首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ObjectiveTo study the anaesthetic and cardiorespiratory effects of intramuscular (IM) administration of different combinations of romifidine and ketamine in cats.Study designProspective, randomized, cross-over experiment.AnimalsSeven healthy adult cats weighing (mean ± SD) 3.4 ± 0.7 kg and aged 4.6 ± 3.2 years.MethodsAnimals received romifidine 100 μg kg?1 with ketamine 7.5 (R100/K7.5) and 10 mg kg?1 (R100/K10), romifidine 200 μg kg?1 with ketamine 5 (R200/K5), 7.5 (R200/K7.5) and 10 mg kg?1 (R200/K10) by IM injection. The time required to perform orotracheal intubation (IT) was measured and the ease of intubation assessed. The onset of anaesthesia (OA), duration of anaesthesia (DA) and anaesthesia recovery times (AR) were measured. Analgesia and muscle relaxation scores were recorded every 5 minutes for 60 minutes after OA. Heart rate, systolic arterial pressure, arterial haemoglobin saturation, respiratory rate, end-tidal carbon dioxide and oesophageal temperature were also measured.ResultsThe IT, OA and DA were not significantly different between the treatments. The analgesia and muscle relaxation scores were similar between all treatments at most time points. The cardiorespiratory variables were not significantly different between the treatments in most cases. The adverse effects were dose dependent and similar to those previously described for other combinations of α2-agonists and ketamine.Conclusions and clinical relevanceAnaesthesia produced by the studied combinations of romifidine and ketamine may only be reliable when conducting brief and noninvasive procedures in cats. The OA times were slower and the DA shorter than those reported for other alpha-2 agonists combined with ketamine. A dose-related increase in the intensity of the anaesthetic effects could not be demonstrated in this study.  相似文献   

2.
ObjectiveTo compare the sedative effects of three doses of romifidine with one dose of medetomidine.Study designProspective blinded experimental cross-over.AnimalsFive adult Domestic Short Hair cats.MethodsCats were administered romifidine at 80, 120 and 160 μg kg?1 or medetomidine at 20 μg kg?1 (M20) intramuscularly (IM). Sedative effects were assessed for 3 hours by summing the scores given to posture, auditory response, resistance to positioning, muscular relaxation, and response to noxious stimuli, giving a total sedation score (TS). The area under the curve (AUC) of TS ≥7 (the score considered as clinically useful sedation) was calculated. Times to stages of sedation were determined. Some physiological parameters were measured. Data to compare treatments were analysed by anova or Kruskal–Wallis test as relevant.ResultsAll treatments gave a TS considered clinically useful. There were no significant differences between treatments for times to onset of sedation, maximum TS reached, or AUC. Differences between romifidine treatments for other sedation parameters were not significant but the time to maximum TS and to recovery was shortest in M20. Heart rate (HR) fell significantly with all treatments and, although with M20 it recovered at 65 minutes, it remained significantly depressed for 3 hours after all romifidine treatments. Most cats vomited, and/or hypersalivated after all treatments.ConclusionsDoses of 80, 120 and 160 μg kg?1 romifidine IM produce sedation in cats which is similar to that following medetomidine 20 μg kg?1. Recovery from sedation and of physiological parameters was quickest after M20.Clinical relevanceDoses of romifidine considerably lower than those investigated by previous authors give a clinically useful level of sedation, and their use might result in less side effects and a quicker recovery.  相似文献   

3.
ObjectiveTo evaluate the clinical effectiveness and the sedative and analgesic effects of intravenous (IV) romifidine in camels.Study designRandomized prospective study.AnimalsEighteen healthy adult Dromedary camels.MethodsRomifidine was administered IV to camels (n = 6) at three different doses (40, 80 or 120 μg kg?1). Time of onset, degree and duration of sedation and analgesia were recorded immediately after drug administration. Heart rate, respiratory rate, ruminal contractions, muscle relaxation, response to auditory and tactile stimulation, distance between ears, distance from lower lip to the ground, and degree of ataxia were also recorded pre-administration and at 5, 15, 30, 45, 60, 90, 120 and 180 minutes post-administration. Plasma glucose, blood urea nitrogen and creatinine were measured.ResultsRomifidine produced dose dependent sedation and analgesia. Significant decreases in heart rate (p < 0.001), ruminal contractions (p < 0.05), distance from lower lip to the ground (p < 0.001), response to auditory and tactile stimuli (p < 0.01), and significant increases in the degree of ataxia (p < 0.01), distance between the ear tips (p < 0.001) and blood glucose (p < 0.01) concentration were recorded after administration of romifidine until recovery. However, no significant changes in rectal temperature and respiratory rate were recorded.Conclusions and clinical relevanceIntravenous administration of romifidine at three different doses appeared to be an effective sedative and analgesic agent for camels. Bradycardia, ruminal atony, and hyperglycemia were the most important adverse effects after IV administration of romifidine. The IV administration of romifidine at a dose rate of 120 μg kg?1 caused profound sedation and analgesia. Romifidine could be used for chemical restraint for a variety of diagnostic and minor surgical procedures in camels.  相似文献   

4.
This study was designed to compare the effects of three doses of romifidine (200, 400 and 600 microg/kg) with medetomidine (80 microg/kg) administered intramuscularly to five cats. The quality of sedation and the cardiovascular and respiratory effects of each treatment were evaluated, and the onset and duration of the sedation, and the cats' recovery times, were measured. Cardiorespiratory variables were also analysed. The dose of 200 microg/kg romifidine was clinically superior to the other doses of romifidine, providing moderate sedation, with minor cardiorespiratory and other adverse effects. However none of the doses of romifidine induced as deep and reliable sedation as the dose of medetomidine.  相似文献   

5.
This study was performed to evaluate the sedative and analgesic effects of xylazine (X) and tramadol (T) intravenously (IV) administered to horses. Six thoroughbred saddle horses each received X (1.0 mg/kg), T (2.0 mg/kg), and a combination of XT (1.0 and 2.0 mg/kg, respectively) IV. Heart rate (HR), respiratory rate (RR), rectal temperature (RT), indirect arterial pressure (IAP), capillary refill time (CRT), sedation, and analgesia (using electrical stimulation and pinprick) were measured before and after drug administration. HR and RR significantly decreased from basal values with X and XT treatments, and significantly increased with T treatment (p < 0.05). RT and IAP also significantly increased with T treatment (p < 0.05). CRT did not change significantly with any treatments. The onset of sedation and analgesia were approximately 5 min after both X and XT treatments; however, the XT combination produced a longer duration of sedation and analgesia than X alone. Two horses in the XT treatment group displayed excited transient behavior within 5 min of drug administration. The results suggest that the XT combination is useful for sedation and analgesia in horses. However, careful monitoring for excited behavior shortly after administration is recommended.  相似文献   

6.
OBJECTIVE: To determine sedative and cardiorespiratory effects of romifidine alone and romifidine in combination with butorphanol and effects of preemptive atropine administration in cats sedated with romifidine-butorphanol. DESIGN: Randomized crossover study. ANIMALS: 6 healthy adult cats. PROCEDURES: Cats were given saline (0.9% NaCl) solution followed by romifidine alone (100 microg/kg [45.4 microg/lb], i.m.), saline solution followed by a combination of romifidine (40 microg/kg [18.1 microg/lb], i.m.) and butorphanol (0.2 mg/kg [0.09 mg/lb], i.m.), or atropine (0.04 mg/kg [0.02 mg/lb], s.c.) followed by romifidine (40 microg/kg, i.m.) and butorphanol (0.2 mg/kg, i.m.). Treatments were administered in random order, with > or = 1 week between treatments. Physiologic variables were determined before and after drug administration. Time to recumbency, duration of recumbency, time to recover from sedation, and subjective evaluation of sedation, muscle relaxation, and analgesia were assessed. RESULTS: Bradycardia developed in all cats that received saline solution and romifidine-butorphanol or romifidine alone. Preemptive administration of atropine prevented bradycardia for 50 minutes in cats given romifidine-butorphanol. Oxyhemoglobin saturation was significantly decreased 10 minutes after romifidine-butorphanol administration in atropine-treated cats. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggested that administration of romifidine alone or romifidine-butorphanol causes a significant decrease in heart rate and that preemptive administration of atropine in cats sedated with romifidine-butorphanol effectively prevents bradycardia for 50 minutes.  相似文献   

7.
ObjectiveTo compare xylazine and romifidine constant rate infusion (CRI) protocols regarding degree of sedation, and effects on postural instability (PI), ataxia during motion (A) and reaction to different stimuli.Study designBlinded randomized experimental cross-over study.AnimalsTen adult horses.MethodsDegree of sedation was assessed by head height above ground (HHAG). Effects on PI, A and reaction to visual, tactile and acoustic stimulation were assessed by numerical rating scale (NRS) and by visual analogue scale (VAS). After baseline measurements, horses were sedated by intravenous loading doses of xylazine (1 mg kg?1) or romifidine (80 μg kg?1) administered over 3 minutes, immediately followed by a CRI of xylazine (0.69 mg kg?1 hour?1) or romifidine (30 μg kg?1 hour?1) which was administered for 120 minutes. Degree of sedation, PI, A and reaction to the different stimuli were measured at different time points before, during and for one hour after discontinuing drug administration. Data were analysed using two-way repeated measures anova, a Generalized Linear Model and a Wilcoxon Signed Rank Test (p < 0.05).ResultsSignificant changes over time were seen for all variables. With xylazine HHAG was significantly lower 10 minutes after the loading dose, and higher at 150 and 180 minutes (i.e. after CRI cessation) compared to romifidine. Reaction to acoustic stimulation was significantly more pronounced with xylazine. Reaction to visual stimulation was greater with xylazine at 145 and 175 minutes. PI was consistently but not significantly greater with xylazine during the first 30 minutes. Reaction to touch and A did not differ between treatments. Compared to romifidine, horses were more responsive to metallic noise with xylazine.ConclusionsTime to maximal sedation and to recovery were longer with romifidine than with xylazine.Clinical relevanceWith romifidine sufficient time should be allowed for complete sedation before manipulation.  相似文献   

8.
9.
Sedative effects of romifidine in the dog   总被引:5,自引:0,他引:5  
The sedative and physiological effects of intravenous romifidine at 0, 20, 40, 80 and 120 μg/kg were investigated in five clinically normal adult male beagle dogs in a blind study using a Latin square design. Following the injection of romifidine, the dogs became ataxic and stood with a wide-based stance, they exhibited signs of skeletal muscle relaxation and their heads were lowered. All the dogs became recumbent and there was a reduction in the heart and respiratory rates. Increasing the dose from 20 to 40 μg/kg, or higher, produced a significant reduction in heart rate. There was an increase in the sedation score following even low doses of romifidine, and although measures of sedation showed no differences among romifidine doses, subjectively, the higher doses produced a more consistent effect. Dogs given lower doses of romifidine regained a standing position more rapidly than following the higher doses, although this effect was not significantly different. A second blind study compared the sedative effects of intravenous romifidine, at 40 and 80 μg/kg, with mede-tomidine at 10 μg/kg in six adult beagles. The cardiopulmonary and sedative effects were not significantly different between all regimens, although medetomidine at 10 μg/kg appeared to be intermediate in effect between romifidine at 40 and 80 μ/kg. The sedative and physiological effects of romifidine in dogs appear to be similar to other α2-adrenoceptor agonists. Intravenous administration provided sedation which might be clinically useful.  相似文献   

10.

Objective

To determine the effects of brimonidine tartrate ophthalmic solution on sedation, heart rate (HR), respiratory frequency (fR), rectal temperature (RT) and noninvasive mean arterial pressure (MAP) in healthy cats.

Study design

Randomized, blinded crossover study, with 1 week washout between treatments.

Animals

Six healthy purpose-bred cats.

Methods

Brimonidine tartrate ophthalmic solution 0.1% (one or two drops; 58.6 ± 3.3 μg per drop) or a control solution (artificial tear solution) was administered to six healthy cats. Behavioural observations and measurements of HR, fR, RT and MAP were recorded before and at 30, 60, 90, 120, 180, 240, 300 and 360 minutes after topical administration. Behavioural scores were analysed using Friedman’s test for repeated measures to evaluate the time effect in each treatment and treatment effect at each time point. Physiological variables (HR, fR, RT and MAP) were analysed using two-way analysis of variance for repeated measures to evaluate the time and treatment effects. The level of significance was set at p < 0.05.

Results

Dose-dependent behavioural and physiological responses were noted. A dose of two drops of brimonidine resulted in sedation in the cats and decreased HR and MAP. Significant sedative effects occurred between 30 and 120 minutes and for physiological responses up to 360 minutes. The most frequent adverse reaction was vomiting, occurring within 40 minutes in all six cats administered two drops and five of the six cats administered one drop of brimonidine.

Conclusions and clinical relevance

The results demonstrated that ocular administration of brimonidine 0.1% ophthalmic solution induced sedation in cats and some cardiovascular effects usually associated with α2-adrenoceptor agonists. Further studies should be performed to determine clinical applications for this agent in cats.  相似文献   

11.
ObjectiveTo evaluate the sedative and analgesic effects of intramuscular buprenorphine with either dexmedetomidine or acepromazine, administered as premedication to cats and dogs undergoing elective surgery.Study designProspective, randomized, blinded clinical study.AnimalsForty dogs and 48 cats.MethodsAnimals were assigned to one of four groups, according to anaesthetic premedication and induction agent: buprenorphine 20 μg kg?1 with either dexmedetomidine (dex) 250 μg m?2 or acepromazine (acp) 0.03 mg kg?1, followed by alfaxalone (ALF) or propofol (PRO). Meloxicam was administered preoperatively to all animals and anaesthesia was always maintained using isoflurane. Physiological measures and assessments of pain, sedation and mechanical nociceptive threshold (MNT) were made before and after premedication, intraoperatively, and for up to 24 hours after premedication. Data were analyzed with one-way, two-way and mixed between-within subjects anova, Kruskall–Wallis analyses and Chi squared tests. Results were deemed significant if p ≤ 0.05, except where multiple comparisons were performed (p ≤ 0.005).ResultsCats premedicated with dex were more sedated than cats premedicated with acp (p < 0.001) and ALF doses were lower in dex cats (1.2 ± 1.0 mg kg?1) than acp cats (2.5 ± 1.9 mg kg?1) (p = 0.041). There were no differences in sedation in dogs however PRO doses were lower in dex dogs (1.5 ± 0.8 mg kg?1) compared to acp dogs (3.3 ± 1.1 mg kg?1) (p < 0.001). There were no differences between groups with respect to pain scores or MNT for cats or dogs.ConclusionChoice of dex or acp, when given with buprenorphine, caused minor, clinically detectable, differences in various characteristics of anaesthesia, but not in the level of analgesia.Clinical relevanceA combination of buprenorphine with either acp or dex, followed by either PRO or ALF, and then isoflurane, accompanied by an NSAID, was suitable for anaesthesia in dogs and cats undergoing elective surgery. Choice of sedative agent may influence dose of anaesthetic induction agent.  相似文献   

12.
The aim of this investigation was to determine and evaluate the sedative, analgesic, clinicophysiological and haematological effects of intravenous (i.v.) injection of detomidine, detomidine‐butorphanol, romifidine and romifidine‐butorphanol. Six standing donkeys were used. Each donkey received 4 i.v. treatments and the order of treatment was randomised with a one‐week interval between each treatment. We found that i.v. injection of a combination of detomidine‐butorphanol or romifidine‐butorphanol produced potent neuroleptanalgesic effects thus providing better, safe and effective sedation with complete analgesia in standing donkeys compared with injection of detomidine or romifidine alone. The changes and reduction in pulse rate were within acceptable limits. The changes in clinicophysiological, haematological and biochemical values were mild and transient in these clinically healthy donkeys.  相似文献   

13.
OBJECTIVE: To evaluate by echo- and electrocardiography the cardiac effects of sedation with detomidine hydrochloride, romifidine hydrochloride or acepromazine maleate in horses. STUDY DESIGN: An experimental study using a cross-over design without randomization. ANIMALS: Eight clinically normal Standardbred trotters. MATERIALS AND METHODS: Echocardiographic examinations (two-dimensional, guided M-mode and colour Doppler) were recorded on five different days. Heart rate (HR) and standard limb lead electrocardiograms were also obtained. Subsequently, horses were sedated with detomidine (0.01 mg kg(-1)), romifidine (0.04 mg kg(-1)) or acepromazine (0.1 mg kg(-1)) administered intravenously and all examinations repeated. RESULTS: Heart rate before treatment with the three drugs did not differ significantly (p = 0.98). Both detomidine and romifidine induced a significant decrease (p < 0.001) in HR during the first 25 minutes after sedation; while acepromazine had a varying effect on HR. For detomidine, there was a significant increase in LVIDd (left ventricular internal diameter in diastole; p = 0.034) and LVIDs (left ventricular internal diameter in systole; p < 0.001). In addition, a significant decrease was found in IVSs (the interventricular septum in systole; p < 0.001), LVFWs (the left ventricular free wall in systole; p = 0.002) and FS% (fractional shortening; p < 0.001). The frequency of pulmonary regurgitation was increased significantly (p < 0.001). Romifidine induced a significant increase in LVIDs (p < 0.001) and a significant decrease in IVSs (p < 0.001) and FS% (p = 0.002). Acepromazine had no significant effect upon any of the measured values. CONCLUSIONS: and clinical relevance The results indicate that sedation of horses with detomidine and to a lesser extent romifidine at the doses given in this study has a significant effect on heart function, echocardiographic measurements of heart dimensions and the occurrence of valvular regurgitation. Although the clinical significance of these results may be minimal, the potential effects of sedative drugs should be taken into account when echocardiographic variables are interpreted in clinical cases.  相似文献   

14.
ObjectiveTo determine the cardiorespiratory and anesthetic effects of 0, 5, 15, and 50 mg kg?1 intravenous (IV) alfaxalone in hydroxypropyl beta cyclodextrin (Alfaxan; Jurox Pty Ltd, Rutherford, NSW, Australia) in cats.Study designFour treatments of alfaxalone were administered in sequential order.AnimalsEight healthy adult cats (four male; four female) weighing between 3.71 and 5.91 kg.MethodsCats were instrumented for hemodynamic measurements. Four (0, 5, 15, and 50 mg kg?1) IV doses of alfaxalone were administered over one minute, with a 3-hour washout period between doses 0, 5, and 15 mg kg?1 on Day 0. The 50 mg kg?1 treatment was administered 24 hours later. Measurements of heart rate, aortic systolic, mean, and diastolic blood pressures, pulmonary arterial and right atrial mean pressures, cardiac output, respiratory rate, tidal and minute volumes, and arterial blood pH and blood gases (PaO2, PaCO2) were performed at pre-determined intervals. Systemic vascular resistance and rate pressure product were calculated. The quality of induction, maintenance, and recovery from anesthesia and the response to noxious stimulation were categorically scored.ResultsAlfaxalone administration resulted in dose-dependent cardiorespiratory depression. Decreases in arterial blood pressure and increases in heart rate occurred at higher doses. Most variables returned to baseline by 15-30 minutes. Respiratory rate, minute volume, and PaO2 decreased. Apnea was the most common side effect. Induction and maintenance quality were judged to be good to excellent at all doses and quality of recovery good to excellent at all but the 50 mg kg?1 dose. The duration of anesthesia and unresponsiveness to noxious stimulation increased with dose. The administration of the 50 mg kg?1 dose produced marked cardiorespiratory depression and apnea.Conclusions and clinical relevanceAlfaxalone produced dose-dependent anesthesia, cardiorespiratory depression and unresponsiveness to noxious stimulation in unpremedicated cats. Hypoventilation and apnea were the most common side effects.  相似文献   

15.
ObjectiveTo evaluate the anti-nociceptive and sedative effects of slow intravenous (IV) injection of tramadol, romifidine, or a combination of both drugs in ponies.Study designWithin-subject blinded.AnimalsTwenty ponies (seven male, 13 female, weighing mean ± SD 268.0 ± 128 kg).MethodsOn separate occasions, each pony received one of the following three treatments IV; romifidine 50 μg kg (R) tramadol 3 mg kg−1 given over 15 minutes (T) or tramadol 3 mg kg−1followed by romifidine 50 μg kg−1 (RT). Physiologic parameters and caecal borborygmi (CB) were measured and sedation and response to electrical stimulation of the coronary band assessed before and up to 120 minutes following drugs administration. Results were analyzed using the Friedman’s test and 2 way anova as relevant.ResultsWhen compared to baseline, heart (HR, beats minute−1) and respiratory rates (fR, breaths minute−1) increased with treatment T (highest mean ± SD, HR 43 ± 1; fR 33 ± 2) and decreased with R (lowest HR 29 ± 1 and fR 10 ± 4) and RT (lowest HR 32 ± 1 and fR 9 ± 3). There were no changes in other measured physiological variables. The height of head from the ground was lower following treatments R and TR than T. There was slight ataxia with all three treatments. No excitatory behavioural effects were observed. The response to electrical stimulation was reduced for a prolonged period relative to baseline following all three treatments, the effect being significantly greatest with treatment RT.ConclusionTramadol combined with romifidine at the stated doses proved an effective sedative and anti-nociceptive combination in ponies, with no unacceptable behavioural or physiologic side effects.Clinical relevanceSlow controlled administration of tramadol should reduce the occurrence of adverse behavioural side effects.  相似文献   

16.
ObjectiveTo investigate the cardiovascular effects of epidural romifidine in isoflurane-anaesthetized dogs.Study designProspective, randomized, blinded experiment.AnimalsA total of six healthy adult female Beagles aged 1.25 ± 0.08 years and weighing 12.46 ± 1.48 (10.25–14.50) kg.MethodsAnaesthesia was induced with propofol (6–9 mg kg?1) and maintained with 1.8–1.9% end-tidal isoflurane in oxygen. End-tidal CO2 was kept between 35 and 45 mmHg (4.7–6.0 kPa) using intermittent positive pressure ventilation. Heart rate (HR), arterial blood pressure and cardiac output (CO) were monitored. Cardiac output was determined using a LiDCO monitor and the derived parameters were calculated. After baseline measurements, either 10 μg kg?1 romifidine or saline (total volume 1 mL 4.5 kg?1) was injected into the lumbosacral epidural space. Data were recorded for 1 hour after epidural injection. A minimum of 1 week elapsed between treatments.ResultsAfter epidural injection, the overall means (± standard deviation, SD) of HR (95 ± 20 bpm), mean arterial blood pressure (MAP) (81 ± 19 mmHg), CO (1.63 ± 0.66 L minute?1), cardiac index (CI) (2.97 ± 1.1 L minute?1 m?2) and stroke volume index (SI) (1.38 ± 0.21 mL beat?1 kg?1) were significantly lower in the romifidine treatment compared with the overall means in the saline treatment [HR (129 ± 24 bpm), MAP (89 ± 17 mmHg), CO (3.35 ± 0.86 L minute?1), CI (6.17 ± 1.4 L minute?1 m?2) and SI (2.21 ± 0.21 mL beat?1 kg?1)]. The overall mean of systemic vascular resistance index (SVRI) (7202 ± 2656 dynes seconds cm?5 m?2) after epidural romifidine injection was significantly higher than the overall mean of SVRI (3315 ± 1167 dynes seconds cm?5 m?2) after epidural saline injection.ConclusionEpidural romifidine in isoflurane-anaesthetized dogs caused significant cardiovascular effects similar to those reportedly produced by systemic romifidine administration.Clinical relevanceSimilar cardiovascular monitoring is required after epidural and systemically administered romifidine. Further studies are required to evaluate the analgesic effects of epidural romifidine.  相似文献   

17.
OBJECTIVE: To evaluate the effects of three anaesthetic combinations in adult European badgers (Meles meles). STUDY DESIGN: Prospective, randomized, blinded, experimental trial. ANIMALS: Sixteen captive adult badgers. METHODS: The badgers were each anaesthetized by intramuscular injection using the three techniques assigned in random order: romifidine 0.18 mg kg(-1), ketamine 10 mg kg(-1) and butorphanol 0.1 mg kg(-1) (RKB); medetomidine 0.1 mg kg(-1), ketamine 9 mg kg(-1) and butorphanol 0.1 mg kg(-1) (MKB); and medetomidine 0.1 mg kg(-1) and ketamine 10 mg kg(-1) (MK). Initial drug doses were calculated based on a body mass of 10 kg. Additional anaesthetic requirements, time to drug effect, duration of action and recovery from anaesthesia were recorded. Heart rate and rhythm, respiratory rate and rhythm, rectal and subcutaneous microchip temperature and oxygen saturation were recorded every 5 minutes. Depth of anaesthesia was assessed using: muscle tone; palpebral and pedal reflexes; and tongue relaxation at these time points. Blood samples and a tracheal aspirate were obtained under anaesthesia. Atipamezole was administered if the badger had not recovered within 60 minutes Parametric data were analysed using anova for repeated measures, and nonparametric data using Friedman's, and Cochran's Q tests: p < 0.05 was considered significant. RESULTS: All combinations produced good or excellent muscle relaxation throughout the anaesthetic period. RKB had the shortest duration of anaesthesia (16.8 minutes compared with MKB 25.9 minutes and MK 25.5 minutes) and antagonism was not required. RKB depressed respiratory rate less than MK and MKB. There was no significant difference between techniques for heart rate and rhythm. CONCLUSIONS AND CLINICAL RELEVANCE: All combinations provided anaesthetic conditions suitable for sampling and identification procedures in adult badgers. The RKB protocol provided a significantly shorter period of anaesthesia when compared with the combinations containing medetomidine.  相似文献   

18.
ObjectiveTo compare sedation and antinociception after oral transmucosal (OTM) and intramuscular (IM) administration of a dexmedetomidine-buprenorphine combination in healthy adult cats.Study designRandomized, ‘blinded’ crossover study, with 1 month washout between treatments.AnimalsSix healthy neutered female cats, weighing 5.3–7.5 kg.MethodsA combination of dexmedetomidine (40 μg kg?1) and buprenorphine (20 μg kg?1) was administered by either the OTM (buccal cavity) or IM (quadriceps muscle) route. Sedation was measured using a numerical rating scale, at baseline and at various time points until 6 hours after treatment. At the same time points, analgesia was scored using a dynamic and interactive visual analogue scale, based on the response to an ear pinch, and by the cat’s response to a mechanical stimulus exerted by a pressure rate onset device. Physiological and adverse effects were recorded, and oral pH measured. Signed rank tests were performed, with significance set at p < 0.05. Data are presented as median and range.ResultsThere were no differences in sedation or antinociception scores between OTM and IM dosing at any of the time points. Nociceptive thresholds increased after both treatments but without significant difference between groups. Buccal pH remained between 8 and 8.5. Salivation was noted after OTM administration (n = 2) and vomiting after both OTM (n = 4), and IM (n = 3) dosing.Conclusions and clinical relevanceIn healthy adult cats, OTM administration of dexmedetomidine and buprenorphine resulted in comparable levels of sedation and antinociception to IM dosing. The OTM administration may offer an alternative route to administer this sedative-analgesic combination in cats.  相似文献   

19.
A technique of transrectal ultrasonography was developed to investigate the effects of romifidine 80 and 120 microg/kg bwt on intestinal motility in the horse. Motility of the small intestine, caecum and left ventral colon were assessed following injection of romifidine and a saline control, using a blinded, cross-over study design in 6 horses. Measurements were taken at 15, 30, 60, 120, 180 and 240 min after drug administration. There was a slight nonsignificant decrease in motility in the control group over the 4 h study period. Both doses of romifidine produced a marked decrease in gastrointestinal motility and were associated with the presence of reduced (nonpropulsive) contractions. Transrectal ultrasonography proved suitable for monitoring changes in the type and frequency of intestinal motility in the horse.  相似文献   

20.
Objective To determine the cardiopulmonary response to romifidine (RO) in the dog with or without prior or concurrent administration of glycopyrrolate. Study Design Randomized, cross‐over experimental study. Animals Six (three male, three female) cross‐bred dogs weighing 23 ± 2.4 kg. Methods Two‐dimensional guided M‐mode echocardiography was performed in conscious dogs simultaneously with measurement of systolic arterial blood pressure (SBP) and heart rate (HR). Dimensions of the left ventricle (LVID), interventricular septum (IVS), and left ventricular free wall (LVFW) were obtained in systole (S) and diastole (D). Amplitude of motion (Amp) of the IVS and LVFW were also measured. From these, measures of wall stress (WS) and fractional shortening (FS) of the left ventricle were derived. Baseline echocardiographic measurements were recorded, following which one of the five treatments was administered. Glycopyrrolate (G) 0.01 mg kg?1, or saline (S) 0.5 mL, was administered IM as pre‐medication (Gp or Sp), or G was administered concurrently (Gc) with romifidine (RO). Treatments were: T1, Sp + RO (40 μg kg?1); T2, Gp + RO (40 μg kg?1); T3, Sp + RO (120 μg kg?1); T4, Gp + RO (120 μg kg?1); and T5, Sp + Gc +RO (120 μg kg?1). Romifidine or RO + Gc was administered SC 20 minutes after pre‐medication (time 0), and further measurements were taken 10, 20, 30, 60, and 90 minutes after RO. Results Echocardiographic indices of cardiac systolic function (LVID‐S, FS, Amp‐LVFW) and HR were decreased in RO‐sedated dogs (p < 0.0001) . The magnitude of change in cardiac indices was least with low‐dose RO. At most sampling times, high‐dose RO produced significantly more alteration in cardiac indices. Systolic blood pressure increased in all treatment groups, with the greatest increases in those groups receiving G. Glycopyrrolate significantly increased HR; however, cardiac indices were further reduced. Wall stress significantly increased, with a more dramatic increase in groups receiving G. Conclusions Indices of LV systolic function were reduced in RO‐sedated dogs in a dose‐related manner. Glycopyrrolate further reduced these indices and dramatically increased measurements of wall stress in dogs sedated with RO. Clinical relevance Use of low‐dose RO minimizes cardiac dysfunction; however, it should still be used cautiously in dogs with cardiomyopathy or heart failure. The routine use of G is not recommended to alleviate the bradycardia associated with RO in conscious dogs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号