首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Subsurface pipe and open drainage systems were installed in 8 and 5 ha area, respectively in farmers fields at Konanki pilot area in Nagarjuna Sagar project right canal command in India in the year 1999 to combat the problems of waterlogging (depth to water table, 0–3.7 m), salinity and sodicity (ECe, 1.3–18.6 dS/m; pH, 7.2–10.0 and ESP, 14.1–54.6). Two types of envelope materials, nylon mesh and geo-textile were used and two spacings of 30 m (design spacing) and 60 m (double the design spacing) were adopted for the pipe drainage system. The analysis of discharge data from the individual pipe drains revealed that among both the spacings, the drains enveloped with geo-textile performed better (0.45–1.85 mm/day), when compared with those enveloped with nylon mesh (0.25–0.86 mm/day). The effectiveness of drainage systems in the control of waterlogging at the pilot area has been monitored through a network of 61 observation wells. The groundwater table, which used to be almost at the ground surface during the main crop season (October–February) before installation of drainage systems, could be lowered by 0.2–0.35 m due to the installation of drainage systems. A total of 50.4 (@ 6.3 tons/ha) and 115.6 tons (@ 23.1 tons/ha) of salts have been disposed through pipe and open drainage systems, respectively during the period of 3 years (1999–2002).  相似文献   

2.
A survey has been carried out in three Regions of north-eastItaly, Emilia Romagna, Veneto and Friuli Venezia Giulia, withfour objectives: (a) to update the statistics on the use of pipedrainage; (b) to describe the farms that adopt this technique asa replacement of the traditional surface drainage methods;(c) to characterise the features of the drained soils and of thedrainage systems, and (d) to assess their performance. Withalmost 70.000 ha drained, the Regions present almost all of thepipe drained area in Italy. Pipe drainage first saw applicationsin the last seventies and became increasingly popular during theeighties. Most pipe drainage systems are installed in heavysoils, where the underground waterlogging is due to seasonalperched water table or to infiltrations from rivers or sea. Due tothe pedoclimatic variability of the area, slightly differentsolutions in terms of design variables and installation criteriaare found, but the following features are quite common: drainspacing 11–13 m slope 0.1–0.3%, depth 0.9–1 m. The pipe drains discharge in open collectors (single systems). Anincreasing interest for the use of the drainage systems forsubirrigation purposes has been observed, particularly inVeneto, requiring some adjustment in the drainage design. Theperformance of drainage in terms of control of water tabledepth and maintenance requirements are considered satisfactoryin almost all the cases. The most effective solutions forsuccessfully managing the subirrigation are also described.The introduction of pipe drains allows to enlarge fields (to morethan 10 has) and to save time for carrying out the operations forcrop cultivation. The crop yield in pipe drained fields is slightly higherto that obtained in the traditionally drained fields, withthe exception of winter wheat.  相似文献   

3.
This paper describes a multi-level drainage system, designed to improve drainage water quality. Results are presented from a field scale land reclamation experiment implemented in the Murrumbidgee Irrigation Area of New South Wales, Australia. A traditional single level drainage system and a multi-level drainage system were compared in the experiment in an irrigated field setting. The single level drainage system consisted of 1.8 m deep drains at 20 m spacing. This configuration is typical of subsurface drainage system design used in the area. The multi-level drainage system consisted of shallow closely spaced drains (3.3 m spacing at 0.75 m depth) underlain by deeper widely spaced drains (20 m spacing at 1.8 m depth). Data on drainage flows and salinity, water table regime and soil salinity were collected over a 2-year period.  相似文献   

4.
Long-term hydrologic simulations are presented predicting the effects of drainage water management on subsurface drainage, surface runoff and crop production in Iowa's subsurface drained landscapes. The deterministic hydrologic model, DRAINMOD was used to simulate Webster (fine-loamy, mixed, superactive, mesic) soil in a Continuous Corn rotation (WEBS_CC) with different drain depths from 0.75 to 1.20 m and drain spacing from 10 to 50 m in a combination of free and controlled drainage over a weather record of 60 (1945-2004) years. Shallow drainage is defined as drains installed at a drain depth of 0.75 m, and controlled drainage with a drain depth of 1.20 m restricts flow at the drain outlet to maintain a water table at 0.60 m below surface level during the winter (November-March) and summer (June-August) months. These drainage design and management modifications were evaluated against conventional drainage system installed at a drain depth of 1.20 m with free drainage at the drain outlet. The simulation results indicate the potential of a tradeoff between subsurface drainage and surface runoff as a pathway to remove excess water from the system. While a reduction of subsurface drainage may occur through the use of shallow and controlled drainage, these practices may increase surface runoff in Iowa's subsurface drained landscapes. The simulations also indicate that shallow and controlled drainage might increase the excess water stress on crop production, and thereby result in slightly lower relative yields. Field experiments are needed to examine the pathways of water movement, total water balance, and crop production under shallow and controlled drainage in Iowa's subsurface drained landscapes.  相似文献   

5.
Verification of drainage design criteria in the Nile Delta,Egypt   总被引:1,自引:0,他引:1  
A monitoring programme to verify the design criteria of subsurface drainage systems was conducted in a pilot area in the Nile Delta in Egypt. The programme, which covered a 9-year period, included the monitoring of the cropping pattern, crop yield, soil salinity, watertable, discharge and salinity of the drainage water and overpressure in the subsurface drainage system. The results showed that the yield of all crops (wheat, berseem, maize, rice and cotton) increased significantly after the installation of the subsurface drainage system. Optimum growing conditions for the combination of crops that are cultivated in rotation in the area required that the watertable midway between the drains had a average depth of 0.80 m. A corresponding drain discharge of 0.4 mm/d was sufficient to cope with the prevailing percolation losses of irrigation water and to maintain favourable soil-salinity levels. The additional natural drainage rate in the area was estimated at 0.5 mm/d. The most effective way to attain these favourable drainage conditions is to install drains at a depth between 1.20 to 1.40 m. For drain-pipe capacity the Manning equation can be used with a design rate of 1.2 mm/d, for collector drains this rate should be increased to 1.8 mm/d to compensate for the higher discharge rates from rice fields. These rates should be used in combination with a roughness coefficient (n) of 0.028 to take sedimentation and irregularities in the alignment into account. When this value of the roughness coefficient is used, no additional safety has to be incorporated in the other design factors (e.g. the design rate).  相似文献   

6.
The YinNan Irrigation District in NingXia, China diverts each year about 1.6 × 109 m3 water from the Yellow River for irrigation use. More than half of that water is discharged back to the downstream channel or some low-lying depressions as a result of agricultural drainage. Several studies have indicated that the District is excessively drained, partially caused by the over-dimensioning of the existing drainage system, and proposed to improve the situation by controlled drainage practice. We subsequently carried out a field experiment of controlled drainage in the rice growing area of the District in 2004–2005. Field observations showed that reduction of the drainage depth of field ditches from 1 to 0.4 m resulted in a drainage flow reduction of 50–60%. Drainage water salinity increased only slightly but was still below the salt tolerance level of rice. Measurements of nitrogen concentrations showed no clear trend of changes as the result of irregular fertilization practice in the experimental site.  相似文献   

7.
Recent community based actions to ensure the sustainability of irrigation and protection of associated ecosystems in the Murrumbidgee Irrigation Area (MIA) of Australia has seen the implementation of a regional Land and Water Management Plan. This aims to improve land and water management within the irrigation area and minimise downstream impacts associated with irrigation. One of the plan objectives is to decrease current salt loads generated from subsurface drainage in perennial horticulture within the area from 20 000 tonnes/year to 17 000 tonnes/year. In order to meet such objectives Controlled Water table Management (CWM) is being investigated as a possible ‘Best Management Practice’, to reduce drainage volumes and salt loads.During 2000–2002 a trial was conducted on a 15 ha subsurface drained vineyard. This compared a traditional unmanaged subsurface drainage system with a controlled drainage system utilizing weirs to maintain water tables and changes in irrigation scheduling to maximize the potential crop use of a shallow water table. Drainage volumes, salt loads and water table elevations throughout the field were monitored to investigate the effects of controlled drainage on drain flows and salt loads.Results from the experiment showed that controlled drainage significantly reduced drainage volumes and salt loads compared to unmanaged systems. However, there were marked increases in soil salinity which will need to be carefully monitored and managed.  相似文献   

8.
In northeast Italy, a regimen of controlled drainage in winter and subirrigation in summer was tested as a strategy for continuous water table management with the benefits of optimizing water use and reducing unnecessary drainage and nitrogen losses from agricultural fields.To study the feasibility and performance of water table management, an experimental facility was set up in 1996 to reproduce a hypothetical 6-ha agricultural basin with different land drainage systems existing in the region. Four treatments were compared: open ditches with free drainage and no irrigation (O), open ditches with controlled drainage and subirrigation (O-CI), subsurface corrugated drains with free drainage and no irrigation (S), subsurface corrugated drains with controlled drainage and subirrigation (S-CI). As typically in the region free drainage ditches were spaced 30 m apart, and subsurface corrugated drains were spaced 8 m apart.Data were collected from 1997 to 2003 on water table depth, drained volume, nitrate-nitrogen concentration in the drainage water, and nitrate-nitrogen concentration in the groundwater at various depths up to 3 m.Subsurface corrugated drains with free drainage (S) gave the highest measured drainage volume of the four regimes, discharging, on average, more than 50% of annual rainfall, the second-highest concentration of nitrate-nitrogen in the drainage water, and the highest nitrate-nitrogen losses at 236 k ha−1.Open ditches with free drainage (O) showed 18% drainage return of rainfall, relatively low concentration of nitrate-nitrogen in the drainage water, the highest nitrate-nitrogen concentration in the shallow groundwater, and 51 kg ha−1 nitrate-nitrogen losses.Both treatments with controlled drainage and subirrigation (O-CI and S-CI) showed annual rainfall drainage of approximately 10%. O-CI showed the lowest nitrate-nitrogen concentration in the drainage water, and the lowest nitrogen losses (15 kg ha−1). S-CI showed the highest nitrate-nitrogen concentration in the drainage water, and 70 kg ha−1 nitrate-nitrogen losses. Reduced drained volumes resulted from the combined effects of reduced peak flow and reduced number of days with drainage.A linear relationship between daily cumulative nitrate-nitrogen losses and daily cumulative drainage volumes was found, with slopes of 0.16, 0.12, 0.07, and 0.04 kg ha−1 of nitrate-nitrogen lost per mm of drained water in S-CI, S, O, and O-CI respectively.These data suggest that controlled drainage and subirrigation can be applied at farm scale in northeast Italy, with advantages for water conservation.  相似文献   

9.
Subsurface drainage has been implemented in irrigation areas of South-eastern Australia to control water logging and land salinisation. Subsurface drainage has been identified as a major salt exporter from irrigated areas. The water table management simulation model DRAINMOD-S was evaluated to simulate daily water table depth, drain outflow, and salt loads by using experimental field data from a two year field trial was carried out in the Murrumbidgee Irrigation Area South-eastern Australia to study different options for subsurface drainage system design and management to reduce salt load export. Three subsurface drainage systems were modeled, deep widely spaced pipe drains, shallow closely spaced drains and deep pipe drains that were managed with weirs to prevent flow when the water table fell below 1.2 m. The reliability of the model has been evaluated by comparing observed and simulated values. Good agreement was found between the observed and simulated values. The model confirmed the field observations that shallow drains had the lowest salt load and that by managing deep drains with weirs salt loads could be significantly reduced. This work shows the value of the DRAINMOD-S model in being able to describe various drainage design and management strategies under the semi-arid conditions of South-eastern Australia. The model can now be used to investigate design and management options in detail for different site conditions. This will assist decision makers in providing appropriate subsurface drainage management policies to meet drainage disposal constraints within integrated water resources management planning.  相似文献   

10.
Wesseling (1964) stated that standing water above drains as a result of submerged outlets creates a radial flow in the vicinity of the drains which promotes flow conditions so that a smaller rise of the water table height midway between drains results. Wesseling (1979) concluded the same for standing water above drains as the result of too high entrance resistance. Standing water above drains may also be due to overpressure in the drains as a result of too small pipe diameter or to irregular drain slopes. With the exception of submerged outlets the resulting water table rise midway between drains is however in the same order of the water table rise above the drain as can be derived from theoretical analysis. This conclusion was confirmed by measurements at an experimental field where the standing water above drains, as a result of overpressure, and the water table midway between drains were monitored in a field located at the northwest of the Nile Delta. In spite of the low discharge rates, overpressure was observed in the drains. It was mainly attributed to irregular drain slopes. The analysis of field data showed that the water table midway between drains rises at least the same as the water table height above the drains. Since overpressure in drains causes a decrease of the dewatering zone, a careful and accurate installation is of utmost importance for the proper functioning of a drainage system.  相似文献   

11.
A two-dimensional finite element model of solute transport in a tile — drained soil — aquifer system has been applied to study the effects of the depth of impervious layer and quality of irrigation water on salt distribution during drainage of an initially highly saline soil. The model assumes steady state water movement through partially saturated soil and to drains in the saturated zone. The exact in time numerical solution yields explicit expressions for concentration field at any future time without having to compute concentrations at intermediate times. The model facilitates predictions of long-term effects of different irrigation and drainage practices on concentration of drainage effluent and salt distribution in the soil and groundwater. The model results indicated that the depth of impervious layer from drain level, dI, does not significantly influence the salt distribution in the surface 1 m root zone of different drain spacings (drain spacing (2S)=25, 50, 75 m; drain depth (dd)=1.8 m), its effect in the aquifer becomes dominant as drain spacing increases. It was also observed that dI significantly governs the quality of drainage effluent. The salinity of drainage water increases with increasing dI in all drain spacings and this effect magnifies with time. The model was also applied to study the effects of salinity of irrigation water in four drain spacing-drain depth combinations: (2S=48 m, dd=1.0 m; 2S=67 m, dd=1.5 m; 2S=77 m, dd=2.0 m; 2S=85 m, dd=2.5 m). The results indicated that a favorable salt balance can be maintained in the root zone even while irrigating with water up to 5 dS/m salinity in drains installed at 48 to 67 m spacing and 1.0 to 1.5 m depth. Further, irrespective of the quality of irrigation water, the deep, widely spaced drains (dd=2.5 m, 2S=85 m) produced much saline drainage effluent during the initial few years of operation of the drainage system than the more shallow, closely spaced drains, thus posing a more serious effluent disposal problem.
Résumé Considérant les conséquences potentiellement sérieuses de la pollution du sol et de l'eau souterraine dans l'agriculture irriguée, il est devenu absolument nécessaire de développer des modèles de simulation en vue d'évaluer les effects à long terme des méthodes agricoles modernes. Un modèle d'éléments finis à deux dimensions du transport en solution dans un système de sol aquifère drainé au moyen de tuyaux a été développé et validé sur le terrain (Kamra et al. 1991 a, b). Le modèle assume le mouvement de l'eau à régime constant à travers un sol partiellement saturé et jusqu'aux drains dans la zone saturée. La solution numérique exacte dans le temps produit des expressions explicites pour le champ de concentration à un temps future quelconque sans avoir à calculer les concentrations aux temps intermédiares. Le modèle facilite les prédictions des effets à long terme des diverses méthodes d'irrigation et de drainage sur la concentration des effluents de drainage et sur la distribution de la salinité dans le sol et dans l'eau souterraine. Les résultats du modèle relatifs aux effets de la profondeur de la couche imperméable et de la qualité de l'eau d'irrigation sur la distribution de la salinité lors du drainage d'un sol fortement salé à l'origine sont mentionnés dans la présente communication.Les résultats du modéle ont indiqué que la profondeur de la couche imperméable depuis le niveau du drain, dI, n'influence pas d'une façon significative la distribution de la salinité dans la zone superficielle radiculaire de 1 m des divers écartements de drains (écartement de drains, 2S=25, 50, 75 m; profondeur des drains, dd=1.8 m); son effet dans l'aquifère devient dominant à mesure que l'écartement de drains augmente. On a aussi constaté que le niveau du drain dI influence d'une manière significative les effluents du drainage. La salinité de l'eau de drainage augmente à mesure que dI augmente dans tous les écartements de drains et cet effet s'amplifie avec le temps. Le modèle a été aussi appliqué pour étudier les effets de la salinité de l'eau d'irrigation dans le cas de quatre conbinaisons d'écartement de drain et de profondeur de drain: (2S=48 m, dd=1,0 m; 2S=67 m, dd=1,5 m; 2S=77 m, dd=2,0 m; 2S=85 m, dd=2,5 m). Les résultats ont indiqué qu'un bilan de salinité favorable peut être maintenu dans la zone radiculaire même en irrigant avec de l'eau d'une salinité de 5 dS/m dans des drains installés à un écartement de 48 à 67 m et une profondeur de 1,0 à 1,5 m. De plus, indépendamment de la qualité de l'eau d'irrigation les drains profonds à grand écartement (dd=2,5 m, 2S=85 m) produisaient une grande quantité d'effluents salés de drainage durant les quelques premières années de l'exploitation du système de drainage par rapport aux drains peu profonds à écartement serré, posant ainsi un problème plus sérieux d'évacuation des effluents.Les résultats du développement et de l'évaluation du modèle on montré qu'il peut être utilement employé en vue d'une évaluation judicieuse de la variation de temps escomptée dans la salinité des effluents de drainage lors de la mise en valeur des sols salins et peut ainsi aider à formuler son règlement plus sûr du point de vue environnement et les projects d'évacuation.
  相似文献   

12.
Recharge to the aquifer through seepage from irrigation canals is often quoted as one of the main causes for waterlogging in Pakistan. In the design of drainage systems to control this waterlogging, rules-of-thumb are often used to quantify the seepage from canals. This paper presents the option to use a groundwater model for a more detailed assessment. Groundwater models may assist in evaluating the effect of recharge reducing measures such as interceptor drains along irrigation canals and lining. These measures are commonly aimed at reducing the drainage requirement of adjacent agricultural lands. In this paper an example is given of the application of a numerical groundwater model, aimed at assessing the effect of interceptor drainage and canal lining in the Fordwah Eastern Sadiqia project, being a typical and well-monitored location in Pakistan. The paper also presents references to other conditions. The model was used to obtain a better insight in the key hydraulic parameters, such as the infiltration resistance of the bed and slopes of irrigation canals, the drain entry resistance of interceptor drains and the hydraulic conductivity of soil layers. The model was applied to assess the effectiveness and efficiency of interceptor drains under various conditions. The results of the study show that the net percentage of intercepted seepage is too low to have a significant effect on the drainage requirement of the adjacent agricultural lands. Besides, the operation of the system, with pumping required, is often an added headache for the institution responsible for operation of the system. The marginal effect of interceptor drains and lining on the drainage requirement of adjacent agricultural land does not always justify the large investments involved. It can be concluded that:
•  Use of rules-of-thumb to estimate components of the water balance of irrigation systems in designing drainage can be very misleading;
•  Interceptor drainage may cause induced seepage from irrigation canals, which is often an order of magnitude more than the net intercepted seepage;
•  Interceptor drains and canal lining do not significantly reduce the drainage requirements, or in other words, cannot prevent the need for the installation of a drainage system;
•  A numerical model can aid to evaluate proposed measures and strategies to alleviate water losses and drainage problems.
Relevant hydrological concepts and modelling parameters with respect to leakage from irrigation canals and interception by interceptor drains are presented in a separate paper.  相似文献   

13.
The use of drainage systems for supplementary irrigation is widespread in The Netherlands. One of the operating policies is to raise the surface water level during the growing season in order to reduce drainage (water conservation) or to create subsurface irrigation. This type of operation is based on practical experience, which can be far from optimal.To obtain better founded operational water management rules a total soil water/surface water model was built. In a case study the effects of using the drainage system in a dual-purpose manner on the arable crop production were simulated with the model. Also, the operational rules for managing this type of dual-purpose drainage systems were derived.The average annual simulated increase in crop transpiration due to water conservation and water supply for subsurface irrigation are 6.0 and 5.4 mm.y–1, respectively. This is equivalent with 520 × 103 and 460 × 103 Dfl.y–1 for the pilot region (2 Dfl 1 US $). The corresponding investments and operational costs are 600 × 103 Dfl and 9 × 103 Dfl.y–1 for water conservation and 3200 × 103 Dfl and 128 × 103 Dfl.y–1 for subsurface irrigation. Hence, water conservation is economically very profitable, whereas subsurface irrigation is less attractive.Comparing the management according to the model with current practice in a water-board during 1983 and 1986 learned that benefits can increase with some 50 and 500 Dfl per ha per year, respectively.  相似文献   

14.
A field experiment was conducted for 10 years in the Nile Delta of Egypt to quantify the benefit of subsurface drainage on crop yield. During three crop rotations, subsurface drains at a spacing of 20 m and a depth of 1.5 m doubled the yield of cotton and rice and increased the yield of wheat and clover by 50%. No significant enhancement in crop yield was found from placing various envelope materials around the drains compared to no envelope. Drains of 75 mm diameter resulted in significantly lower yields (20% less) for cotton and rice than drains of 100 mm diameter but there were no yield differences for wheat and clover. Applying 10 Mg/ha of gypsum and deep plowing (25 cm deep) improved yields from 5 to 19% for all crops, cotton and clover having the largest yield improvement. Soil salinity to a depth of 1.5 m was reduced from an average 5.3–2.2 dS/m after 1 year of drainage without additional water being applied beyond the normal irrigation amounts and rainfall.  相似文献   

15.
This paper discusses the introduction of subsurface drainage as a tool to improve rice production in low land areas of acid sulphate soils. Pipe drains with 15 and 30 m spacing were installed in farmers fields in coastal lowlands of Kerala, India, at Kuttanad. Soil conditions improved within 2 years after the introduction of the subsurface drainage and significantly improved the crop yield. Data collected over a period of 14 years, showed a yield increase of 1.1 t/ha (43%) compared to non-drained areas. An economic analysis indicated that subsurface drainage is feasible with a benefit–cost ratio of 2.45, an internal rate of return of 47% and a net present value of Rs 5.17 million. The poor financial status of the farmers, however, is the main constraint for the large-scale adoption of the comparatively capital-intensive subsurface drainage systems in the acid sulphate soils of Kerala.  相似文献   

16.
The use of peatlands in the humid tropics requires drainage to remove excess rainfall. The design principles for the drainage systems currently being implemented on peatlands are the same as for mineral soils. The objective of such systems is the timely removal of excess rainfall by surface runoff. For peatlands, with their different soil-hydraulic characteristics, these systems have resulted in poor watertable control and high rates of irreversible subsidence. Concerns about this rate of subsidence and the level of sustainability of the present land use have prompted a study to develop a new water management system. This new system includes a shift from a drainage system that focuses on discharge of excess water towards a system that combines drainage and water conservation. In the new two-step design, the drain spacing and corresponding drain discharges are obtained with a steady-state approach. These outputs are used to calculate the capacity of the drains, including control structures, using an unsteady-state approach. The new system results in a shallower but more narrowly spaced drainage system and maintains a more constant but relatively high watertable and reduces subsidence. It should be remembered however, that even with the improved water management, subsidence cannot be arrested; it is the price one has to pay for the use of tropical peatlands.  相似文献   

17.
To evaluate the hydraulic performance of subsurface collector drains and to study the relationships between discharge rates, crop patterns, and the salinity of drainage water, subsurface drains were monitored in different parts of the Nile Delta and Valley.Actual discharges were much smaller than design discharges. Also, overpressure in the pipes occurred frequently, indicating too small a capacity in the design. From research in one pilot area, it was concluded that if construction methods and materials are not improved, the roughness factor in the design should be increased by 100% to allow sufficient capacity.The cultivation of rice increases discharges. Salinity of drainage water is higher in winter than in summer, and higher in the north of the Delta than in the south.  相似文献   

18.
塑料大棚控制排水系统设计及水管理研究   总被引:1,自引:0,他引:1  
采用水管理软件DRAINMOD,以SEW30为指标,确定塑料大棚暗管控制排水系统的间距和埋深。然后根据淋洗土壤盐分的需要,选取不同降雨水平年,采用不同的暗管控制排水出口深度及不同的灌水量,共组合成9种方案,以SEW30、土壤0~60 cm土层盐分脱减率、排水量作为评价指标,分析出研究区不同降雨水平年的水管理方案:丰水年...  相似文献   

19.
Subsurface drainage requires appropriate materials to ensure a proper functioning of the drainage system. The materials normally applied for subsurface drainage are drain pipes and envelopes. Besides a review of the materials used for drain pipes, their hydraulic characteristics — discharge capacity and entrance resistance — have been treated. Much attention is paid to subsurface drainage envelope materials because of practical problems and a serious gap in knowledge, in spite of considerable research efforts. After treating the aim of drainage envelopes, a review of the used materials is given. Practical experience with gravel envelopes, still often used in irrigated areas, shows serious shortcomings. Since organic envelopes are vulnerable to deterioration, the only possible alternative are synthetic envelopes. Their property to retain soil particles is characterized by the so-called filter criteria. Laboratory research and field experiments to evaluate the blocking and clogging aspects of synthetic envelopes are discussed and selection criteria given.  相似文献   

20.
Water use efficiency of irrigated wheat in the Tarai region of India   总被引:1,自引:0,他引:1  
Experiments were conducted during the winter seasons of 1983–1984 and 1984–1985 to identify suitable irrigation regimes s for wheat grown after rice in soils with naturally fluctuating shallow water table (SWT) at a depth of 0.4 to 0.9 m and medium water table (MWT) at a depth of 0.8 to 1.3 m. Based on physiological stages, the crop was subjected to six irrigation regimes viz., rainfed (I0); irrigation only at crown root initiation (I1); at only crown root initiation and milk (I2); at crown root initiation, maximum tillering and milk (I3); at crown root initiation, maximum tillering, flowering and milk (I4); and at crown root initiation, maximum tillering, flowering milk and dough (I5). Tube-well water with an EC <0.4 dsm–1 was used for irrigation. Based on 166 mm effective precipitation during the cropping season, 1983–1984 was designated as a wet year and 1984–1985 with 51 mm as a dry year. The change in profile soil water content W (depletion) in the wet year was less (23%) under SWT and 10% under MWT as compared to the dry year. The ground water contribution (GWC) to evapotranspiration (ET) was 58% under SWT and 42% under MWT conditions in both the years. The GWC in the wet year was 20% under SWT and 23% under MWT. Of the total net water use (NWU), about 85% was ET and 15% drainage losses. The NWU was highest (641 and 586 mm) in I5 under SWT and MWT conditions, respectively, but not the yield (5069 kg ha–1). Compared to I5, NWU in I2 treatment decreased by 10% in the wet and 25% in the dry year. A similar trend was observed in the I3 treatment under MWT condition. However, there was no statistically significant difference between yields of the I1 to I5 treatments of either water table depth during the wet year. This was also true during the dry year for the I2 to I5 treatments. Under SWT, in I2, the grain yield was 5130 kg ha–1 and under I3 regime, 5200 kg ha–1. Under MWT in I3, the yield was 5188 kg ha–1 and under I4 regime, 5218 kg ha–1. Thus it appears that in the Tarai region where the water table remains shallow (<0.9 m) and medium (<1.3 m) for most of the wheat growing season applications of more than 120 and 180 mm irrigation under SWT and MWT conditions, respectively were not necessary. Irrigation given only at crown root initiation and milk stages under shallow water table conditions, and at crown root initiation, maximum tillering and milk stages under medium water table conditions, appears to be as effective as frequent irrigations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号