首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Using a crop-water-salinity production function and a soil-water-salinity dynamic model, optimal irrigation scheduling was developed to maximize net return per irrigated area. Plot and field experiments were used to obtain the crop water sensitivity index, the salinity sensitivity index, and other parameters. Using data collected during 35 years to calculate the 10-day mean precipitation and evaporation, the variation in soil salinity concentrations and in the yields of winter wheat and cotton were simulated for 49 irrigation scheduling that were combined from 7 irrigation schemes over 3 irrigation dates and 7 salinity concentrations of saline irrigation water (fresh water and 6 levels of saline water). Comparison of predicted results with irrigation data obtained from a large area of the field showed that the model was valid and reliable. Based on the analysis of the investment cost of the irrigation that employed deep tube wells or shallow tube wells, a saline water irrigation schedule and a corresponding strategy for groundwater development and utilization were proposed. For wheat or cotton, if the salinity concentration was higher than 7.0 g L^-1 in groundwater, irrigation was needed with only fresh water; if about 5.0 g L^-1, irrigation was required twice with fresh water and once with saline water; and if not higher than 3.0 g L^-1, irrigation could be solely with saline water.  相似文献   

2.
A laboratory salt-water dynamics experiment using unsaturated soils in packed silt loam and clay soil columns with different soil texture profiles and groundwater levels under crops were conducted to study the changes of salt-water dynamics induced by water uptake of crops and to propose the theoretical basis for the regulation and control of salt-water dynamics as well as to predict salinity levels. The HYDRUS 1D model was applied to simulate the one-dimensional movement of water and salt transport in the soil columns. The results showed that the salts mainly accumulated in the plow layer in the soil columns under crops. Soil water and salt both moved towards the plow layer due to soil water absorption by the crop root system. The salt contents in the column with lower groundwater were mostly greater than those with high groundwater. The water contents in the soil columns increased from top to the bottom due to plant root water uptake. The changes in groundwater level had little influence on water content of the root zone in the soil columns with crop planting. Comparison between the simulated and the determined values showed that model simulation results were ideal, so it is practicable to do numerical simulation of soil salt and water transport by the HYDRUS 1D model. Furthermore, if the actual movement of salt and water in fields is to be described in detail, much work needs to be done. The most important thing is to refine the parameters and select precise boundary conditions.  相似文献   

3.
地膜覆盖滴灌棉田土壤上水分动态的数值模拟   总被引:4,自引:0,他引:4  
Drip irrigation under plastic mulch has been widely applied in arid Northwest China as a water-saving irrigation technology.A comprehensive knowledge of the distribution and movement of soil water in root zone is essential for the design and management of irrigation regimes.Simulation models have been proved to be efcient methods for this purpose.In this study,the numerical model Hydrus -2D was used to simulate the temporal variations of soil water content in a drip irrigated cotton field under mulching.A concept of partitioning coefcient,calibrated to be 0.07,was introduced to describe the efect of plastic mulch on prevention of evaporation.The soil hydraulic parameters were optimized by inverse solution using the field data.At the optimized conditions,the model was used to predict soil water content for four field treatments.The agreements between the predictions and observations were evaluated using coefcient of determination (R2) and root mean square error (RMSE).The results suggested that the model fairly reproduced the variations in soil water content at all locations in four treatments,with R2 ranging from 0.582 to 0.826 and RMSE from 0.029 to 0.050 cm3 cm-3,indicating that the simulations agreed well with the observations.  相似文献   

4.
Soil organic carbon(SOC) and iron(Fe)-oxides are important contributors of aggregate stability in highly weathered soils, and they are influenced by groundwater management and straw application. A 30-year plot experiment with early rice(Oryza sativa L.)-late rice-winter fallow rotations was conducted using a upland clay soil in cement pools under shallow groundwater table at a depth of 20 cm(SGT) and deep groundwater table at a depth of 80 cm(DGT) to simulate the groundwater tables of two types of important paddy soils, gleyed paddy soils and hydromorphic paddy soils, respectively, in subtropical China. Soil redox potential(Eh) was measured in situ, and 0–20 cm soil samples were collected for the analyses of soil Fe-oxides, SOC, and aggregates under SGT or DGT with different straw application treatments, in order to evaluate the interaction of groundwater management and straw application on paddy soil aggregation and the relative importance of SOC or Fe-oxides on soil aggregation. The results showed that soil Eh was restricted by irrigation, and its variation was more significant under DGT than under SGT. The decreased soil Eh or reduced drying and wetting cycles under SGT resulted in more SOC accumulation with the straw application, had no effect on soil free Fe-oxides(Fed), significantly increased the amorphous Fe-oxide(Feo) and complex Fe-oxide contents, but decreased the crystalline Fe-oxide content(Fed–Feo). The soils under DGT had more macroaggregates than those under SGT, but the difference decreased with the straw application. It could be concluded that soil Fe-oxides were the principal contributing factor to the aggregation of paddy soils in subtropical China and SOC was also an important contributing factor.  相似文献   

5.
A long term simulation test on salt-water dynamics in unsaturated soils with different groundwater depths and soil texture profiles under stable evaporation condition was conducted.Salinity sensors and tensiometers were used to monitor salt and water variation in soils.The experiment revealed that in the process of fresh groundwater moving upwards by capillary rise in the column,the salts in subsoil were brought upwards and accumulated in the surface soil,and consequently the salinization of surface soil took place.The rate of salt accumulation is determined mainly by the volume of capillary water flow and the conditions of salts contained in the soil profile.Water flux in soils decreased obviously when groundwater depths fell below 1.5m.When there was an interbedded clay layer 30cm in thickness in the silty loam soil profile or a clay layer 100cm in thickness at the top layer,the water flux was 3-5 times less than in the soil profile of homogeneous silty loam soil.Therefore,the rate of salt accumulation was decreased and the effect of variation of groundwater depth on the water flux in soils was weakened comparatively.If there was precipitation or irrigation supplying water to the soil,the groundwater could rarely take a direct part in the process of salt accumulation in surface soil,especially,in soil profiles with an interbedded stratum or a clayey surface soil layer.  相似文献   

6.
Salt—Water Dynamics in Soils:Ⅲ.Effect of Crop Planting   总被引:2,自引:0,他引:2  
Through a simulation test conducted with soil columns (61.8cm in diameter) in field condition,effect of crop planting upon the regulation of salt-water dynamics in soils was studied by monitoring of salt-water dynamics in situ,using soil salinity sensors and tensiometers.The results indicated that the amount of water absorbed by crops from the soil was generally larger than the decrement of water consumption from soil surface evaporation reduced by the crop covering the soil surface and improving the soil structure,therefore,under the conditions of crop growing and non-irrigation,water content in soil profile was less than that without crop growing,and the gradient of negative pressure of soil water in soil profile especially in the root zone was enlarged,thus causing the water flowing from subsoils into root zone and increasing the groundwater moving upwards into soil layer via capillary rise,so that the groundwater evaporation increased.Consequently,under the condition of crop growing,the salt was mainly accumulated towards the root zone rather than to the top soil.the accumulating rate of salt in groundwater via capillary rise of soil water to subsoils was increased thereby.  相似文献   

7.
Saline ice meltwater can be used for irrigation and leaching of salts in salt-affected soil regions.A laboratory experiment was conducted using soil columns to investigate the redistribution of soil moisture, salt and sodium adsorption ratio(SAR) in saline-sodic soil under the infiltration of saline ice meltwater.Soils were treated using saline water of three irrigation volumes(1 600, 2 400 and 3 200 mL) at four salinity levels.These four salinity levels included salt free(0 g L~(-1)), low salinity level(1.4 g L~(-1)), moderate salinity level(2.7 g L~(-1)) and high salinity level(4.1 g L~(-1)).The prepared saline water was frozen into ice, and then the ice was put on the surface of soil columns.After 96 h, the infiltration rate and soil moisture content of saline ice treatments were greater than those of salt-free ice treatments, increasing with the increase of ice salinity.Infiltration of saline ice meltwater increased soil moisture content in the upper layers for all treatments.Both salt contents and SAR values in the upper soil layers decreased in all saline ice treatments and were lower than those in salt-free ice treatment.However, this trend was reversed in the deeper(below 20 cm) soil layers.The highest desalting rate and lowest SAR were observed in high-salinity treatment under three irrigation volumes in the 0–15 cm soil layer,especially under irrigation volume of 2 400 mL.These results indicate that saline ice(0–20 cm) meltwater irrigation is beneficial to saline-sodic soil reclamation, and the best improvement effect would be achieved when using high-salinity ice under optimal irrigation volume.  相似文献   

8.
DOU Chao-Yin  LI Fa-Hu  L. S. WU 《土壤圈》2012,22(5):681-688
The reduction of soil and water losses under furrow irrigation with saline water is important to environmental protection and agricultural production.The objective of this study was to determine the effect of polyacrylamide(PAM)application on soil infiltration and erosion under simulated furrow irrigation with saline water.Polyacrylamide was applied by dissolving it in irrigation water at the rates of 1.5,7.5,and 15.0 mg L-1 or spreading it as a powder on soil surface at the rates of 0.3,1.5,3.0,and 6.0 g m-2,respectively.The effectrolyte concentration of tested irrigation water was 10 and 30 mmolc L-1 and its sodium adsorption ratio(SAR)was 0.5,10.0,and 20.0(mmolc L-1)0.5.Distilled water was used as a control for irrigation water quality.Results indicated that the effectrolyte concentration and SAR generally did not significantly affect soil and water losses after PAM application.Infiltration rate and total infiltration volume decreased with the increase of PAM application rate.Polyacrylamide application in both methods significantly reduced soil erosion,but PAM application rate did not significantly affect it.The solution PAM application was more effective in controlling soil erosion than the powdered PAM application,but the former exerted a greater adverse influence on soil infiltration than the latter.Under the same total amounts,the powdered PAM application resulted in a 38.2%-139.6% greater infiltration volume but a soil mass loss of 1.3-3.4 times greater than the solution PAM application.  相似文献   

9.
Thermally modified organic materials commonly known as biochar have gained popularity of being used as a soil amendment.Little information, however, is available on the role of biochar in alleviating the negative impacts of saline water on soil productivity and plant growth. This study, therefore, was conducted to investigate the effects of Conocarpus biochar(BC) and organic farm residues(FR) at different application rates of 0.0%(control), 4.0% and 8.0%(weight/weight) on yield and quality of tomatoes grown on a sandy soil under drip irrigation with saline or non-saline water. The availability of P, K, Fe, Mn, Zn and Cu to plants was also investigated. The results demonstrated clearly that addition of BC or FR increased the vegetative growth, yield and quality parameters in all irrigation treatments. It was found that salt stress adversely affected soil productivity, as indicated by the lower vegetative growth and yield components of tomato plants. However, this suppressing effect on the vegetative growth and yield tended to decline with application of FR or BC, especially at the high application rate and in the presence of biochar. Under saline irrigation system, for instance, the total tomato yield increased over the control by 14.0%–43.3% with BC and by 3.9%–35.6% with FR. These could be attributed to enhancement effects of FR or BC on soil properties, as indicated by increases in soil organic matter content and nutrient availability. Therefore, biochar may be effectively used as a soil amendment for enhancing the productivity of salt-affected sandy soils under arid conditions.  相似文献   

10.
灌溉对哈萨克斯坦南部农业富镁土壤的影响   总被引:2,自引:0,他引:2  
Irrational irrigation practices in the Arys Turkestan Canal command area in the southern part of Kazakhstan have led to the formation of soils with poor physical and chemical properties. To study whether irrigation and leaching practices and/or groundwater rise have contributed to the accumulation of Mg2+ on the cation exchange complex of these soils, historical changes in soil and groundwater quality were used as source data and the Visual MINTEQ model was applied to analyze the chemical composition of water and soils in the study area. The imposed irrigation regime and the leaching of light sierosem soils led to the dissolution and subsequent leaching of inherent gypsum and organic matter from the soil profile. Further, the domination of bicarbonate in the irrigation water promoted weathering of the carbonate minerals present as calcite. The higher concentrations of Mg2+ in comparison to Ca2+ in the irrigation water resulted in the replacement of Na+ by Mg2+ on the cation exchange complex. In the lower part of the command area, shallow groundwater has contributed to the accumulation of Na+ and to a large extent of Mg2+ on the cation exchange sites.  相似文献   

11.
窦超银  康跃虎 《土壤》2010,42(4):630-638
采用时空替代的研究方法,研究地下水浅埋区重度盐碱地不同滴灌种植年限(0、1、2、3年)对土壤盐分及不同盐分离子分布的影响,旨在为采用覆膜滴灌技术进行盐碱地改良提供理论依据。试验结果表明滴灌种植枸杞第1年,土壤盐分变化主要为自上而下被淋洗,种植2年和3年土壤年内盐分含量和分布变化相似,盐分主要分布在土壤表层,且在枸杞生育期结束时,剖面土壤含盐量都低于年初水平;土壤溶液电导率(EC1:5)与主要离子之间都具有极显著的相关关系,其中Cl-和Na+与EC1:5关系最为紧密;HCO3-与EC1:5负相关,相关性随着种植年限的增加而减小;Cl-、Mg2+、Ca2+、Na+在盐分组成中的荷载随种植年限增加而增大;回归分析表明Cl-和EC1:5之间具有线性关系,SO42-与EC1:5之间具有对数关系,EC1:5可以通过Cl-和SO42-表达;利用咸水覆膜滴灌并没有根本改变土壤类型,但在距滴头水平距离0~30cm范围内土壤含盐量从13.1g/kg降低到4~6g/kg,由盐土脱盐演化为重度盐化土。因此,采用覆膜滴灌技术明显降低了作物根区盐分含量,改善了作物根系生长的土壤环境条件。  相似文献   

12.
滴灌枸杞对龟裂碱土几种酶活性的改良效应   总被引:3,自引:0,他引:3  
张体彬  康跃虎  万书勤  冯浩 《土壤学报》2015,52(6):1392-1400
在盐碱地改良利用过程中,有必要研究土壤酶活性变化,以评价土壤环境质量的改善。龟裂碱土重度盐碱荒地主要分布在我国西北旱区,该土壤碱化度高,结构差,导水率极低。2009年,采用滴头下设置沙穴的方式滴灌种植枸杞,开垦利用该盐碱荒地。2011年枸杞生长季末,在不同种植年限地块土壤剖面上网格状密集取土,进行土壤脲酶、碱性磷酸酶和蔗糖酶活性的测定。结果表明,未种植土壤3种酶活性极低;滴灌种植之后,随着根区土壤水盐特性和养分状况的改善,土壤酶活性显著增加。就整个土壤剖面而言,土壤酶活性自根区向四周逐渐降低,表现出较大的空间变异性。相关性和通径分析结果显示,土壤p H始终是影响该土壤酶活性的主要因子,且在p H7.38~10.00的范围内,3种酶活性随土壤p H的增大呈指数式减小(p0.01)。总之,滴灌种植枸杞之后,龟裂碱土重度盐碱荒地土壤生物学性质得到显著改善。  相似文献   

13.
水分调控对盐碱地土壤盐分与养分含量及分布的影响   总被引:6,自引:4,他引:2  
为给新疆地区盐碱地开发利用提供合理的灌溉指导,该文研究了滴灌条件下内陆干旱区重度盐碱地水分调控对土壤盐分与养分的影响,2008-2010年连续3 a设置了滴头正下方20 cm处5个土壤基质势下限控制灌溉:-5 kPa(S1)、-10 kPa(S2)、-15 kPa(S3)、-20 kPa(S4)和-25 kPa(S5),每个处理重复3次,按随机区组布置,于2008年试验前和2008-2010年试验后采集土壤样品(0~5、5~10、10~20、20~30和30~40 cm),测定土壤盐分(电导率、钠吸附比)以及土壤养分(速效N、P、K,全N、全P,有机质)含量。结果表明:3 a试验结束后,各处理0~40 cm土层土壤电导率与钠吸附比均显著(p0.05)降低,其中-5 kPa(S1)处理土壤电导率降至5.3 dS/m,降低幅度最大,为89%;速效N、P、K,全N、全P以及有机质含量较试验前均有显著升高,升高幅度均在20%以上,且与土壤基质势下限成正比。各处理速效养分均在滴头周围形成累积区,且随与滴头距离的增加而减少,养分全量与有机质含量在土壤剖面垂直分布差异显著。各处理土壤C/N均较第1年播种前降低,且降低率(4.3%~13.5%)随土壤基质势下限的降低而升高。综合土壤盐分的淋洗效果以及土壤养分的改良程度,滴头正下方20 cm处土壤水基质势控制下限-5 kPa可以作为内陆干旱区前3 a盐碱地水分调控的指导灌溉制度。  相似文献   

14.
地下水浅埋区重度盐碱地覆膜咸水滴灌水盐动态试验研究   总被引:9,自引:0,他引:9  
通过在高垄埋设水银负压计,研究土壤水势动态,并在枸杞不同生育期对潜水位以上各土层盐分进行取样分析,研究土壤盐分周年动态变化,为地下水浅埋区重度盐碱地改良利用提供理论依据。结果表明,在覆膜滴灌一个灌溉周期内,土壤水分运动始终为自滴头下方饱和区持续径向向外扩散;雨季降雨使水分从土壤剖面整体向下运动,随着潜水位的升高水分运动逐渐减弱,转为自垄中部向垄坡方向运动。盐分运动受水分运动影响明显,周年盐分动态可以分为春季强烈蒸发—积盐阶段、灌溉淋洗—稳定阶段、雨季淋溶—脱盐阶段、秋季蒸发—积盐阶段和冬季相对稳定阶段五个阶段。剖面土壤电导率(EC1∶5)均值从1.64 dS m-1增长至1.69 dS m-1,土壤未明显积盐,但盐分在剖面分布的周年变化表明滴灌灌溉调控了水分盐分在土壤中的分布,为作物根系生长提供了良好的土壤环境条件。因此,地下水浅埋区重度盐碱地可以通过高垄覆膜咸水滴灌技术加以利用。  相似文献   

15.
张俊华  贾科利 《土壤》2011,43(4):650-656
系统分析了利用脱硫废弃物和次生盐渍化土壤专用改良剂对宁夏红寺堡扬黄灌区次生盐渍化土壤的改良效应,结果表明:施用脱硫废弃物可以改善土壤理化性状,但改良效果不理想,同时施用脱硫废弃物和专用改良剂后土壤砂粒含量减少,粉粒、黏粒含量普遍增加;土壤体积质量平均增加5.34%、孔隙度降低5.61%,土壤pH和全盐均有不同程度的下降;施用脱硫废弃物和专用改良剂后土壤有机质和养分含量、枸杞产量都有较大幅度的增加,其中施用改良剂Ⅱ的增幅最大,但考虑改良剂原料成本后施用改良剂II当年最终经济效益最大。相同改良剂秋施改良效果明显优于春施;施用量越大对土壤理化性状的改良效果越好,枸杞干果产量和直接经济效益也越高,但最终经济效益以施用量为11.25 t/hm2的处理最佳。  相似文献   

16.
滨海盐碱地是滨海地区重要的土地资源,随着滨海地区城镇化进程及生态文明建设的发展,迫切需要低成本、快速、可持续的滨海盐碱地原土植被构建技术。针对滨海盐碱地原土建植与咸水/微咸水资源的利用,该研究以月季(Rosa chinensis)为例,采用微咸水滴灌技术进行滨海盐碱地水盐调控植被构建。试验在渤海湾曹妃甸区吹沙造田形成的典型沙质滨海盐渍土上进行,设计了灌溉水电导率(ECiw)为0.8、3.1、4.7、6.3、7.8 dS/m的5个处理,研究滴灌水盐调控对土壤盐分淋洗及月季根系生长和分布特征的影响。结果表明:在渤海湾滨海地区气候条件下,先进行淡水滴灌盐分强化淋洗和缓苗灌溉,随后采用7.8 dS/m的微咸水滴灌,0~100 cm土层土壤盐分得到了有效的淋洗,尤其是根层0~40 cm土壤盐分经过一个月左右,由初始28.33 dS/m降低到均小于4 dS/m,一个低盐适生的土壤环境得到快速营造;随着ECiw的增加,0~40 cm土层土壤最终趋于稳定的盐分呈增加趋势,土壤脱盐过程可以被logistic方程描述,脱盐过程可划分为快速脱盐、缓慢脱盐和盐分趋于稳定3个阶段;94%以上的月季根系主要分布在0~20cm的表层土壤中,随着ECiw的增加,根系生物量显著降低,根系受盐分胁迫生理干旱影响向土壤深处生长以扩大水分空间。研究认为,采用短期淡水滴灌盐分强化淋洗和缓苗淡水滴灌、随后进行微咸水滴灌的方法,可以实现土壤盐分的快速淋洗并维持在较低水平,但受盐分对根系生长的影响会作用于植物地上部分生长及植物存活,因此需要结合植物耐盐性及生产目标(产量、景观)确定适宜灌溉水矿化度阈值。  相似文献   

17.
再生水灌溉对典型土壤盐分和离子浓度的影响   总被引:13,自引:2,他引:11  
为推动再生水安全灌溉,避免土壤盐渍化。该文研究了不同再生水灌溉年限对土壤盐分的影响。结果表明,不同再生水灌溉年限对各层土壤电导率、pH值无显著影响,而钠吸附比有所增加,但仍在适宜范围内。再生水灌溉后土壤中Na+、Mg2+、K+和Cl-含量总体呈现增加趋势,但在0~40 cm层位增加不显著,40~80 cm存在增加明显,土壤盐分在降水淋溶作用下具有向根系活动层以下迁移的趋势,华北地区气候条件下再生水灌溉引起耕层土壤盐分显著累积的风险较低。  相似文献   

18.
棉花是鲁北平原种植的重要经济作物,合理利用微咸水和咸水资源是解决棉花季节干旱问题的重要途径。通过田间小区试验,以淡水滴灌处理为对照,设置不同盐分梯度的咸水滴灌处理,研究2种类型咸水滴灌对棉田土壤水分和盐分的分布影响以及棉花产量的响应。结果表明,咸水滴灌条件下主要影响棉田40~100 cm土壤水分的变化,碳酸氢钠型和氯化钠型咸水处理对土壤含水量的影响没有显著差异。利用EC值低于8 d S·m~(-1)的咸水进行补灌,棉田0~40 cm土壤盐分积累不明显,灌溉水EC值为10 d S·m~(-1)的氯化钠型咸水灌溉在0~100 cm土壤盐分有明显的积累。滴灌补灌EC值不大于6 d S·m~(-1)的碳酸氢钠型咸水和不大于8 d S·m~(-1)的氯化钠型咸水对棉花产量没有明显的影响,滴灌补灌7 d S·m~(-1)碳酸氢钠型和10 d S·m~(-1)氯化钠型咸水明显降低棉花产量。从土壤盐分的积累和棉花产量来看,在鲁北平原可以利用6 d S·m~(-1)咸水滴灌对棉花进行补灌;利用咸水滴灌,要同时考虑灌溉水盐分的数量和盐分组成,碳酸氢钠型咸水要更加谨慎利用。  相似文献   

19.
在内蒙古河套灌区长胜试验站进行了蜜瓜的微咸水滴灌适宜性试验研究。灌溉水源为地下微咸水,水质的电导率从生育初期的3.3 dS/m到收获期的6.3 dS/m。该试验采用4种灌溉处理:按蒸发量的30%、60%、90%灌水(一行作物分别铺1、2、3条滴灌带)及不灌水的对照处理。各处理的灌溉水质和灌溉时间、灌水次数相同。试验结果表明:用微咸水滴灌灌溉的蜜瓜与不灌溉的蜜瓜相比,产量和品质都有较大的提高。60%处理的西瓜产量最高。4种处理(对照,30%,60%和90%)的水分生产效率分别为:25,20.5,18和11.37 kg/m3。在微咸水滴灌情况下,各处理土壤剖面盐分分布基本相似,表层土壤(0~10 cm)盐分积累高于下层土壤。各处理距离滴头50 cm处各剖面的盐渍度要高于距离滴头10 cm处各剖面的盐渍度。3种处理在灌溉结束后,土壤剖面的平均盐渍度和灌溉初期相比,基本没有形成土壤盐分的累积。  相似文献   

20.
膜下滴灌间作盐生植物棉田水盐运移特征及脱盐效果   总被引:3,自引:2,他引:3  
盐生植物改良盐碱地作为改良盐碱地最有效的方法之一,具有成本低,效率高,环境友好等特点,有良好的应用前景。该文包括2个研究目标:1)研究间作不同盐生植物的膜下滴灌棉田水盐运移特性;2)研究不同地下水埋深条件下盐生植物的盐碱地改良效果。针对第1个研究目标,设置了3种(孜然、碱蓬、苜蓿)间作盐生植物,进行大田试验,分析地下水埋深相似条件下间作不同盐生植物时土壤水盐分布状况;针对第2个研究目标,设置了4种地下水埋深(1.5、2.0、2.5、3.0 m),进行均衡场试验,研究不同地下水埋深条件下间作盐生植物时地下水的补给比例和土壤脱盐效果。结果表明:1)膜下滴灌棉田间作盐生植物能明显提高棉花生育期膜间和膜内0~30 cm土层平均含水率,且碱蓬效果最明显;间作条件下苜蓿、碱蓬、孜然、对照0~100 cm土层平均脱盐率依次为55.97%、-18.77%、-21.43%、-307.52%,即苜蓿的总脱盐率效果最好;间作盐生植物能在一定程度上抑制0~100 cm土层钠离子和氯离子的聚集,同时增加棉花产量和提高其水分利用效率,且碱蓬对抑制盐离子累积的效果最好;2)间作条件下,地下水埋深越浅,0~100 cm土层平均含水率越高,膜内膜间的含水率差异越小,土壤的脱盐率越低。与未间作相比,间作种植有效的提高了土壤脱盐率,增加了棉花产量、提高了地下水补给比例和水分利用效率。可见,膜下滴灌棉田间作盐生植物不仅可以有效降低土壤含盐量,增加其含水率,还可以增加棉花产量和提高其水分利用效率,且间作碱蓬和苜蓿的节水、脱盐、增产效果较好,这为膜下滴灌土壤盐碱地改良提供了有效的理论支撑。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号