首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
We studied the effect of six tree species planted at six different densities on pasture production seven years after establishment. Annual and seasonal pasture production was studied every six months, over three years. Pasture production was lower under conifer trees (Pseudotsuga menziesii (Mirb.) Franco, Pinus pinaster Aiton, Pinus radiata D. Don) than under broadleaved trees (Betula alba L., Quercus rubra L. and Castanea sativa Mill.). Annual pasture production under Pseudotsuga menziesii and Pinus pinaster decreased progressively starting from 952 trees ha−1, while decline in herbage production under Pinus radiata began to occur at 427 trees ha−1. Tree density effect on pasture production was detected at 2,000 trees ha−1 for all of the deciduous species studied. This effect on pasture production was more important in the first six months of the year (June sampling), while from June to December herbage production was less affected by tree density. The tree effect became more noticeable over time, with the last sampling showing the inverse relationship between tree density and herbage production most clearly. Seven years after tree establishment, pasture production was quite consistent under tree densities between 190 trees ha−1 and 556 trees ha−1 and declined remarkably from 556 trees ha−1 to 2,500 trees ha−1. The study also indicated that by the sixth growing season, annual pasture production under different tree species is inversely correlated with tree leaf area index.  相似文献   

2.
This long term experiment provides production data for evaluation of combined forestry and livestock systems. Five systems were established in Pinus radiata planted in 1981 (620 mm average annual rainfall). Sheep were introduced in 1984 and trees were pruned in several lifts. Adjusted tree stockings were (1) 60 widely spaced trees ha−1, (2) 200 widely spaced trees ha−1, (3) 200 trees ha−1 in five-row belts, (4) 1,090 trees ha−1 (unpruned) and 815 trees ha−1, and (5) no trees (open pasture). Tree growth, wool production, liveweight gain and pasture production were measured. At year 25, tree diameter under bark at 1.3 m (DBHUB) in Systems 1, 2, 3 and 4 (unpruned) was 46.0, 39.2, 33.5 and 24.1 cm, while volume of bark-free 6-m butt-logs was 49, 117, 86 and 233 m3 ha−1. Inner rows of System 3 belts contained smaller trees than outer rows. Pruned System 4 trees had slightly greater diameter than unpruned trees. Pasture production declined with tree stocking and time, due to shading and competition. Wool production (WP ha−1) and liveweight gain (LWG ha−1) declined linearly from year 9 to 17 with increasing disparity among systems. In 1998 (year 17) WP ha−1 in Systems 1, 2 and 3 was 64, 16 and 43% of that in open pasture. Further analysis is needed to evaluate the financial costs and returns of various systems under particular rotation lengths and market prices.  相似文献   

3.
The use of organic waste materials such as milk sewage as an organic fertilizer could have the dual advantages of organic-waste disposal and reduced dependence on inorganic fertilizers. The effects of fertilization with (1) conventional mineral fertilization, (2) milk sewage sludge at 40 kg N ha−1 target rate and (3) no fertilization on pasture production and tree growth were examined in an experiment consisting of two pasture mixtures under a one-year-old Pinus radiata plantation with a density of 2500 trees ha−1. The two pasture mixtures were: (1) Dactylis glomerata L. var. saborto (25 kg ha−1) + Trifolium repens L. group Ladino (4 kg ha−1) + Trifolium pratense L. var. Marino (1 kg ha−1); (2) Lolium perenne L. var. Tove (25 kg ha−1) + Trifolium repens L. group Ladino (4 kg ha−1) + Trifolium pratense L. var. Marino (1 kg ha−1). The experiment began in the spring of 1995 using a randomized block design with three replicates in Castro Riberas de Lea (Lugo, Galicia, north-western Spain). Plot size was 12 × 8 m2, with a 1 m buffer strip between plots. Two-year data showed that fertilization with either material had a positive effect on pasture production, with no significant difference between the two fertilization treatments. Tree growth in the milk sewage sludge plot was significantly higher than in the control plots. Inorganic fertilization increased pasture production, but affected tree growth negatively. The results show that milk sewage sludge could be used as a fertilizer in silvo-pastoral systems. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

4.
On-farm experiments were conducted in the Philippines to study over a 4-year period the growth of two timber trees, gmelina (Gmelina arborea R. Br.) and bagras (Eucalyptus deglupta Blume), and their impact on the grain yield of intercropped maize. The experiment consisted of maize monocropping plots (control) and maize intercropped between trees planted in block (2 × 2.5 m), and hedgerow arrangement (1 × 10 m). Three maize crops were planted in the block plots before canopy closure, and seven maize crops were planted in the hedgerow and monocropping plots. Maize grain yield in the hedgerow and in the block arrangement with gmelina were respectively 37% (16.58 tons ha−1) and 68% (8.3 tons ha−1) lower than in monocropping (26.21 tons ha−1). In the plots with bagras, maize grain yield in hedgerow and in block arrangement were respectively 19% (24.8 tons ha−1) and 66% (10.4 tons ha−1) lower than in monocropping (30.6 tons ha−1). For both tree species, the diameter at breast height (dbh) was greater in hedgerow than in block arrangement, with the difference being more pronounced with age. It was estimated that gmelina planted in hedgerows would produce 6–8 m3 ha−1 of merchantable volume more than if planted in block. The study verifies the hypothesis that intercropping between widely-spaced trees rows (planted at 10 m or more) is more profitable and feasible to smallholders than either maize monocropping or woodlots, and concludes with recommendations on how to further improve the productivity of tree-intercropping systems.  相似文献   

5.
Plant growth, morphology and nutritive value under shade can differ between temperate grasses. Therefore, the aim of this study was to quantify the dry matter (DM) production, sward morphology, crude protein (CP%), organic matter digestibility (OMD) and macro-nutrient concentrations (P, K, Mg, Ca and S) in a grazed cocksfoot (Dactylis glomerata L.) pasture under 10-year-old Pinus radiata D. Don forest. Four levels of light intensity were compared: full sunlight (100% photosynthetic photon flux density-PPFD), open + wooden slats (∼43% PPFD), trees (∼58% PPFD) and tree + slats (∼24% PPFD). The mean total DM production was 8.2 t DM ha−1 yr−1 in the open and 3.8 t DM ha−1 yr−1 in the trees + slats treatment. The changes in cocksfoot leaf area index (LAI) were related to variations in morphological aspects of the sward such as canopy height and tiller population. CP% increased as PPFD declined with mean values of 18.6% in open and 22.5% in the trees + slats treatment. In contrast, the intensity of fluctuating shade had little effect on OMD with a mean value of 79 ± 3.2%. The mean annual macro-nutrient concentrations in leaves increased as the PPFD level declined mainly between the open and the trees + slats treatments. It therefore appears that heavily shaded dominant temperate pastures in silvopastoral systems limit animal production per hectare through lower DM production rates and per animal through reduced pre-grazing pasture mass of lower bulk density from the etiolated pasture.  相似文献   

6.
The potential contribution of agroforestry systems to the management and genetic resources conservation in iroko (Milicia excelsa), an important and valuable timber tree species in sub-Saharan Africa, is addressed in this paper. The structure and dynamics of traditional agroforestry systems and the ecological structure of Milicia excelsa populations in farmlands were studied through a survey carried out in 100 farmlands covering the natural range of iroko in Benin. Forty-five species belonging to 24 plant families were recorded in traditional agroforestry systems. Average tree density varied from 1 to 7 stems ha−1 with diversity index ranging from 2.6 to 2.9. Milicia excelsa occurred sparsely in agroforestry systems in all regions, with density ranging from 1 to 4 stems ha−1; stand basal area varying from 33.10−4 to 129.10−4 m2 ha−1, and negligible seedling regeneration. However, male and female trees were apparently evenly distributed on farmlands in all regions (F/M > 0). Iroko trees produced viable seeds with moderate germination rate and early growth (germination rate 22% and height 7.29 cm after 3 months). Suggestions are made regarding optimal densities for iroko conservation in farmlands, according to farmers’ socioeconomic conditions in different regions, in order to improve traditional agroforestry systems and their use as biological corridors in conservation of Milicia excelsa genetic resources.  相似文献   

7.
Ailanthus triphysa (Family – Simaroubaceae) growth is known to vary in response to different stocking and fertiliser levels. Understorey productivity related to these differences remain elusive, yet are important for optimising the combined production of tree and crop components. A split plot experiment to evaluate the effect of different stocking levels and fertiliser regimes on ailanthus growth, stand leaf area index (LAI) and understorey PAR (photosynthetically active radiation) transmittance was started at Vellanikkara, India in June 1991. Main plot treatments included four densities (3,333, 2,500, 1,660 and 1,111 trees ha−1), replicated thrice. Four fertiliser levels (0:0:0, 50:25:25, 100:50:50 and 150:75:75 kg N:P2O5:K2O ha−1) formed the sub plot treatments. Ginger (Zingiber officinale) was planted as an understorey crop in May 1994 with contiguous treeless control plots. Soil nutrient availability before and after ginger was assessed. Higher densities stimulated ailanthus growth modestly, while fertiliser response of tree and ginger was inconsistent. PAR transmittance below the canopy was related to tree density, LAI and time of measurement. Midday PAR flux having low standard deviations is ideal for evaluating canopy effects on understorey light availability. Ginger in the interspaces exhibited better growth compared to sole crop. Highest rhizome yield was observed in the 2,500 trees ha−1 stocking level, which is optimum for below five year-old ailanthus stands on good sites. It represents 52% mean daily PAR flux or 73% midday PAR flux. Ailanthus+ginger combinations improved the site nutrient capital when ginger was adequately fertilised, despite treeless controls having relatively higher initial soil nutrient availability. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

8.
Traditionally, poplar (Populus spp.) have been planted to control erosion on New Zealand’s hill-slopes because of their capacity to dry out and bind together the soil. Two systems: (1) widely spaced, planted poplar for soil conservation, and (2) non-eroded open pasture were compared to determine the relative effect of the poplar–pasture system on the production, nutritive value and species composition of the pasture, and on the water balance. Measurements were made at three sites with mature poplar (>29 years and 37–40 stems ha−1) and at a replicated experiment with young poplar (5 years, 50–100 stems ha−1). Soil water relations did not suggest strong competition for water between poplar and pasture. Pasture accumulation under mature poplar was 40% less than in the open pasture, but under young poplar was similar to that in the open pasture. Chemical composition of pasture suggested that feed quality of pasture in the open was better than under the poplar canopy, except during spring, when most chemical components were similar. At the most, in vitro digestibility of pasture dry matter was 8.9% lower and metabolisable energy of pasture dry matter was 1.5 MJ kg lower under the poplar canopy than in the open pasture. Shade tolerant species were not dominant in the plant community under the poplar canopy with grasses such as browntop (Agrostis capillaris, L.) and ryegrass (Lolium perenne, L.) being a high proportion of the plant community. Differences in chemical composition were related to differences in the botanical composition between the open pasture and the poplar understorey. It was concluded that the greatest effect of poplar was on pasture production due to shading, and that management of this silvopastoral system needs to focus on control of the tree canopy to lessen the decrease in pasture production.  相似文献   

9.
Acacia senegal, the gum arabic-producing tree, is the most important component of traditional dryland agroforestry systems in the␣Sudan. The spatial arrangement of trees and the type of agricultural crop used influence the interaction between trees and crops. Tree and crop growth, gum and crop yields and nutrient cycling were investigated over a period of 4 years. Trees were grown at 5 × 5 m and 10 × 10 m spacing alone or in mixtures with sorghum or sesame. No statistically significant differences in sorghum or sesame yields between the intercropping and control treatments were observed (mean values were 1.54 and 1.54 t ha−1 for sorghum grain and 0.36 and 0.42 t ha−1 for sesame seed in the mixed and mono-crop plots, respectively). At an early stage of agroforestry system management, A. senegal had no detrimental effect on crop yield; however, the pattern of resource capture by trees and crops may change as the system matures. A significant positive relationship existed between the second gum picking and the total gum yield. The second gum picking seems to be a decisive factor in gum production and could be used as an indicator for the prediction of the total gum yield. Soil organic carbon, N, P and K contents were not increased by agroforestry as compared to the initial levels. Soil OC was not increased by agroforestry as compared to sole cropping. There was no evidence that P increased in the topsoil as the agroforestry plantations aged. At a stocking density of 400 trees ha−1 (5 × 5 m spacing), A. senegal accumulated in its biomass a total of 18.0, 1.21, 7.8 and 972 kg ha−1 of N, P, K and OC, respectively. Agroforestry contributed ca. 217 and 1500 kg ha−1 of K and OC, respectively, to the top 25-cm of soil during the first four years of intercropping.  相似文献   

10.
We assessed the vertical distribution of litter and its seasonal patterns in the canopy and on the forest floor (soil), as well as litterfall (the flux of litter from the canopy to the soil) in a 33-year-old plantation of Japanese cedar (Cryptomeria japonica D. Don). The masses of total litter, dead leaves, and dead branches in the canopy of C. japonica trees averaged 34.09, 19.53, and 14.56 t dry wt ha−1, respectively, and were almost constant during the study period. The total masses of the annual litterfall were 4.17 and 5.88 t dry wt ha−1 year−1 in the two consecutive years of the study. The mass of the soil litter averaged 7.95 t dry wt ha−1 during the same period. All relationships between the mass of canopy litter and tree-size parameters (diameters at breast height and at the lowest living branch) were linear in a log-linear regression. Compared with the results for this plantation at a younger stage (16 years old), our results suggest that the total mass of dead leaves attached to each tree increases markedly with increasing age, but that the trajectory of this increase as a function of tree size may change from an exponential to a saturation curve with increasing stand age.  相似文献   

11.
The traditional Acacia senegal bush-fallow in North Kordofan, Sudan, was disrupted and the traditional rotational fallow cultivation cycle has been shortened or completely abandoned, causing decline in soil fertility and crop and gum yields. An agroforestry system may give reasonable crop and gum yields, and be more appealing to farmers. We studied the effect of tree density (266 or 433 trees ha−1) on two traditional crops; sorghum (Sorghum bicolor) early maturing variety and karkadeh (Hibiscus sabdariffa), with regard to physiological interactions, yields and soil water depletion. There was little evidence of complementarity of resource sharing between trees and crops, since both trees and field crops competed for soil water from the same depth. Intercropping significantly affected the soil water status, photosynthesis and stomatal conductance in trees and crops. Gum production per unit area increased when sorghum was intercropped with trees in low or high density. However, karkadeh reduced the gum yield significantly at high tree density. Yields of sorghum and karkadeh planted within trees of high density diminished by 44 and 55% compared to sole crops, respectively. Intercropping increased the rain use efficiency significantly compared to trees and field crops grown solely. Karkadeh appears to be more appropriate for intercropping with A. senegal than sorghum and particularly recommendable in combination with low tree density. Modification of tree density can be used as a management tool to mitigate competitive interaction in the intercropping system.  相似文献   

12.
The influence of stand density on Douglas-fir [Pseudotsuga menziesii (Mirb.) Franco] is conceptually understood, but for wide spacings not well quantified, particularly in Europe. This study used 41 trees from 7 different locations in south-western Germany to compare important tree- and branch-level attributes across three different densities, namely 100, 200, and 1,200 stems ha−1. In general, there were only a few tree and branch attributes that were significantly different between the 100 and 200 ha−1 densities. Crown projection area and diameter of the thickest branches were the most important differences between the 100 and 200 ha−1 densities. The most obvious and significant differences in this study were between 100 and 1,200 ha−1 densities, where nearly every examined tree and branch attributes were statistically significant. However, relative sapwood area, the number of branches, branch angle, and the occurrence of spike knots were insensitive to stand density. Although the two lowest stand densities in this study represent rather extremely wide spacings, these results still have important implications for the development of effective thinning regimes for Douglas-fir in south-western Germany. Important management recommendations from this study include thinned stands should be maintained to at least 200 stems ha−1 to maintain high log quality and stand stability. Furthermore, even at stand densities exceeding more than 1,200 trees ha−1 planted trees, artificial pruning may even be necessary to produce high quality logs.  相似文献   

13.
Small Appalachian hill farms may benefit economically by expanding grazing lands into some of their under-utilized forested acreages. Our objective was to study the forage production potential of forest to silvopasture conversion. We thinned a white oak dominated mature second growth forested area establishing two orchardgrass-perennial ryegrass-white clover silvopasture replications for comparison with two nearby open pasture replications. After thinning trees, silvopastures were limed, fertilized and seeded. Sheep were fed hay and corn scattered across the area to facilitate removal of residual understory vegetation, disruption of litter layer and incorporation of applied materials into surface soil. Each area was divided into multiple paddocks and rotationally grazed by sheep. Two 1 m2 herbage mass samples were taken from each paddock prior to animal grazing. There was no significant difference in soil moisture between silvopastures and open pastures however, there was adequate rainfall to prevent drought all 3 years. The two silvopastures received 42 and 51% of total daily incident PAR compared to the open field. Total dry forage mass yield from open pasture over the 3 years averaged 11,200 kg ha−1 y−1 and from silvopasture 6,640 kg ha−1 y−1. Silvopastures, however, had a higher PAR use efficiency (PARUE) than open pasture. Hill farms could increase grazing acreages without sacrificing all benefits from trees on the landscape by converting some areas to silvopasture.  相似文献   

14.
The importance of agroforestry systems in CO2 mitigation has become recognized worldwide in recent years. However, little is known about carbon (C) sequestered in poplar intercropping systems. The main objective of this study is to compare the effects of three poplar intercropping designs (configuration A: 250 trees ha−1; configuration B: 167 trees ha−1 and configuration C: 94 trees ha−1) and two intercropping systems (wheat–corn cropping system and wheat–soybean cropping system) on biomass production and C stocks in poplar intercropping systems. The experiment was conducted at Suqian Ecological Demonstration Garden of fast-growing poplar plantations in northwestern Jiangsu. A significant difference in C concentration was observed among the poplar biomass components investigated (P ≤ 0.05), with the highest value in stemwood and the lowest in fine roots, ranging from 459.9 to 526.7 g kg−1. There was also a significant difference in C concentration among the different crop components (P ≤ 0.05), and the highest concentration was observed in the corn ear. Over the 5-year period, the total poplar biomass increased with increasing tree density, ranging from 8.77 to 15.12 t ha−1, while annual biomass production among the crops ranged from 4.69 to 16.58 t ha−1 in the three configurations. Overall, total C stock in the poplar intercropping system was affected by configurations and cropping systems, and configuration A obtained the largest total C stock, reaching 16.7 t C ha−1 for the wheat–soybean cropping system and 18.9 t C ha−1 for the wheat–corn cropping system. Results from this case study suggest that configuration A was a relative optimum poplar intercropping system both for economic benefits and for C sequestration.  相似文献   

15.
Acacia pennatula trees are the most conspicuous woody species in the pasturelands of the Nature Reserve Mesas de Moropotente, Estelí, Nicaragua. Cattle ranchers keep A. pennatula because it produces fence posts, forage (pods) and firewood. A population projection matrix model was developed to: (1) estimate the sustainable harvest (H) of fence posts at different tree population densities, (2) explore the range of recruitment (R), and survival and growth of both saplings and small poles compatible with current population density, and (3) determine how much carbon is stored in the soil-pasture-tree system. Acacia pennatula trees take 40 years to reach H size (D30 ≥ 30 cm). Estimated sustainable H from current tree population density is 1.8l7 trees ha−1 year−1, yielding 2.8 large and 11.2 regular size fence posts ha−1 year−1. This annual output easily satisfies the needs of a typical 100 ha cattle ranch in the study area. Current population density is congruent with very low R (<100 saplings ha−1 year−1), very low survival rates (<0.30%) and/or retarded D30 growth of saplings and small poles. Total carbon in tree biomass was only 37 Mg ha−1. Cattle ranchers have learned to harness the invasive nature of the species to obtain valuable tree products for farm use or sale.  相似文献   

16.
This paper discusses a plantation management approach involving a combination of “short” and “long” rotations designed to allow farmers to receive income from trees as soon as possible after establishment. We present results from two plots that represent extreme conditions: (a) a seasonally waterlogged, non-saline site (Nahalal), and (b) a saline site (Ginnegar) located in the Yizre’el Valley, Israel. Six improved seed sources, four of Eucalyptus camaldulensis and two of E. occidentalis, were examined. The local Israeli seed source of E. camaldulensis (HA) performed best at both sites. In Nahalal, the short rotation thinning of the slower growing (50%) plantation trees could provide economic returns approximately five years after establishment. The calculated mean annual increment (MAI) of these trees reached 12.2 t ha−1 year−1. The long rotation, or better performing half of the plantation trees, could be used as a source of sawn timber, providing higher-value products. By nine years after establishment, the average DBH of the various seed sources reached 25.8 ± 1.9 cm. The calculated MAI of the combined cutting rotations reached 48.3 t ha−1 year−1. Eucalyptus grown under the combined (short- and long-term) management approach at Nahalal was more profitable than many other non-irrigated local crops. Eucalyptus production in Ginnegar would be less profitable than in Nahalal. However, an additional ecological benefit was provided by the crop’s ability to lower the water table. When this contribution to regional drainage is taken into account, trees become economically competitive with other non-irrigated field crops under saline conditions. Jim Morris–Deceased.  相似文献   

17.
This study examined the hypothesis that incorporation of Gliricidia sepium (Jacq.) Walp.) (gliricidia), a fast-growing, nitrogen-fixing tree, into agroforestry systems in southern Malawi may be used to increase the input of organic fertilizer and reduce the need for expensive inorganic fertilizers. The productivity of maize (Zea mays L.), pigeonpea (Cajanus cajan L.) and gliricidia grown as sole stands or in mixed cropping systems was examined at Makoka Research Station (latitude 15° 30′ S, longitude 35° 15′ E) and a nearby farm site at Nazombe between 1996 and 2000. Treatments included gliricidia intercropped with maize, with or without pigeonpea, and sole stands of gliricidia, maize and pigeonpea. Trees in the agroforestry systems were pruned before and during the cropping season to provide green leaf manure. Maize yields and biomass production by each component were determined and fractional light interception was measured during the reproductive stage of maize. Substantial quantities of green leaf manure (2.4 to 9.0 Mg ha−1 year−1) were produced from the second or third year after tree establishment. Green leaf manure and fuelwood production were greatest when gliricidia was grown as unpruned sole woodlots (c. 8.0 and 22 Mg ha−1 year−1 respectively). Improvements in maize yield in the tree-based systems also became significant in the third year, when c. 3.0 Mg ha−1 of grain was obtained. Tree-based cropping systems were most productive and exhibited greater fractional light interception (c. 0.6 to 0.7) than cropping systems without trees (0.1 to 0.4). No beneficial influence of pigeonpea on maize performance was apparent either in the presence or absence of gliricidia at either site in most seasons. However, as unpruned gliricidia provided the greatest interception of incident solar radiation (>0.9), coppicing may be required to reduce shading when gliricidia is grown together with maize. As pigeonpea production was unaffected by the presence of gliricidia, agroforestry systems containing gliricidia might be used to replace traditional maize + pigeonpea systems in southern Malawi. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

18.
Coffee (Coffea canephora var robusta) is grown in Southwestern Togo under shade of native Albizia adianthifolia as a low input cropping system. However, there is no information on carbon and nutrient cycling in these shaded coffee systems. Hence, a study was conducted in a mature coffee plantation in Southwestern Togo to determine carbon and nutrient stocks in shaded versus open-grown coffee systems. Biomass of Albizia trees was predicted by allometry, whereas biomass of coffee bushes was estimated through destructive sampling. Above- and belowground biomass estimates were respectively, 140 Mg ha−1 and 32 Mg ha−1 in the coffee–Albizia association, and 29.7 Mg ha−1 and 18.7 Mg ha−1 in the open-grown system. Albizia trees contributed 87% of total aboveground biomass and 55% of total root biomass in the shaded coffee system. Individual coffee bushes consistently had higher biomass in the open-grown than in the shaded coffee system. Total C stock was 81 Mg ha−1 in the shaded coffee system and only 22.9 Mg ha−1 for coffee grown in the open. Apart from P and Mg, considerable amounts of major nutrients were stored in the shade tree biomass in non-easily recyclable fractions. Plant tissues in the shaded coffee system had higher N concentration, suggesting possible N fixation. Given the potential for competition between the shade trees and coffee for nutrients, particularly in low soil fertility conditions, it is suggested that the shade trees be periodically pruned in order to increase organic matter addition and nutrient return to the soil. An erratum to this article can be found at  相似文献   

19.
The sustainability of cocoa growing systems in the humid tropics is debatable. Socio-economic and technical data were obtained from 1,171 cocoa farmers and 1,638 cocoa plantations to assess the long-term dynamics of cocoa agroforests in central Cameroon since the beginning of the twentieth century. On-site, we estimated the age of the cocoa trees and measured their density in a sub-sample of 402 cocoa plantations. We inventoried associated woody species in 45 cocoa plantations from this sub-sample. Our results revealed a high Shannon index for the cocoa plantations (2.6) and showed that an average of 25 tree species per cocoa plantation had been planted with the cocoa trees at a density of 120 trees ha−1. Surveys indicated that there had been no mineral fertilization. Nearly 70% of the cocoa agroforests were over 40 years old, and all farmers continuously regenerated their cocoa tree stands. Irrespective of the cocoa plantation age, the cocoa tree density remained over 1,000 plants ha−1, and fermented dried cocoa yields were 255 kg ha−1 on average. Cocoa agroforests occupied 60% of the cultivated area on farms and cocoa sales accounted for 75% of total farm income. Almost a third of the farmers were from the area and under 40 years old. In conclusion, our results show that the farmers’ agroforestry practices, in addition to the fact that the cocoa tree stands were continuously regenerated and passed down between generations of farmers, could explain the long-term dynamics of cocoa agroforests in central Cameroon.  相似文献   

20.
Reduction in forage production (FP) under trees in the humid tropics is well known, but information on how different levels of nitrogen (N) fertilizer influence FP under trees is meager. The present study reports effects of four N fertilizer levels (0, 60, 80 and 120 kg ha−1 N) on net soil N mineralization rate (NMR) and soil moisture (SM), FP, shoot biomass/root biomass ratio (SB/RB), N concentration in SB, N uptake and nitrogen use efficiency (NUE) of three grasses [guinea (Panicum maximum Jacq.), para (Brachiaria mutica (Forssk) Stapf) and hybrid-napier (Pennisetum purpureum Schumach.)] under three canopy positions [under canopy (UC, representing high shade), between canopy (BC, representing low shade) and open] of coconut trees (Cocos nucifera L.) in a coconut based silvopastoral system in the humid tropical climate of South Andaman Island of India. The study was performed for two annual cycles (2005–2006 and 2006–2007). The hypotheses tested were: (1) FP would decline under tree shades, both in N fertilized as well as no N fertilized conditions, when SM was not growth limiting in the open. However, amount of decline in the FP would depend on grass species and intensity of shades i.e., higher was the shade greater would be the decline; (2) N fertilizer would increase FP under tree shades, but the increase depended on grass species, intensity of shades and amount of N applied. Amount of N applied, however, would not annul the shades effects when SM was not growth limiting in the open. The study revealed that the tree reduced light 59% under UC and 32% under BC positions, but the N fertilizer levels increased NMR by 11–51% under UC and 3–44% under BC positions compared to the open. SM did not differ across the canopy positions. Under all situations, FP of all grasses declined under UC (47–78%) and BC (18–32%) positions compared to the open; the decline was greater in Hybrid-napier than Guinea and Para grasses. Forage production of all grasses increased with N fertilizer increments under all canopy positions reaching 32 t ha−1 dry matters for hybrid-napier at 120 kg ha−1 N in the open. Both guinea and para grasses outyielded hybrid-napier grass under UC but not under BC or in the open. N concentration in the forage (SB) also increased as N fertilizer level increased. These observations support our hypotheses and suggest that forage production under coconut palms can be increased by the application of N fertilizer with both guinea and para grasses being more productive than hybrid-napier grass under the high shade. Where light conditions are better, hybrid-napier would produce more forage than the other species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号