likely associated with the decrease in root density after thinning. With a model driven by continuous soil temperature and water time series, we estimated that total soil respiration was 948, 949 and 831 g C m(-2) year(-1) in the years 1999, 2000 and 2001, respectively. Although thinning reduced soil respiration at a given temperature and water content, because of natural climate variability and the thinning effect on soil temperature and water, actual cumulative soil respiration showed no clear trend following thinning. We conclude that the effect of forest thinning on soil respiration is the combined result of a decrease in root respiration, an increase in soil organic matter, and changes in soil temperature and water due to both thinning and interannual climate variability.  相似文献   

    10.

    Context

    The current fire regime threatens black pine (Pinus nigra Arn.) persistence in the Mediterranean Basin, which recommends larger-scale fuel treatments. Prescribed burning is an option for stand protection but its use in young stands (which are particularly at risk) is hindered by the scarce knowledge on post-fire tree survival.

    Aims

    The objectives were to characterize bark thickness as a fire-resistance trait in P. nigra and to describe how post-fire tree survival responds to tree size and fire effects in a 16-year-old plantation.

    Methods

    Bark thickness was related to diameter at breast height and height in the stem. Metrics describing tree size and stem and crown damage were measured 1?year after prescribed burning in 259 trees. Tree survival was modeled with logistic regression and Classification and Regression Tree analysis.

    Results

    Bark thickness increased linearly with diameter at breast height (dbh) and decreased with height in the stem. Tree survival was primarily a function of crown injury. Stem damage was an influent factor in small trees.

    Conclusion

    Due to thinner bark and lower tolerance to crown damage, young P. nigra trees are less fire-resistant than other Mediterranean pines, e.g., Pinus pinaster. Prescribed fire should not be attempted if dbh <10?cm. Mechanical clearing is the treatment of choice in young stands with a significant shrub layer.  相似文献   

    11.
    The general lack of resource response information severely limits economic evaluation of prescribed burning in most forest types. This paper present changes in understory production at three sites on basalt soils following prescribed burning in ponderosa pine (Pinus ponderosa Laws.) in Arizona. The sites were burned during the fall 2, 5, and 7 years before sampling in 1981. Regression equations were developed to predict production from plant basal area for four common grass species; production of remaining herbaceous vegetation was measured by harvesting. Based on the results of our study and other studies of fall prescribed burning on volcanic soils in Arizona ponderosa pine, understory production response appears to be variable for 1–2 years following burning. Herbage production exhibits no change or an increase; forage production exhibits no change or a decrease. Studies of understory response more than 2 years following both wildfire and prescribed burning in Arizona ponderosa pine, however, show a general trend toward increased production. Thus, prescribed burning in southwestern pine on basalt soils produces long-term benefits in increased understory production, particularly in pole stands, which dominate much of the region.  相似文献   

    12.
    Loblolly pine (Pinus taeda L.) seedlings were grown from seed in a greenhouse on A1 horizon soil collected from field plots that have been burned each winter or maintained in an unburned condition for 33 years. Soils from burned and unburned plots were treated with phosphorus (P), P and calcium (Ca), or left untreated. After 32 weeks, height, biomass, and nitrogen (N) and P uptake were greater on soil from burned versus unburned plots, although application of P masked these effects. Addition of P increased plant biomass, seedling height, and uptake of N and P, but depressed levels of soil NH4N. These results suggest that long-term prescribed burning may have a positive effect on nutrient availability that will benefit seedlings of the next stand.  相似文献   

    13.
    Prescribed burning is used to reduce fuel loads and return ponderosa pine forests of the Western U.S. to their historical structure and function. The impact of prescribed burning on soil is dependent on fire severity which is largely managed by burning in the fall or the spring; frequency of fire will also regulate long-term fire impacts. The objective of this study was to determine if soils and soil organic matter (SOM) were affected by prescribed burning in the fall or the spring using singular or multiple prescribed burns. Prescribed burning was initiated in the spring of 1997 and fall of 1997 at 5-year intervals and once during a 15-year period on a study site located within the Malheur National Forest of the southern Blue Mountains of eastern Oregon. Soils were sampled by major genetic horizon in 2004. The 5-year interval plots had burned twice with 1–2 years of recovery while the 15-year interval plots had burned only once with 6–7 years of recovery. Samples were analyzed for pH, carbon (C), nitrogen (N), C/N ratio, cation exchange capacity, base saturation, water repellency, and humic substance composition by alkali extraction. Fall burning decreased C and N capital of the soil (O horizon +30 cm depth mineral soil) by 22–25%. Prescribed burning did not have an effect on fulvic or humic acid C concentration (FA and HA, respectively) of the mineral soil and only a minor effect on FA and HA concentration of the O horizon. One or two fall burns decreased humin and the alkali non-soluble C (NS) content of O horizon by 15 and 30%, respectively. Initiating fall burning in fire-suppressed stands may not preserve soil C, N, humin, and NS content, but may replicate the natural fire regime. Spring burning using a return interval of 5 or more years reduces the fuel load while having little impact on soil C, N, and SOM composition and may be used to prepare a site for subsequent fall burns.  相似文献   

    14.
    After a century of fire suppression, conifer forests in the western United States have dramatically departed from conditions that existed prior to Euro-American settlement, with heavy fuel loads and an increased incidence of wildfire. To reduce this threat and improve overall forest health, land managers are designing landscape-scale treatments that strategically locate thinning and burning treatments to disrupt fuel continuity, allowing managed wildfires to burn the remaining area. A necessary step in designing and evaluating these treatments is understanding their ecological effects on wildlife. We used meta-analysis to compare effects of small-diameter removal (thinnings and shelterwoods) and burning treatments, selective harvesting, overstory removal (including clearcutting), and wildfire on wildlife species in southwestern conifer forests. We hypothesized that small-diameter removal and burning treatments would have minimal effects on wildlife compared to other treatments. We found 33 studies that met our criteria by (1) comparing density or reproductive output for wildlife species, (2) using forest management or wildfire treatments, (3) implementing control-impact or before-after control-impact design using unmanaged stands as controls, and (4) occurring in Arizona or New Mexico ponderosa pine (Pinus ponderosa) or mixed conifer (Abies/Picea/Pinus) forest. The 22 studies suitable for meta-analysis occurred ≤20 years post-treatment on sites <400 ha. Small-diameter harvest and burning treatments had positive effects but thin/burn and selective harvest treatments had no detectable effect on most small mammals and passerine bird species reported in studies; overstory removal and wildfire resulted in an overall negative response. We examined foraging guild responses to treatments; ground-foraging birds and rodents had no strong response. Aerial-, tree-, and bole-foraging birds had positive or neutral responses to the small-diameter removal and burning treatments, but negative responses to overstory removal and wildfire. Small-diameter removal and burning treatments as currently being implemented in the Southwest do not negatively impact most of the wildlife species in the studies we examined in the short-term (≤10 years). We believe a combination of treatments in a patchy arrangement across the landscape will result in the highest diversity and density. We recommend that managers implement thinning and burning treatments, but that future research efforts focus on long-term responses of species at larger spatial scales, use reproductive output as a more informative response variable, and target species for which there is a paucity of data.  相似文献   

    15.
    Four treatments (control, burn-only, thin-only, and thin-and-burn) were evaluated for their effects on bark beetle-caused mortality in both the short-term (one to four years) and the long-term (seven years) in mixed-conifer forests in western Montana, USA. In addition to assessing bark beetle responses to these treatments, we also measured natural enemy landing rates and resin flow of ponderosa pine (Pinus ponderosa) the season fire treatments were implemented. All bark beetles were present at low population levels (non-outbreak) for the duration of the study. Post-treatment mortality of trees due to bark beetles was lowest in the thin-only and control units and highest in the units receiving burns. Three tree-killing bark beetle species responded positively to fire treatments: Douglas-fir beetle (Dendroctonus pseudotsugae), pine engraver (Ips pini), and western pine beetle (Dendroctonus brevicomis). Red turpentine beetle (Dendroctonus valens) responded positively to fire treatments, but never caused mortality. Three fire damage variables tested (height of crown scorch, percent circumference of the tree bole scorched, or degree of ground char) were significant factors in predicting beetle attack on trees. Douglas-fir beetle and pine engraver responded rapidly to increased availability of resources (fire-damaged trees); however, successful attacks dropped rapidly once these resources were depleted. Movement to green trees by pine engraver was not observed in plots receiving fire treatments, or in thinned plots where slash supported substantial reproduction by this beetle. The fourth tree-killing beetle present at the site, the mountain pine beetle, did not exhibit responses to any treatment. Natural enemies generally arrived at trees the same time as host bark beetles. However, the landing rates of only one, Medetera spp., was affected by treatment. This predator responded positively to thinning treatments. This insect was present in very high numbers indicating a regulatory effect on beetles, at least in the short-term, in thinned stands. Resin flow decreased from June to August. However, resin flow was significantly higher in trees in August than in June in fire treatments. Increased flow in burned trees later in the season did not affect beetle attack success. Overall, responses by beetles to treatments were short-term and limited to fire-damaged trees. Expansions into green trees did not occur. This lack of spread was likely due to a combination of high tree vigor in residual stands and low background populations of bark beetles.  相似文献   

    16.
    Vast areas of ponderosa pine (Pinus ponderosa Dougl. ex Laws.) forest in the western United States have become unnaturally dense because of relatively recent land management practices that include fire suppression and livestock grazing. In many areas, thinning treatments can re-establish the natural ecological processes and help restore ecosystem structure and function. Precipitous global climate change has focused attention on the carbon storage in forests. An unintended consequence of fire suppression has been the increased storage of carbon in ponderosa stands. Thinning treatments reduce standing carbon stocks while releasing carbon through the combustion of fuel in logging machinery, burning slash, and the decay of logging slash and wood products. These reductions and releases of stored carbon must be compared to the risk of catastrophic fire burning through the stand and releasing large quantities of carbon to the atmosphere to more fully understand the costs and benefits – in carbon terms – of forest restoration strategies.  相似文献   

    17.
    18.
    Seeds from two full-sib families of ponderosa pine (Pinus ponderosa) with known differences in growth rates were germinated and grown in an ambient (350 micro l l(-1)) or elevated (700 micro l l(-1)) CO(2) concentration. Gas exchange at both ambient and elevated CO(2) concentrations was measured 1, 6, 39, and 112 days after the seed coat was shed. Initial stimulation of CO(2) exchange rate (CER) by elevated CO(2) was large (> 100%). On Day 1, CER of seedlings grown in elevated CO(2) and measured at ambient CO(2) was significantly lower than the CER of seedlings grown and measured at ambient CO(2), indicating physiological adjustment of the seedlings exposed to elevated CO(2). Physiological acclimation to elevated CO(2) was complete by Day 39 when there was no significant difference in CER between seedlings grown and measured at ambient CO(2) and seedlings grown and measured at elevated CO(2). After 4 months, the light response of seedlings in the two treatments was determined at both ambient and elevated CO(2). Light compensation point, CER at light saturation, and apparent quantum efficiency of seedlings grown and measured at ambient CO(2) were not significantly different from those of seedlings grown and measured at elevated CO(2). With a short-term increase in CO(2), CER at light saturation (5.16 +/- 0.52 versus 3.13 +/- 0.30 micro mol CO(2) m(-2) s(-1)) and apparent quantum efficiency (0.082 +/- 0.011 versus 0.045 +/- 0.003 micro mol CO(2) micro mol(-1) quanta) were significantly increased. Leaf C/N ratio was significantly increased in the elevated CO(2) treatment. There were few significant differences between families for any response to elevated CO(2). Under the experimental conditions, high growth rate was not correlated with a greater response to elevated CO(2).  相似文献   

    19.
    Patterns of shoot elongation of 2-yr seedlings from native North American populations of ponderosa pine and Douglas-fir were compared to those of Argentine land races originating from unknown provenances. The comparisons were conducted in Moscow, Idaho (USA), and suggested that the ponderosa pine land race was descended from a California provenance at low or middle elevations but that the growth potential of the land race was only mediocre in comparison to eight native populations. The Douglas-fir land race exhibited a relatively high growth potential in comparison to 19 native provenances and undoubtedly originated from a mild coastal environment. The results provide concrete recommendations for upgrading the growth potential of the Argentine land races by importing germ plasm of specific provenances.  相似文献   

    20.
    Prescribed fire is an important tool in the management of ponderosa pine (Pinus ponderosa Dougl. ex Laws.) forests, yet effects on bark beetle (Coleoptera: Curculionidae, Scolytinae) activity and tree mortality are poorly understood in the southwestern U.S. We compared bark beetle attacks and tree mortality between paired prescribed-burned and unburned stands at each of four sites in Arizona and New Mexico for three growing seasons after burning (2004–2006). Prescribed burns increased bark beetle attacks on ponderosa pine over the first three post-fire years from 1.5 to 13% of all trees, increased successful, lethal attacks on ponderosa pine from 0.4 to 7.6%, increased mortality of ponderosa pine from all causes from 0.6 to 8.4%, and increased mortality of all tree species with diameter at breast height >13 cm from 0.6 to 9.6%. On a per year basis, prescribed burns increased ponderosa pine mortality from 0.2% per year in unburned stands to 2.8% per year in burned stands. Mortality of ponderosa pine 3 years after burning was best described by a logistic regression model with total crown damage (crown scorch + crown consumption) and bark beetle attack rating (no, partial, or mass attack by bark beetles) as independent variables. Attacks by Dendroctonus spp. did not differ significantly over bole heights, whereas attacks by Ips spp. were greater on the upper bole compared with the lower bole. Three previously published logistic regression models of tree mortality, developed from fires in 1995–1996 in northern Arizona, were moderately successful in predicting broad patterns of tree mortality in our data. The influence of bark beetle attack rating on tree mortality was stronger for our data than for data from the 1995–1996 fires. Our results highlight canopy damage from fire as a strong and consistent predictor of post-fire mortality of ponderosa pine, and bark beetle attacks and bole char rating as less consistent predictors because of temporal variability in their relationship to mortality. The small increase in tree mortality and bark beetle attacks caused by prescribed burning should be acceptable to many forest managers and the public given the resulting reduction in surface fuel and risk of severe wildfire.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号