首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fifty-four potent odorants in standardized, hydrolyzed, and deoiled and hydrolyzed soybean lecithins were quantified by high-resolution gas chromatography/mass spectrometry (HRGC/MS). The characterization of their aroma impact was performed by calculation of nasal (n) and retronasal (r) odor activity values (OAVs). For this, the nasal and retronasal recognition thresholds of 18 odor-active compounds were determined in vegetable oil. The following compounds showed the highest nOAVs: 2,3-diethyl-5-methylpyrazine, methylpropanal, acetic acid, pentanoic acid, 2-ethyl-3,5-dimethylpyrazine, pentylpyridine, (Z)-1,5-octadien-3-one, 2-methylbutanal, and beta-damascenone. In addition to the compounds above, 1-octen-3-one, 1-nonen-3-one, and 3-methyl-2,4-nonandione showed potent rOAVs. The results of quantification and OAV calculation were confirmed by a model mixture of 25 impact odorants, which yielded a highly similar sensory profile to that of the original soybean lecithin. The sensory importance of pyrazines and free acids increased through enzymatic hydrolysis and decreased by the process of deoiling. The impact of unsaturated ketones on the lecithin aroma was not changed by either process.  相似文献   

2.
The potent odorants were quantified in a sample of roasted Arabica coffee. On the basis of the results, 27 odorants were dissolved in an oil/water mixture. The flavor profile of the model obtained was very close to that of the real sample. In duo and triangle tests, the model was compared with models missing one or more odorants. These experiments indicated that 2-furfurylthiol, 4-vinylguaiacol, several alkyl pyrazines, furanones, acetaldehyde, propanal, methylpropanal, and 2- and 3-methylbutanal had the greatest impact on the coffee flavor.  相似文献   

3.
Application of aroma extract dilution analysis on the volatiles isolated from a Bavarian Pilsner-type beer revealed 40 odor-active constituents in the flavor dilution (FD) factor range of 16-2048, among which ethyl octanoate, (E)-beta-damascenone, 2- and 3-methylbutanoic acid, and 4-hydroxy-2,5-dimethyl-3(2H)-furanone showed the highest FD factor of 2048. After quantitation of the 26 odorants showing FD factors > or =128 by stable isotope dilution analysis and determination of their odor thresholds in water, odor acitivity values (OAVs) were calculated. The results indicated ethanol, (E)-beta-damascenone, (R)-linalool, acetaldehyde, and ethyl butanoate with the highest OAVs, followed by ethyl 2-methylpropanoate and ethyl 4-methylpentanoate, which was previously unknown in beer. Finally, the overall aroma of the beer could be mimicked for the first time by recombining 22 reference odorants in the same concentrations as they occurred in the beer using ethanol/water as the matrix.  相似文献   

4.
Two kinds of pan-fired green teas (Japanese Kamairi-cha and Chinese Longing tea) were compared with the common Japanese green tea (Sen-cha). Application of the aroma extract dilution analysis (AEDA) using the volatile fraction of the Sen-cha, Kamairi-cha and Longing tea infusions revealed 32, 51, and 52 odor-active peaks with flavor dilution factors between 16 and 1024, respectively. (Z)-1,5-Octadien-3-one (metallic, geranium-like), 4-mercapto-4-methyl-2-pentanone (meaty, black currant-like), methional (potato-like), (E,Z)-2,6-nonadienal (cucumber-like), and 3-methylnonane-2,4-dione (green, fruity, hay-like) showed high flavor dilution factors in all varieties. In addition, 2-acetyl-1-pyrroline (popcorn-like), 2-ethyl-3,5-dimethylpyrazine (nutty), 2,3-diethyl-5-methylpyrazine (nutty), and 2-acetyl-2-thiazoline (popcorn-like) belonged to the most potent odorants only in the pan-fired green teas. Among these odorants, 2-acetyl-1-pyrroline and 2-acetyl-2-thiazoline were identified for the first time among the tea volatiles.  相似文献   

5.
An XAD-4 extract from a 5-year-old wine from Rioja (Spain) was analyzed by aroma extract dilution analysis. Most of the odorants were quantified by GC-MS. A second extract was fractionated in an HPLC system with a C-18 semipreparative column. Fifty fractions were recovered, their alcoholic degree and pH were further adjusted to those of the wine, and those fractions that showed strong odor characteristics were further re-extracted and analyzed by GC-O and GC-MS. Reconstitution experiments were carried out to confirm the role of the odorants detected in the fractions. Fifty-eight odorants were found in the Rioja wine, 52 of which could be identified. Methyl benzoate was found to be a wine aroma constituent for the first time. The most important odorants are 4-ethylguaiacol, (E)-whiskey lactone, 4-ethylphenol, beta-damascenone, fusel alcohols, isovaleric and hexanoic acids, eugenol, fatty acid ethyl esters, and ethyl esters of isoacids, Furaneol, phenylacetic acid, and (E)-2-hexenal. Comparison among the three techniques shows good agreement and demonstrates that they are complementary.  相似文献   

6.
Gas chromatography/olfactometry on a concentrate of volatiles obtained by solvent-assisted flavor evaporation (SAFE) from roasted peanuts containing a fruity/fermented off-note was used to identify the odorants responsible for the flavor defect. Freshly dug peanuts were divided into two classes, mature and immature, using pod mesocarp color, and subjected to normal (27 degrees C) and high (40 degrees C) temperature curing. Sensory evaluation of the roasted peanuts found that immature peanuts cured at high temperature contained the fruity/fermented off-note. Mature peanuts cured at high temperature and both immature and mature peanuts cured at low temperature were free of the off-note. Peanuts with the off-flavor were found to contain fruit-like esters (ethyl 2-methylpropanoate, ethyl 2-methylbutanoate, and ethyl 3-methylbutanoate) along with increased levels of short chain organic acids (butanoic, 3-methylbutanoic, and hexanoic). These findings were confirmed by sensory evaluation of models, where the addition of these compounds produced the fruity/fermented flavor defect in a control peanut paste. This is the first time that the odorants responsible for this off-note in roasted peanuts have been identified.  相似文献   

7.
This paper reports the determination of glycosidically bound aroma compounds and the olfactometric analysis in four strawberry varieties (Fuentepina, Camarosa, Candonga and Sabrina). Different hydrolytic strategies were also studied. The results showed significant differences between acid and enzymatic hydrolysis. In general terms, the greater the duration of acid hydrolysis, the higher was the content of norisoprenoids, volatile phenols, benzenes, lactones, Furaneol, and mesifurane. A total of 51 aglycones were identified, 38 of them unreported in strawberry. Olfactometric analyses revealed that the odorants with higher modified frequencies were Furaneol, γ-decalactone, ethyl butanoate, ethyl hexanoate, ethyl 3-methylbutanoate, diacetyl, hexanoic acid, and (Z)-1,5-octadien-3-one. This last compound, described as geranium/green/pepper/lettuce (linear retention index = 1378), was identified for the first time. Differences with regard to fruity, sweet, floral, and green aroma characters were observed among varieties. In Candonga and Fuentepina, the green character overpowered the sweet. In the other two strawberry varieties sweet attributes were stronger than the rest.  相似文献   

8.
Application of aroma extract dilution analysis using the volatile fraction of a Japanese green tea (Sen-cha) sample resulted in the detection of 36 odor-active peaks with flavor dilution (FD) factors between 10 and 5000. Thirty-six potent odorants were identified from 36 odor-active peaks by gas chromatography/mass spectrometry (GC/MS) and/or the multidimensional GC/MS (MDGC/MS) system. Among these components, 4-methoxy-2-methyl-2-butanethiol (meaty), (Z)-1, 5-octadien-3-one (metallic), 4-mercapto-4-methyl-2-pentanone (meaty), (E,E)-2,4-decadienal (fatty), beta-damascone (honey-like), beta-damascenone (honey-like), (Z)-methyl jasmonate (floral), and indole (animal-like) showed the highest FD factors. Therefore, these odorants were the most important components of the Japanese green tea odor. In addition, 4-methoxy-2-methyl-2-butanethiol, 4-mercapto-4-methyl-2-pentanone, methional, 2-ethyl-3, 5-dimethylpyrazine, (Z)-4-decenal, beta-damascone, maltol, 5-octanolide, 2-methoxy-4-vinylphenol, and 2-aminoacetophenone were newly identified compounds in the green tea.  相似文献   

9.
To identify the character impact odorant of high-heat skim milk powder (HHSMP), a comparative study using ultrahigh-temperature (UHT) milk was performed. Aroma concentrate was prepared by column adsorption combined with simultaneous distillation-extraction. Aroma extract dilution analysis (AEDA) revealed 58 aroma peaks with flavor dilution (FD) factors ranging from 10 to 3000; from these, 41 compounds were identified and 7 compounds were tentatively identified (FD factor > or = 300). Among these HHSMP and UHT milk components, methyl 2-methyl-3-furyl disulfide and bis(2-methyl-3-furyl) disulfide, which appeared to be generated during the processing of each product, were identified. When the results of the AEDA of both samples were compared, it was considered that the characteristic aroma of HHSMP was not explained by a single compound but instead formed from a mixture of several types of compounds contained in common with the UHT milk. The contribution of these compounds to the aroma of HHSMP was confirmed by an aroma simulation experiment.  相似文献   

10.
Extrusion cooking processing followed by air-drying has been applied to obtain low-fat potato snacks. Optimal parameters were developed for a dough recipe. Dough contained apart from potato granules 7% of canola oil, 1% of salt, 1% of baking powder, 5% of maltodextrin, and 15% of wheat flour. After the extrusion process, snacks were dried at 85 degrees C for 15 min followed by 130 degrees C for 45 min. The potent odorants of extruded potato snacks were identified using aroma extract dilution analysis and gas chromatography-olfactometry. Among the characteristic compounds, methional with boiled potato flavor, benzenemethanethiol with pepper-seed flavor, 2-acetyl-1-pyrroline with popcorn flavor, benzacetaldehyde with strong flowery flavor, butanal with rancid flavor, and 2-acetylpyrazine with roasty flavor were considered to be the main contributors to the aroma of extruded potato snacks. Several compounds were concluded to be developed during extrusion cooking, such as ethanol, 3-methylbutanal, (Z)-1,5-octadien-3-one with geranium flavor, and unknown ones with the flavor of boiled potato, cumin, candy, or parsley root. Compounds such as methanethiol, 2,3-pentanedione, limonene, 2-acetylpyrazine, 2-ethyl-3,5-dimethylpyrazine, 4-hydroxy-2,5-dimethyl-3(2H)-furanone, 3-hydroxy-4,5-dimethyl-2(5H)-furanone, 2-methyl-3,5-diethylpyrazine, 5-methyl-2,3-diethylpyrazine, and (E)-beta-damascenone were probably developed during air-drying of the potato extrudate.  相似文献   

11.
Eight samples of freshly distilled Calvados were extracted using pentane. Gas chromatography with either a mass spectrometer or flame ionization detector was used to determine the volatile compounds composition of the extracts. More than 120 molecules were identified in Calvados and then correlated with results obtained by olfactometric analysis in our earlier work [Guichard, H.; Lemesle, S.; Ledauphin, J.; Barillier, D.; Picoche, B. Chemical and Sensorial Aroma Characterization of Freshly Distilled Calvados. 1. Evaluation of Quality and Defects on the Basis of Key Odorants by Olfactometry and Sensory Analysis. J. Agric. Food Chem. 2002, 50, 424-432 (preceding paper in this issue)]. Of these, 16 of the 19 molecules that constitute the "aroma skeleton" were identified, including 5 esters, 2 ketones, 5 phenolic derivatives, 2 alcohols, and 2 carboxylic acids. Numerous compounds were also associated with odors found in part 1. These molecules can be considered as being responsible for the good quality of Calvados or, in contrast, for defects. Relative levels of some major olfactive compounds were also estimated and tentatively compared with olfactometric indices found in part 1. A good correlation was found in many cases. Two important markers of defects in Calvados were also identified. 3-Methylbut-2-en-1-ol leads to an "herbaceous" defect, and 1,1,3-triethoxypropane seems to give an "acrolein" defect in the product. "Floral" notes of the aroma of freshly distilled Calvados seem to be due to the presence of phenolic derivatives such as 2-phenylethanol and 2-phenylethyl acetate. Low-molecular-weight esters such as ethyl 2-methylpropanoate, ethyl 2-methylbutanoate, and 3-methylbutyl acetate give, in general, the "fruity" notes. However, the overall aroma of Calvados seems likely to be a subtle balance of various functionalized compounds.  相似文献   

12.
Impact odorants of different young white wines from the Canary Islands   总被引:5,自引:0,他引:5  
Five young monovarietal white wines from the Canary Islands made from Gual, Verdello, Marmajuelo, white Listán, and Malvasia grape cultivars were studied to determine the characteristics of their most important aromas and the differences among them. The study was carried out using gas chromatography-olfactometry (GC-O) to detect the potentially most important aroma compounds, which were then analyzed quantitatively by gas chromatography-flame ionization detection and gas chromatography-mass spectrometry. The strongest odorants in the GC-O experiments were similar in all cases, although significant differences in intensity between samples were noted. Calculation of the odor activity values (OAVs) showed that 3-mercaptohexyl acetate was the most active odorant in the Marmajuelo and Verdello wines, as were 3-methylbutyl acetate in the Gual wine, beta-damascenone in the Malvasia wine, and ethyl octanoate in the white Listán wine. However, the most important differences between varieties were caused by the three mercaptans (3-mercaptohexyl acetate, 3-mercaptohexanol, and 4-methyl-4-mercapto-2-pentanone) and the vinylphenols (4-vinylphenol and 2-methoxy-4-vinylphenol). The correlation between the olfactometric values and the OAVs was satisfactory in the cases when the compound eluted in the GC-O system was well isolated from other odorants and had aromatic importance and the OAVs for the different wines were sufficiently different.  相似文献   

13.
Three cultivars of snake fruits, Pondoh Hitam, Pondoh Super, and Gading, were freshly extracted using liquid-liquid extraction. The aroma compounds of the three samples were analyzed by GC-MS and GC-olfactometry using the nasal impact frequency (NIF) method. A total of 24 odor-active compounds were associated with the aroma of snake fruit. Methyl 3-methylpentanoate was regarded as the character impact odorant of typical snake fruit aroma. 2-Methylbutanoic acid, 3-methylpentanoic acid, and an unknown odorant with very high intensity were found to be responsible for the snake fruit's sweaty odor. Other odorants including methyl 3-methyl-2-butenoate (overripe fruity, ethereal), methyl 3-methyl-2-pentenoate (ethereal, strong green, woody), and 2,5-dimethyl-4-hydroxy-3[2]-furanone (caramel, sweet, cotton candy-like) contribute to the overall aroma of snake fruit. Methyl dihydrojasmonate and isoeugenol, which also have odor impact, were identified for the first time as snake fruit volatiles. The main differences between the aroma of Pondoh and Gading cultivars could be attributed to the olfactory attributes (metallic, chemical, rubbery, strong green, and woody), which were perceived by most of the panelists in the Pondoh samples but were not detected in the Gading samples. This work is a prerequisite for effective selection of salak genotypes with optimal aroma profiles for high consumer acceptance.  相似文献   

14.
15.
In this study three different approaches were employed to identify key odorants in Sauvignon blanc wines. First, the concentrations of the odorants were compared to their respective aroma detection thresholds. The resulting odor activity values (OAV) were transformed into a normalized and weighted measure that allows the aroma profiles of different wines to be compared and the contribution of a single aroma in a complex mixture to be evaluated. Based on their OAV, 3-mercaptohexanol and 3-mercaptohexyl acetate were the two most important aroma compounds in many Marlborough Sauvignon blanc wines. Due to limitations with the OAV approach, the study was extended to include aroma extract dilution analysis (AEDA), which revealed that β-damascenone, together with the varietal thiols, esters, and higher alcohols, are key odorants in Sauvignon blanc wines. The final approach undertaken was aroma reconstitution and omission tests using a deodorized wine base and the creation of a model Marlborough Sauvignon blanc. Single compounds and groups of compounds were omitted from the model to study their impact on the sensory properties of the model wine. Reconstitution and omission confirmed that varietal thiols, esters, terpenes, and β-damascenone are all important contributors to Sauvignon blanc aroma. The methoxypyrazines showed an important but relatively low impact in all three of the approaches undertaken in this study.  相似文献   

16.
The aroma extract dilution analysis method was used to detect the impact odorants of Bordeaux Cabernet Sauvignon and Merlot wines extracts, as well as those of the extracts of the corresponding Cabernet Sauvignon juice and dry yeasts used for its fermentation. The wines and the yeasts were extracted using dichloromethane, and the juice was extracted using Amberlite XAD-2. Structural identification of the impact odorants using gas chromatography-mass spectrometry and atomic emission detection (sulfur acquisition) was achieved after enrichment of these extracts by silica gel and Affi-Gel 501 chromatography. The same odorants (with the exception of dimethyl sulfide among 48) were detected in both wine extracts, with about the same flavor dilution (FD) factors. The 18 impact odorants detected in the Cabernet Sauvignon juice and dry yeast extracts were also found in the wine extracts. The odorants with the highest FD factors were 3-(methylsulfanyl)propanal, (E,Z)-nona-2, 6-dienal, and decanal in the juice extract, 2-methyl-3-sulfanylfuran, 3-(methylsulfanyl)propanal, 2-/3-methylbutanoic acids, and phenylethanal in the dry yeast extract, and 2-/3-methylbutanols, 2-phenylethanol, 2-methyl-3-sulfanylfuran, acetic acid, 3-(methylsulfanyl)propanal, 2-/3-methylbutanoic acids, beta-damascenone, 3-sulfanylhexan-1-ol, Furaneol, and homofuraneol in the wine extracts. Determination of the odor thresholds of some of these impact odorants was carried out.  相似文献   

17.
The aim of the present study was to validate the joint sensory impact of target compounds on the typicality degree of wine. Target compounds were selected from previous gas chromatography-olfactometry analysis. The preliminary experiment consisted in selecting odorants thought to have a positive effect on typical Chardonnay wines. Two sets of target compounds were chosen with regard to expected relationships between their concentrations and typicality scores. Target compounds were quantified in 20 wines. The second experiment was dedicated to the sensory evaluation of aroma models obtained by supplementation in wines. Three Chardonnay wines with intermediate typicality scores were supplemented with 6- or 10-compound combinations. The typicality degree of 24 samples was assessed by expert orthonasal perception. Wines supplemented with the 6-compound combinations were judged to be intermediate, whereas wines including the 10-compound combinations were considered to be quite representative of the Chardonnay concept. Such results confirm the active contribution of the 10 combined target compounds to typical Chardonnay wines.  相似文献   

18.
The odorants in Chinese jasmine green tea scented with jasmine flowers (Jasminum sambac) were separated from the infusion by adsorption to Porapak Q resin. Among the 66 compounds identified by GC and GC/MS, linalool (floral), methyl anthranilate (grape-like), 4-hexanolide (sweet), 4-nonanolide (sweet), (E)-2-hexenyl hexanoate (green), and 4-hydroxy-2,5-dimethyl-3(2H)-furanone (sweet) were extracted as potent odorants by an aroma extract dilution analysis and sensory analysis. The enantiomeric ratios of linalool in jasmine tea and Jasminum sambac were determined by a chiral analysis for the first time in this study: 81.6% ee and 100% ee for the (R)-(-)-configuration, respectively. The jasmine tea flavor could be closely duplicated by a model mixture containing these six compounds on the basis of a sensory analysis. The omission of methyl anthranilate and the replacement of (R)-(-)-linalool by (S)-(+)-linalool led to great changes in the odor of the model. These two compounds were determined to be the key odorants of the jasmine tea flavor.  相似文献   

19.
Analysis of wines from different grape varieties marked by sometimes intense aromatic nuances of fresh mushroom was performed by gas chromatography coupled with olfactometry. This analysis has led to the identification of several odoriferous zones, which were recalling a fresh mushroom odor. Two trace compounds responsible for these odoriferous zones, 1-nonen-3-one and 1-octen-3-one, have been identified and their content has been determined by using either a multidimensional gas chromatography technique coupled to olfactometry and mass spectrometry detection (in the case of 1-nonen-3-one) or the preparation of the derivative with O-2,3,4,5,6-pentafluorobenzylhydroxylamine hydrochloride in the presence of the deuterated form, as the internal standard (in the case of 1-octen-3-one), then gas chromatography coupled to mass spectrometry detection. The assays allowed the quantification of these compounds at concentration levels sometimes well above their detection and recognition olfactory threshold. We show that adding nitrogen compounds to the altered wines, such as an amino acid (glycine) or a tripeptide (glutathione), led to lower concentrations of 1-octen-3-one in wines and diminished smell of fresh mushrooms. The study of the reaction in a model medium, whose composition is close to wine, by liquid chromatography coupled to mass spectrometry demonstrated the formation of adducts between 1-octen-3-one and glycine, and 1-octen-3-one and glutathione characterized by NMR.  相似文献   

20.
【目的】钢渣是缓释硅钙肥原料,钢渣中硅素释放受钢渣自身性能和外界环境条件等因素影响,本文设置了钢渣冷却方式、钢渣粒径、培养介质和培养温度四种因子,研究钢渣中硅素释放规律及其影响因素,为钢渣硅钙肥合理施用提供理论依据。【方法】选用粉末状水淬渣(S1)、粒状水淬渣(S2)和空气冷却粒状钢渣(S3)为研究对象,分别设置在土壤水溶液以及纯蒸馏水中培养97天,并设置35℃和25℃两个培养温度。定期离心取上清液,取样后补充水分继续培养,直至培养结束。【结果】钢渣在土壤溶液中培养,第一天的硅素释放主要由钢渣冷却方式决定,而在以后的培养过程中主要受温度的影响,其次为钢渣粒径;硅素累积释放量与时间的关系可以用幂函数方程y=kxm来拟合;35℃培养97天后,S1、S2与S3钢渣硅的溶出率(累积硅释放量与有效硅的比例)分别为37.3%、30.3%与27.3%;在25℃培养下,S1、S2与S3钢渣硅的溶出率分别为14.3%、7.9%与10.2%。钢渣在纯蒸馏水的培养中,第一天钢渣硅释放主要受温度的影响,而在以后的培养过程中主要受钢渣粒径的影响,温度和钢渣冷却方式对其影响甚微;硅素累积释放量与时间的关系可以用线性方程y=ax+b来拟合;在35℃,S1、S2与S3钢渣硅的溶出率分别为0.22%、0.16%与0.16%。在25℃培养下,S1、S2与S3钢渣硅的溶出率分别为0.17%、0.13%与0.14%。钢渣在土壤溶液培养,25℃培养67天,加入钢渣提高了土壤浸提液的p H值,但之后与CK基本相同;在35℃培养下,加入钢渣的土壤浸提液p H值总体都要显著高于CK处理。纯水培养介质中,两种温度培养下,在同一阶段S1浸提液的p H和EC值都要显著高于S2和S3,温度对p H和EC的影响不显著。【结论】钢渣硅素释放规律主要受培养介质和温度的影响,粒径有一定的影响。在土壤溶液中钢渣硅素释放显著高于在蒸馏水中,35℃比25℃更有利于硅素的释放,粉末状比粒状更有利于硅素的释放。由此认为,钢渣作为硅钙肥在大田施用时,将钢渣磨细做成粉末状产品,施用时随翻耕埋入土壤,初春采用保温措施等都有利于提高钢渣中硅的利用效率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号