首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为降低苹果损伤造成的商业损失,延长苹果的储存期,利用高光谱成像技术实现了基于特征波段的苹果表面轻微机械损伤的快速、无损检测。以120个富士苹果为研究对象,首先利用波段范围在400~1 000nm的高光谱成像光谱仪获取完好和轻微损伤0、2、4 h的富士苹果的高光谱图像,并提取感兴趣区域的平均光谱数据,然后通过两次连续投影法进行分析,去除光谱波段间的冗余信息,找到共线性最小的波段组合(821 nm和940 nm);其次,对特征波段图像进行主成分分析,选择完好与损伤区域差异明显的第二主成分(PC2)作为检测损伤的有效图像;最后,对有效图像进行固定阈值分割和形态学处理,得到苹果表面机械损伤的检测结果。利用该方法对验证组40个正常和轻微损伤不同时间段的苹果进行测试,总体正确率达到94. 4%。  相似文献   

2.
为快速有效检测不同品种苹果轻微损伤,以‘金冠’、‘花牛’、‘富士’和青苹果各54个轻微损伤果为研究对象,采用高光谱图像技术获得各个苹果可见-近红外(400~1 000nm)波段的图像,结合光谱微分技术选取波谷的9个波长(556、617、664、706、763、832、880、906、938nm)为特征波长,然后基于特征波长进行最小噪声分离(Minimum Noise Fraction,MNF)变换,筛选出苹果轻微损伤的特征图像并通过阈值分割、形态学运算等方法识别苹果轻微损伤部位。结果表明,该方法识别‘金冠’、‘花牛’、‘富士’和青苹果轻微损伤部位的准确率分别为92.6%、88.9%、85.2%、85.2%。由此可见,利用高光谱微分方法可以快速有效地检测不同品种的苹果轻微损伤,且苹果的颜色越深、硬度越大、纹理越杂乱,检测精度越低。  相似文献   

3.
在6GF–4型林果无损检测与分选成套设备中,设计了基于可见/近红外光谱的柑橘糖度在线检测分选系统,系统主要包括传输装置、光谱采集装置、控制系统以及分选装置。系统在柑橘果实运动状态中采集其光谱信息,并通过所建立的果实糖度模型进行同步计算,根据所得糖度值对柑橘果实实现在线分选。在光谱采集装置中设计了双透镜式光路,可改变投射于柑橘果实上的光斑大小,通过研究比较试验参数积分时间和光斑尺寸大小,得出系统的最佳采集参数为积分时间100 ms,光斑尺寸设置为小,样本移动速率为5个/s。建立的SPXY–CARS–PLSR柑橘糖度在线检测模型校准集和预测集的决定系数分别为0.938和0.836,校准集和预测集的均方根误差分别为0.273°Brix和0.418°Brix。使用未参与建模的25个柑橘果实样本进行外部验证集的在线检测和分选,结果在1°Brix的误差范围内,检测糖度的准确率为92%;当样本分为4个等级时,系统分选正确率为92%;当样本分为3个等级时,系统分选正确率可达100%。  相似文献   

4.
针对产线分拣缺陷柑橘费时费力等问题,以柑橘加工生产线输送机上随机旋转的柑橘果实为研究对象,开发了一种基于卷积神经网络(CNN)的检测算法Mobile-citrus,用于检测和暂时分类缺陷果实,并采用Tracker-citrus跟踪算法来记录其路径上的分类信息,通过跟踪的历史信息识别柑橘的真实类别。结果显示,跟踪精度达到98.4%,分类精度达到92.8%。同时还应用基于Transformer的轨迹预测算法对果实的未来路径进行了预测,平均轨迹预测误差达到最低2.98个像素,可用于指导机器人手臂分选缺陷柑橘。试验结果表明,所提出的基于CNN-Transformer的缺陷柑橘视觉分选系统,可直接应用在柑橘加工生产线上实现快速在线分选。  相似文献   

5.
基于高光谱成像的苹果病害无损检测方法   总被引:1,自引:0,他引:1  
苹果果实易发生病害,传统的苹果病害的检测不适应苹果分级在线检测的要求。为了实现病害苹果快速、有效的在线检测,采用高光谱成像技术对寒富苹果的炭疽病、苦痘病、黑腐病和褐斑病的病害果进行无损检测研究。根据正常区域与病害区域光谱相对反射率差异,提出改进流形距离方法。综合计算病害与正常区域,病害与果梗/花萼区域,正常与果梗/花萼区域的光谱相对反射率的总改进流行距离L值,从而从全波段中选择了3个特征波段,分别为700,765,904nm。对700nm特征波段下的图像进行阈值分割,以此获得掩膜图像,并对掩膜后的图像二次阈值分割提取感兴趣区域。将3个特征波段下对应的光谱相对反射率分别组合,作为BP神经网络的输入矢量,检测苹果是否为病害果。结果表明:选择700nm与904nm波段下的光谱相对反射率为最佳组合,病害果的检测率达96.25%。说明高光谱成像技术所获得的2个特征波段可以有效对苹果病害进行检测,为开发多光谱成像的苹果品质在线检测和分级系统提供参考。  相似文献   

6.
基于机器视觉的柑橘表面缺陷检测   总被引:1,自引:0,他引:1  
针对柑橘人工分类强度高、效率低、精度差的问题,为实现快而准确的柑橘缺陷检测,提出一种基于机器视觉技术的缺陷检测方法。在VS2013环境下利用开源计算机视觉库OpenCV进行开发,根据柑橘的颜色与形状特点,将图像颜色模型由RGB转换为HSV,利用HSV图像进行背景去除后,在HSV颜色模型下利用V分量灰度图边缘检测与形态学处理的方法以提取柑橘表面的缺陷特征。结果表明,柑橘表面缺陷检测的总体识别率为92%,所用方法能有效地识别柑橘表面的缺陷。  相似文献   

7.
【目的】研究苹果损伤高光谱特征,建立基于高光谱成像的苹果损伤区域最佳分类模型,为实时、快速、准确地识别苹果损伤提供重要依据。【方法】以北京平谷区收集的苹果样品为研究对象,利用高光谱图像技术检测水果表面机械损伤。利用 390 ~1 000 nm 范围的高光谱图像(HSI)数据,通过比值光谱分析损伤与正常感兴趣区域(ROI)的光谱响应特性,筛选特征波段,并构建较好地突出损伤区域特征的 3 种类型光谱指数:归一化光谱指数(NDSI)、比值光谱指数(RSI)和差值光谱指数(DSI)。在此基础上,优选提取损伤区域能力较强的光谱指数,利用迭代自组织数据分析(ISODATA)无监督据聚类算法提取苹果损伤区域。【结果】当苹果表面受到损伤时,光谱反射率变化显著。波段优化后发现,528、676 nm 的反射率可以有效识别异常区域。基于选定的特征波段,构建苹果损伤检测的识别光谱指数,包括 NDSI、RSI 和 DSI。光谱指数图像的像素值分析发现,损伤区域特征与正常区域特征在各光谱指数(SI)增强图像中区分明显。两类图像特征的 NDSI 像素平均值相差最大、达到 0.629,表明建立的 NDSI 对损伤区域及正常区域特征具有较强的区分能力。利用无监督分类方法 ISODATA 分类,验证了光谱特征指数在检测苹果损伤方面具有较高的特异性,对苹果损伤的检测正确率 达到 92.50%。【结论】研究结果适用于苹果损伤的实时快速检测,为苹果的精准管理生产提供技术基础与参考。  相似文献   

8.
针对实际生产线上基于高光谱成像技术检测苹果内部品质时由于高亮区、果梗和果萼等区域光谱差异大导致的糖度误差问题,本研究提出了一种随机姿态下苹果高光谱图像感兴趣区域的选取方法,可实现感兴趣区域的自动选取。该方法首先将高光谱图像各像素点按照700 nm波长的光谱强度值进行直方图统计,获取各像素点光谱强度的大小关系,保留光谱强度前40%的区域,对其进行形态学腐蚀操作,去除其中700 nm光谱强度值大于3 900的过度曝光像素点,获得苹果原始感兴趣区域;然后基于原始感兴趣区域,建立不同大小感兴趣区域对应的平均光谱与苹果糖度的偏最小二乘回归(PLSR)模型,探究苹果感兴趣区域大小与预测精度的关系,进一步缩小感兴趣区域。最终选取原始感兴趣区域光谱强度前70%的区域作为感兴趣区域对任意姿态下的苹果糖度进行预测。基于该方法,建立了基于高光谱成像技术的苹果糖度无损检测模型,实测验证结果表明,经黑白校正、标准正态变换(SNV)预处理后建立的竞争性自适应重加权算法偏最小二乘回归模型(CARS-PLSR)的预测精度最高,其校正集决定系数(R■)为0.9206,校正集均方根误差(RMSECV)为0.3203°Br...  相似文献   

9.
基于机器视觉的成熟柑橘自动识别研究   总被引:1,自引:0,他引:1  
针对自然生长状态下成熟柑橘图像的识别问题,采用2R-G-B色差分量,通过Ostu自适应阈值算法进行图像分割,用面积阈值的方法消除噪声来获取成熟柑橘图像的目标区域,然后利用最小二乘拟合方法拟合出目标区域的质心及半径等特征参数。结果显示,识别正确率在90%以上。  相似文献   

10.
【目的】中国柑橘产区分布广、生态类型复杂,不同产地纽荷尔脐橙果实品质和市场效应具有较大差异。研究基于近红外光谱技术的柑橘产地识别技术,利于不同柑橘产地果品的识别和鉴伪。【方法】从中国南方17个纽荷尔脐橙主要产地选择代表性成年果园,分别采摘成熟鲜果样品100个。利用SupNIR-1500近红外分析仪采集脐橙果实赤道部、肩部表面以及果汁滤液的近红外反射光谱,光谱波长范围为1 000-2 499 nm。采用主成分分析法对原始光谱数据进行预处理,提取近红外光谱的特征信息以降低数据集维度以及噪声。研究人工神经网络理论,构建由一个输入层、一个具有非线性激励函数的隐藏层和一个输出层组成的典型的3层人工神经网络识别模型。研究由径向基函数作为核函数、以光谱主成分作为输入的支持向量机模型,构建由126个分类器组成的一对一扩展支持向量机模型。研究遗传算法优异的自然选择特性,利用遗传算法从光谱主成分中选择出最优的特征基因子集作为支持向量机的输入,构建遗传算法-支持向量机模型。利用3种模型分别对果汁滤液的近红外反射光谱数据进行分类,从而实现产地识别测试,并根据产地识别精度筛选出最优的产地识别模型。进一步对比该最优识别模型对果实赤道部、肩部反射光谱数据的识别精度,从而确定识别精度最高的光谱数据采集源。【结果】利用所建立的3层人工神经网络模型对纽荷尔脐橙果汁滤液的近红外光谱进行产地识别测试,确定当输入神经元数量为11、隐藏神经元数量为13时,模型对果实产地识别的最佳精度达81.45%。采用一对一扩展方式建立支持向量机产地识别模型,研究确定采用径向基函数作为核函数,当主成分数量为20时,脐橙产地识别精度最高可达86.98%。测试利用遗传算法-支持向量机混合模型进行脐橙产地分类识别,确定当种群数量为200、遗传代数为100、交叉概率0.7、突变概率0.01时,遗传算法选择出最优的基因子集进行产地识别,遗传算法-支持向量机模型的产地识别精度最高可达89.72%,优于人工神经网络分类模型和支持向量机分类模型的产地识别精度。进一步利用遗传算法-支持向量机产地识别模型对果实赤道部及肩部的果面反射光谱进行产地识别测试,得到对应的最高识别精度分别为80.00%和69.00%。【结论】遗传算法-支持向量机模型对果汁反射近红外光谱进行产地识别精度最高,优于人工神经网络模型和支持向量机模型。该模型对果实赤道部反射光谱进行分类的精度次于果汁滤液反射光谱但优于果实肩部反射光谱,因此,可利用赤道部的反射光谱实现非破坏性果实产地分类识别。  相似文献   

11.
基于高光谱成像技术的苹果表面轻微损伤检测   总被引:1,自引:0,他引:1  
为了研究检测苹果表面轻微损伤的有效的方法,以红富士苹果为试验样本,通过高光谱成像采集系统采集苹果样本的高光谱图像,根据正常苹果表面区域和刚损伤、损伤后(3,10,24h)的损伤区域光谱反射率平均曲线得到有效光谱区域;用掩膜法对图像进行背景分割,并基于有效光谱区域做主成分分析,选取第四主成分(PC4)提取损伤区域,运用阈值分割的方法建立提取损伤区域的算法模型;应用该算法模型对正常苹果和损伤苹果进行检测。检测结果表明:正常苹果样本正确检测率达到100%,损伤苹果样本的正确检测率为97.5%,总体检测精确度高达98.75%,说明利用高光谱成像技术可以有效快速检测出苹果表面的轻微损伤。  相似文献   

12.
本文采用阈值分割和主成分分析方法对高光谱图像进行处理,以得到虫害区域分割结果。然后选取2个特征波长作为光谱特征,提取4个纹理参数作为纹理特征,并将其优化组合成4组特征向量。利用BP神经网络进行鲜桃虫害检测。结果表明,667nm和746nm波段的光谱反射值的光谱特征和270°方向的能量、对比度、熵、相关性的纹理特征的组合为鲜桃虫害检测的最优特征向量,果实识别正确率为100%。  相似文献   

13.
为解决玉米茎秆虫害早期无损检测问题,以提供玉米虫害预测预警与精确喷药理论依据,利用高光谱成像技术,提出了分段混合距离方法,明确玉米茎杆玉米螟虫害无损检测的最优波段,提取单波段特征图像,分割虫孔,以实现对玉米螟的快速、准确、无损检测。首先通过对玉米茎杆高光谱图像的分析,根据玉米茎杆高光谱图像的玉米茎秆区域与背景区域各个波段的光谱反射率的差异,选取450nm的图像,利用阈值分割的方法,获得掩模图像。然后根据可见光波段530~600nm范围和近红外波段750~900 nm范围光谱相关性小的特点,应用混合距离作为测量参数,筛选最佳单波段、双波段组合,最终确定754.8 nm波段为最优波段。提取该波段的图像为特征图像,采用阈值分割与数学形态学方法对玉米螟虫孔进行分割,从而检测出玉米螟虫孔区域,判定玉米茎秆是否存在虫害。结果表明:通过对测试集和验证集中60个玉米螟玉米茎杆和40个正常玉米茎杆的检测分析,得出玉米螟的检测正确率为100%,正常玉米茎的检测正确率为90%,整体检测正确率为96%。说明所获得的最优波段可为开发玉米茎虫害多光谱成像检测仪提供参考。  相似文献   

14.
采用高光谱成像技术(400~1 000 nm)对苹果轻微损伤进行快速识别及无损检测。采集苹果正常及不同损伤时间的高光谱图像,选择图像中合适的区域作为感兴趣区域并提取平均光谱反射率及图像熵信息,将采集的样本按2∶1的比例分为训练集和测试集。使用RELIEF算法基于光谱平均反射率及图像熵信息提取了8个特征波段(17、30、35、51、61、66、94和120),分别基于全波段和特征波段进行极限学习机(extreme learning machine, ELM)建模分析,并与支持向量机(support vector machine, SVM)和K-均值聚类算法进行比较。结果表明,基于全波段的ELM模型最终测试集识别率为94.44%,基于特征波段的RELIEF-极限学习机(Re-ELM)模型识别率为96.67%,基于特征波段的Re-SVM及Re-K均值模型的最终测试集识别率分别为92.22%和91.67%,证实了Re-ELM是一种更为有效的苹果损伤分类判别方法。在此基础上,基于图像处理技术和特征波段提出了一种苹果轻微损伤高光谱检测算法,使用该算法针对特征波段进行独立成分分析(independent component analysis, ICA)变换,选取ICA第3成分图像进行自适应阈值分割,从而获得损伤图像。对全部高光谱图像进行检测表明,该算法的最终识别率超过94%,说明该算法能够较为有效地识别苹果损伤区域。  相似文献   

15.
为强化高光谱成像技术在近地农业方面的应用,以农田近红外高光谱图像为研究对象,利用高光谱成像技术,结合光谱分析方法和监督分类方法,对农田图像进行分类。针对高光谱图像数据量大、非线性等特点,采用主成分分析(PCA)和支持向量机(SVM)法建立农田图像分类器。在利用光谱信息分类的基础上,采用空谱一体化方法对光谱分类结果进行修正,去除孤立点和噪声的影响。基于支持向量机的总体分类精度为88.4%,采用空谱一体化方法的总体分类精度最高达89.7%,说明利用空间信息修正光谱信息可以提高近地农田对象的分类精度,为基于高光谱图像的近地农田识别提供理论依据。  相似文献   

16.
基于高光谱成像的猕猴桃表面疤痕无损识别   总被引:1,自引:0,他引:1  
为实现猕猴桃表面疤痕的快速无损识别,以贵长猕猴桃为研究对象,采用高光谱图像采集系统(400~1 000 nm)采集完好无损猕猴桃和表面有疤痕猕猴桃的高光谱图像。对采集到的高光谱图像进行了最小噪声分离变换,结合阈值分割及数学形态学处理方法提出了猕猴桃表面疤痕的识别方法。结果表明:采用最小噪声分离变换可有效地消除高光谱图像中的噪声;完好无损和表面有疤痕的猕猴桃样本在700~810 nm以及810~1 000 nm的光谱反射率值具有明显的差异,选取785.98 nm处的光谱反射率值为0.30~0.56以及982.59 nm处的光谱反射率值为0.54~0.73作为区分猕猴桃正常区域和表面疤痕区域的阈值条件,进一步利用阈值分割方法对60个完好无损的和60个表面有疤痕的猕猴桃进行识别,正确识别率分别为98.3%和95.0%,说明高光谱成像技术可用于猕猴桃表面疤痕的快速无损识别。  相似文献   

17.
利用高光谱图像技术检测鸡胴体内部粪便污染物   总被引:4,自引:0,他引:4  
以鸡胴体为研究对象,探讨基于高光谱图像技术的鸡胴体内部粪便污染物检测方法.首先采集400~1 000 nm的鸡胴体高光谱图像;然后应用主成分分析(PCA)获得主成分图像,由第1主成分图像得到3个特征波长518.59,562.64,700.67nm,并以700.67 nm特征波长下的图像作为鸡胴体内部粪便污染物检测特征图像;最后构建掩膜以消除特征图像背景噪声并将其置为白色,并运用阈值分割和数学形态学完成粪便污染物的提取.试验结果表明,对100个鸡胴体样本进行检测,检测总正确率为93%.应用高光谱图像技术结合主成分分析等数据处理方法能较好地完成对鸡胴体内部粪便污染物检测,为鸡胴体内部粪便污染物在线快速检测提供重要的理论依据.  相似文献   

18.
针对当前柑橘果实目标检测模型多数需在服务器上运行,难以直接在果园部署且识别实时性较差等问题,设计了基于边缘计算设备的便携式柑橘果实识别系统。该系统由优化的目标检测模型和嵌入式智能平台组成;通过扩展YOLOv4–Tiny目标检测算法,将所有批量归一化层合并到卷积层,加快模型前向推理速度;采用多尺度结构并使用K–means聚类方法获得柑橘数据集的先验框大小,使网络模型对柑橘果实识别具有更强的鲁棒性;使用GIOU距离度量损失函数,使网络模型更加关注柑橘图像中重叠遮挡的区域。将改进算法部署到嵌入式平台Jetson nano,试验结果表明,识别系统对柑橘果实的识别平均准确率达93.01%,单幅图片的推断时间约为150 ms,对视频的识别速率为16帧/s。  相似文献   

19.
为对小麦硬度进行自动检测,采集不同硬度小麦品种的近红外高光谱图像,将光谱数据经过求导处理后,提取950~1 645 nm有效光谱区间数据,然后经过多元散射校正,建立偏最小二乘判别分析(PLS-DA)模型。采用120粒小麦对模型进行训练,剩余的90粒进行检验,总体上模型分类准确率为99.63%。表明,采用近红外高光谱成像技术对单籽粒小麦硬度进行分类是可行的。  相似文献   

20.
遥感数据源在光谱、空间分辨率上不断提高,越来越有利于村落的精确提取,但如何有效利用影像特征,寻找简单便捷的方法来实现农田包围型村落的准确快速提取是一个不断需要探索的问题。本研究以Sentinel-2A卫星影像为数据源,利用光谱指数密度分割法与光谱波段分类法对内蒙古五原县郊区的村落进行提取。结果显示:NDVI、NDBI、NDBI-NDVI、(NDBI-NDVI)/(NDBI+NDVI)4个光谱指数提取村落的总体精度介于93.903 4%~96.476 6%之间,NDVI提取精度最低,NDBI提取精度最高;光谱波段分类法提取的精度介于94.101 3%~98.753 0%之间,且利用蓝、绿光波段分类取得最高精度。研究结果表明,分类法和阈值法提取村落均可取得较高的精度,MLC-RFE法可有效获得最有利于村落提取的波段组合,但过程较繁琐、速度慢,阈值法精度略低,但较简单,计算速度快。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号