首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 15 毫秒
1.
Inheritance of resistance to Karnal bunt was investigated in the crosses of four resistant synthetic hexaploid wheats (SH; Triticum turgidum×T. tauschii) and two susceptible T. aestivum cultivars. The resistance was dominant or partly dominant over susceptibility. The SH cultivars Chen/T. tauschii (205) and Chen/T. tauschii (224) have single dominant resistance genes which could be allelic to each other. ‘Altar 84’/T. tauschii (219) appeared to have two dominant genes for resistance. ‘Duergand’T. tauschii (214) possessed two complementary dominant genes for resistance. The work is being extended to involve diverse Karnal bunt-resistant SH and bread wheat cultivars.  相似文献   

2.
The mode of inheritance and allelic relationships among genes conferring resistance to Karnal bunt were studied in seven bread-wheat (six resistant and one susceptible) genotypes. The resistant genotypes originated in China (‘Shanghai#8’), Brazil (PF71131), the USA (‘Chris’), and Mexico (‘Amsel’, CMH77.308 and ‘Pigeon’). The susceptible line WL711 was from India. Evaluation of these wheat lines and all possible crosses among their F1 and F3 generations (about 100 progenies in each cross) revealed that two partially recessive genes conferred the resistance to Karnal bunt in ‘Pigeon’, whereas four partially dominant genes were present in the other genotypes. ‘Chris’, ‘Amsel’ and PF71131 carry one gene, whereas ‘Shanghai#8’ and CMH77.308 have two genes. ‘Chris’, ‘Amsel’, and PF71131 have different genes, whereas one gene was common to PF71131, CMH77.308 and ‘Shanghai#8’, and another to ‘Chris’ and CMH77.308. Gene symbols were formally designated to the resistant stocks. Resistance was incomplete and stable.  相似文献   

3.
Two trials were conducted at the Mexican National Institute of Agricultural Research Experiment Station at Yaqui Valley, Sonora, Mexico to investigate the nature and extent of agronomic variation in 50 synthetic hexaploid (SH) wheats (2n = 6x = 42, AABBDD) derived from Triticum turgidum (2n = 4x = 28. AABB) × T. tauschii (In = 2x = 14, DD) crosses for subsequent use in wheat improvement. Plant height, spike length, days to flowering, physiological maturity, grain yield, above-ground biomass at maturity, harvest index, yield components and test weight were determined.
Significant agronomic variation was observed among the germplasm evaluated. Outstanding SH genotypes were identified with higher grain yield, above-ground biomass at maturity, 1000-grain weight, and spikes m−2 than the bread wheat ( Triticum aestivum L.) check cultivar Seri 82. Genotypic correlations of grain yield with other character traits show that grain m2 was the most important determinant of gram yield (r = 0.993). Data on agronomic traits subjected to complete linkage cluster analysis resulted in classifying the genotypes into two distinct phenotypic groups excluding Seri 82. Groups generally corresponded to durum progenitors of the SH with significant group differences for all characters. This demonstrates use of practical numerical analysis procedures to describe agronomic variation in representative SH genotypes. Clustering by quantitativy traits may be valuable for identification of genotypes with divergent sources for breeding and agronomic purposes.  相似文献   

4.
Triticum tauschii provides breeders with a valuable source of resistance and tolerance genes. Elucidation of the inheritance of traits in this species that hinder its use in breeding programmes is therefore of interest to wheat breeders. Inheritance of threshability was investigated in the crosses of four non-free-threshing (NFT) synthetic hexaploids (Triticum turgidum×T. tauschii) and two free-threshing (FT) T. aestivum cultivars during four crop seasons over 3 years at E1 Batan and Ciudad Obregon, Mexico. The parents, their F1 Hybrids and individual F2 plant-derived F3 progenies of the crosses revealed that ‘Altar 84’/T. tauschii (219), ‘Chen’/T. tauschii (205), ‘Chen’/T. tauschii (224), and ‘Duergand’/T. tauschii (214) have independently segregating loci with two dominant alleles controlling threshability. Intercrosses among the synthetics, except ‘Altar 84’/T. tauschii (219), showed the genes to be allelic to each other. The cross between the FT cultivars showed no segregation in the F3 generation, indicating common recessive genes. Based on these findings, population sizes of the synthetic-derived breeding materials should be increased to improve the chances of selecting FT desirable plants in the programme.  相似文献   

5.
Summary Karnal bunt caused by Tilletia indica in wheat seriously affects the quality of the grains. It is important to generate information on the genetics of resistance to this pathogen so as to aid resistance breeding. For this purpose, four Karnal bunt-resistant lines from China, Brazil and CIMMYT (International Maize and Wheat Improvement Center) and a susceptible Indian cultivar, WL711, were used. The parents, F1 and F3 progenies of five parental diallel crosses revealed that independently segregating loci with three partial dominant resistance alleles were involved in the resistance of Karnal bunt. Lines RC7201/2*BR2 and Roek//Maya/NAC carried one locus for resistance while Shanghai#7 and Aldan/IAS58 have two and three loci, respectively. One common locus was present in all four resistant parents, which imparted a high level of resistance.  相似文献   

6.
Twelve synthesized ainphiplonds involving Karnal bunt (Neovossia indica)-resisiant accessions of Triticum monococum, T. boeoticum and Aegilops sqiwrrosa and susceptible but otherwise well adapted and high yielding T. Durum cultiviars were evaluated for Karnal bunt resisiance under artificial inoculation conditions. All ihe synthetic amphiploids, except DWI. 5031 x T. monocoirtum aniphlploid, were free from Karnal bunt disease indicating that the Karnal bunt resistance or T. motsococcum, T. boeoticMrn and Ae, squarrosa is expressec in the presence of the dnrum complement. The importance and utilization of the amphiploids fox breeding wheat varieties resistant to karnal bunt are discussed.  相似文献   

7.
Summary An analyis of an F1-based incomplete diallel was conducted involving 11 parents with different levels of resistance to Karnal bunt (Tilletia indica (Mitra)). It demonstrated that general combining ability (GCA) and thus additive or additive × additive gene effects were very important in the inheritance of resistance, accounting for 86.9% of the variation. Further analysis concentrated on F3 lines derived from individual random F2 plants from crosses with resistant varieties having the highest negative GCA effects. It was shown that the varieties Weaver and W499 have single dominant genes of resistance, which are different from each other, and which differ from a single allelic gene in varieties K342 and Cruz Alta. The majority of the crosses did not demonstrate a relationship between Karnal bunt infection and the number of days to heading. Resistant F3 lines varied in the number of days to heading from 80 to 100.  相似文献   

8.
Resistance to stripe rust (caused by Puccinia striiformis Westend.) of 34 Triticum turgidum L. var.durum, 278 T. tauschii, and 267 synthetic hexaploid wheats (T. turgidum x T. tauschii) was evaluated at the seedling stage in the greenhouse and at the adult-plant stage at two field locations. Mexican pathotype 14E14 was used in all studies. Seedling resistance, expressed as low infection type, was present in all three species. One hundred and twenty-eight (46%) accessions of T. tauschii, 8 (23%) of T. turgidum and 31 (12%) of synthetic hexaploid wheats were highly resistant as seedlings. In the field tests, resistance was evaluated by estimating area under disease progress curve (AUDPC). Synthetic hexaploid wheats showed a wide range of variability for disease responses in both greenhouse and field tests, indicating the presence of a number of genes for resistance. In general, genotypes with seedling resistance were also found to be resistant as adult plants. Genotypes, which were susceptible or intermediate as seedlings but resistant as adult plants, were present in both T. turgidum and the synthetic hexaploids. Resistances from either T. turgidum or T. tauschii or both were identified in the synthetic hexaploids in this study. These new sources of resistance could be incorporated into cultivated hexaploid wheats to increase the existing gene pool of resistance to stripe rust.  相似文献   

9.
小麦白粉病是严重影响小麦生产的重要病害之一,培育和应用抗病品种是有效控制和减少病害的最经济有效的方法。野生二粒小麦是硬粒小麦和普通小麦的四倍体野生祖先种,是小麦抗病性遗传改良的重要基因资源。本研究利用来自以色列的野生二粒小麦WE29与普通小麦杂交,再用普通小麦连续回交和自交,育成高抗白粉病(Blumeria graminis f. sp. tritici)小麦新品系3D258(系谱为燕大1817/WE29//5*87-1, BC4F6)。将3D258和高感小麦白粉病的普通小麦品种薛早配制杂交组合,对其F1、F2代分离群体和F3代家系进行白粉病抗性鉴定和遗传分析。结果表明3D258携带抗白粉病显性单基因,暂命名为MlWE29。利用集群分离分析法(BSA)和分子标记分析,发现6个SSR标记(Xgwm335、Xgwm213、Xgwm639、Xwmc415、Xwmc289和Xwmc75)和5个EST-STS标记(BE494426、BE442763、CD452476、BE445282和BE407068)与抗白粉病基因MlWE29连锁。利用中国春缺体-四体系、双端体系和缺失系将抗白粉病基因MlWE29标记物理定位于5BL染色体的0.59–0.79区域。这一普通小麦抗白粉病种质资源的创制及其连锁分子标记的建立为小麦抗病基因分子标记辅助选择、基因积聚和分子育种提供了新的物质基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号