首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Soil microbial activity drives carbon and nutrient cycling in terrestrial ecosystems. Soil microbial biomass is commonly limited by environmental factors and soil carbon availability. We employed plant litter removal, root trenching and stem-girdling treatments to examine the effects of environmental factors, above- and belowground carbon inputs on soil microbial C in a subtropical monsoon forest in southwest China. During the experimental period from July 2006 through April 2007, 2 years after initiation of the treatments, microbial biomass C in the humus layer did not vary with seasonal changes in soil temperature or water content. Mineral soil microbial C decreased throughout the experimental period and varied with soil temperature and water content. Litter removal reduced mineral soil microbial C by 19.0% in the ungirdled plots, but only 4.0% in girdled plots. Root trenching, stem girdling and their interactions influenced microbial C in humus layer. Neither root trenching nor girdling significantly influenced mineral soil microbial C. Mineral soil microbial C correlated with following-month plant litterfall in control plots, but these correlations were not observed in root-trenching plots or girdling plots. Our results suggest that belowground carbon retranslocated from shoots and present in soil organic matter, rather than aboveground fresh plant litter inputs, determines seasonal fluctuation of mineral soil microbial biomass.  相似文献   

2.
It is increasingly recognized that soil microbes have the ability to decompose old recalcitrant soil organic matter (SOM) by using fresh carbon as a source of energy, a phenomena called priming effect (PE). However, efforts to determine the consequences of this PE for soil carbon and nitrogen dynamics are in their early stage. Moreover, little is known about the microbial populations involved. Here we explore the consequences of PE for SOM dynamics and mineral nitrogen availability in a soil incubation experiment (161 days), combining the supply of dual-labeled (13C and 14C) cellulose and mineral nutrients. The microbial groups involved in PE were investigated using molecular fingerprinting techniques (FAMEs and B- and F-ARISA). We show that mean residence time of SOM pool controlled by the PE decreased from 3130 years in the subsoil, where the availability of fresh carbon is very low, to 17-39 years in the surface layer. This result suggests that the decomposition of this recalcitrant soil C pool is strictly dependent on the presence of fresh C and is not an energetically viable mean of accessing C for soil microbes. We also suggest that fungi are the predominant actors of cellulose decomposition and induced PE and they adjust their degradation activity to nutrient availability. The predominant role of fungi can be explained by their ability to grow as mycelium which allows them to explore soil space and mine large reserve of SOM. Finally, our results support the existence of a bank mechanism that regulates nutrient and carbon sequestration in soil: PE is low when nutrient availability is high, allowing sequestration of nutrients and carbon; in contrast, microbes release nutrients from SOM when nutrient availability is low. This bank mechanism may help to synchronize the availability of soluble nutrients to plant requirement and contribute to long-term SOM accumulation in ecosystems.  相似文献   

3.
Global warming in the Arctic may alter decomposition rates in Arctic soils and therefore nutrient availability. In addition, changes in the length of the growing season may increase plant productivity and the rate of labile C input below ground. We carried out an experiment in which inorganic nutrients (NH4NO3 and NaPO4) and organic substrates (glucose and glycine) were added to soils sampled from across the mountain birch forest-tundra heath ecotone in northern Sweden (organic and mineral soils from the forest, and organic soil only from the heath). Carbon dioxide production was then monitored continuously over the following 19 days. Neither inorganic N nor P additions substantially affected soil respiration rates when added separately. However, combined N and P additions stimulated microbial activity, with the response being greatest in the birch forest mineral soil (57% increase in CO2 production compared with 26% in the heath soil and 8% in the birch forest organic soil). Therefore, mineralisation rates in these soils may be stimulated if the overall nutrient availability to microbes increases in response to global change, but N deposition alone is unlikely to enhance decomposition. Adding either, or both, glucose and glycine increased microbial respiration. Isotopic separation indicated that the mineralisation of native soil organic matter (SOM) was stimulated by glucose addition in the heath soil and the forest mineral soil, but not in the forest organic soil. These positive ‘priming’ effects were lost following N addition in forest mineral soil, and following both N and P additions in the heath soil. In order to meet enhanced microbial nutrient demand, increased inputs of labile C from plants could stimulate the mineralisation of SOM, with the soil C stocks in the tundra-heath potentially most vulnerable.  相似文献   

4.
Leaf litter decomposition transfers elements from litter to soils that are essential for regulating nutrient cycles in plantation ecosystems, especially carbon and nitrogen. However, soil carbon and nitrogen dynamics in response to tree litter management remains insufficiently researched. We conducted a one-year field experiment at a fast-growing sweetgum tree plantation to evaluate the effects of leaf litter management on soil available nutrients, respiration rate and nitrogen mineralization rate. Three leaf litter treatments were applied, which were: (1) natural input (control); (2) double input and (3) non-input. It was found that the double input treatment increased soil inorganic nitrogen and microbial biomass nitrogen, but had little effect on microbial biomass carbon, dissolved organic carbon or dissolved organic nitrogen compared with natural input. The non-input treatment caused dissolved organic carbon to decrease compared with natural input. The respiration rate increased in the double input treatment, with a positive priming effect observed. Soil net ammonification, nitrification and mineralization rates also increased in the double input treatment in specific seasons. Meanwhile, positive linear relationships between respiration rate and all nitrogen transformation rates were observed for all treatments. Soil temperature was found to be an important prediction factor for predicting the respiration rate and mineralization as seasonal variations, but not for litter-induced fluctuations. Soil water content and mineral nitrogen were the primary drivers of litter-induced change to the respiration rate, whereas mineral nitrogen and microbial biomass were primary drivers of mineralization change. These results suggest that changes in soil nitrogen mineralization rate are strongly associated with the soil respiratory process, resulting in a potentially strong plant–soil feedback mechanism.  相似文献   

5.
Soil organic matter (SOM) biomarker methods were utilized in this study to investigate the responses of fungi and bacteria to freeze-thaw cycles (FTCs) and to examine freeze-thaw-induced changes in SOM composition and substrate availability. Unamended, grass-amended, and lignin-amended soil samples were subject to 10 laboratory FTCs. Three SOM fractions (free lipids, bound lipids, and lignin-derived phenols) with distinct composition, stability and source were examined with chemolysis and biomarker Gas Chromatography/Mass Spectrometry methods and the soil microbial community composition was monitored by phospholipid fatty acid (PLFA) analysis. Soil microbial respiration was also measured before and during freezing and thawing, which was not closely related to microbial biomass in the soil but more strongly controlled by substrate availability and quality. Enhanced microbial mineralization (CO2 flush), considered to be derived from the freeze-thaw-induced release of easily decomposable organic matter from microbial cell lyses, was detected but quickly diminished with successive FTCs. The biomarker distribution demonstrated that free lipids underwent a considerable size of decrease after repeated FTCs, while bound lipids and lignin compounds remained stable. This observation indicates that labile SOM may be most influenced by increased FTCs and that free lipids may contribute indirectly to the freeze-thaw-induced CO2 flush from the soil. PLFA analysis revealed that fungal biomass was greatly reduced while bacteria were unaffected through the lab-simulated FTCs. Microbial community shifts may be caused by freezing stress and competition for freeze-thaw-induced substrate release. This novel finding may have an impact on carbon and nutrient turnover with predicted increases in FTCs in certain areas, because fungi and bacteria have different degradation patterns of SOM and the fungi-dominated soil community is considered to have a higher carbon storage capacity than a bacteria-dominated community.  相似文献   

6.
Soil organic matter (SOM) in allophanic soils is supposed to accumulate due to protection caused by binding to allophane, aluminium and iron. We investigated a catena of allophanic and non‐allophanic soils in Costa Rica to determine the effect of such binding mechanisms on SOM chemistry. These soils contain no contribution of black carbon. Molecular characterization of litter, extractable and dispersed organic matter was done by Curie‐point pyrolysis‐GC/MS. The molecular chemistry of the organic fractions indicates a strong decomposition of plant‐derived organic matter and a strong contribution of microbial sugars and N‐compounds to SOM. Both the decomposition of plant‐derived SOM – including that of relatively recalcitrant compounds – and the relative contribution of microbial SOM were greater in allophanic samples than in non‐allophanic ones. This suggests that chemical protection does not act on primary OM, although it may influence the accumulation of secondary OM in these soils. The effect of allophane on SOM contents in such perhumid soils is probably through incorporation of decomposition products and microbial SOM in very fine aggregates that – in a perhumid environment – remain saturated with water during much of the year. Greater concentrations of aliphatics are found in allophanic residues, but there is no evidence of any specific mineral‐organic binding. The results do not support the existing theory of chemical protection of plant‐derived components through binding to allophane, iron and aluminium.  相似文献   

7.
Soil horizons below 30 cm depth contain about 60% of the organic carbon stored in soils. Although insight into the physical and chemical stabilization of soil organic matter (SOM) and into microbial community composition in these horizons is being gained, information on microbial functions of subsoil microbial communities and on associated microbially-mediated processes remains sparse. To identify possible controls on enzyme patterns, we correlated enzyme patterns with biotic and abiotic soil parameters, as well as with microbial community composition, estimated using phospholipid fatty acid profiles. Enzyme patterns (i.e. distance-matrixes calculated from these enzyme activities) were calculated from the activities of six extracellular enzymes (cellobiohydrolase, leucine-amino-peptidase, N-acetylglucosaminidase, chitotriosidase, phosphatase and phenoloxidase), which had been measured in soil samples from organic topsoil horizons, mineral topsoil horizons, and mineral subsoil horizons from seven ecosystems along a 1500 km latitudinal transect in Western Siberia. We found that hydrolytic enzyme activities decreased rapidly with depth, whereas oxidative enzyme activities in mineral horizons were as high as, or higher than in organic topsoil horizons. Enzyme patterns varied more strongly between ecosystems in mineral subsoil horizons than in organic topsoils. The enzyme patterns in topsoil horizons were correlated with SOM content (i.e., C and N content) and microbial community composition. In contrast, the enzyme patterns in mineral subsoil horizons were related to water content, soil pH and microbial community composition. The lack of correlation between enzyme patterns and SOM quantity in the mineral subsoils suggests that SOM chemistry, spatial separation or physical stabilization of SOM rather than SOM content might determine substrate availability for enzymatic breakdown. The correlation of microbial community composition and enzyme patterns in all horizons, suggests that microbial community composition shapes enzyme patterns and might act as a modifier for the usual dependency of decomposition rates on SOM content or C/N ratios.  相似文献   

8.
Soil organic matter (SOM) has long been recognized as an important indicator of soil productivity. The SOM refers to the organic fraction of the soil exclusive of undecayed plant and animal residues. It plays a crucial role in maintaining sustainability of cropping systems by improving soil physical (texture, structure, bulk density, and water-holding capacity), chemical (nutrient availability, cation exchange capacity, reduced aluminum toxicity, and allelopathy), and biological (nitrogen mineralization bacteria, dinitrogen fixation, mycorrhizae fungi, and microbial biomass) properties. The preservation of SOM is crucial to ensure long-term sustainability of agricultural ecosystems. Improvement/preservation of soil organic matter can be achieved by adopting appropriate soil and crop management practices. These practices include conservation tillage, crop rotation, use of organic manures, increasing cropping intensity, use of adequate rate of chemical fertilizers, incorporation of crop residues, liming acidic soils, and keeping land under pasture. Organic matter can adsorb heavy metals in the soils, which reduce toxicity of these metals to plants and reduce their escape to ground water. Similarly, SOM also adsorbs herbicides, which may inhibit contamination of surface and ground water. Furthermore, SOM also functions as a sink to organic carbon and mitigates carbon dioxide (CO2) gas escape to the environment. Globally, soil organic matter contains about three times as much carbon as found in the world's vegetation. Hence, organic matter plays a critical role in the global carbon balance that is thought to be the major factor affecting global warming. Overall, adequate amounts of soil organic matter maintain soil quality, preserve sustainability of cropping systems, and reduce environmental pollution.  相似文献   

9.
Climate and litter quality have been identified as major drivers of litter decomposition, but our knowledge of how soil characteristics (e.g. microbial community and chemical properties) determine carbon (C) and nitrogen (N) availability derived from the decomposition of litter of different qualities is still scarce. We conducted a microcosm experiment to evaluate how soils with contrasting microbial communities and soil properties (denoted Soils A and B hereafter, where Soil B has higher bacterial and fungal abundance, fungal:bacterial ratio, and organic C than Soil A) determine the availability of soil C (carbohydrates, proteins, amino acids and phenols) and N (dissolved organic and inorganic N, microbial biomass N and available N) during the decomposition of litter of contrasting quality (C:N ratios ranging from 20 to 102). We also evaluated the relative importance of soil characteristics and litter quality as drivers of C and N inputs to the soil during this process. Overall, higher soil C and N availability after litter decomposition was found in Soil B than in Soil A. Soil characteristics had a higher positive effect on soil C and N contents than litter quality during litter decomposition. We also found that changes in N availability and organic matter quality registered after litter decomposition, linked to different soil characteristics, were able to promote dissimilarities in the potential mineralization rates. In conclusion, our study provides evidence that soil characteristics (e.g. microbial communities and chemical properties) can be more important than litter quality in determining soil C and equally important for N availability during the decomposition of leaf litter.  相似文献   

10.
Climate warming is projected to increase the frequency and severity of wildfires in boreal forests, and increased wildfire activity may alter the large soil carbon (C) stocks in boreal forests. Changes in boreal soil C stocks that result from increased wildfire activity will be regulated in part by the response of microbial decomposition to fire, but post-fire changes in microbial decomposition are poorly understood. Here, we investigate the response of microbial decomposition to a boreal forest fire in interior Alaska and test the mechanisms that control post-fire changes in microbial decomposition. We used a reciprocal transplant between a recently burned boreal forest stand and a late successional boreal forest stand to test how post-fire changes in abiotic conditions, soil organic matter (SOM) composition, and soil microbial communities influence microbial decomposition. We found that SOM decomposing at the burned site lost 30.9% less mass over two years than SOM decomposing at the unburned site, indicating that post-fire changes in abiotic conditions suppress microbial decomposition. Our results suggest that moisture availability is one abiotic factor that constrains microbial decomposition in recently burned forests. In addition, we observed that burned SOM decomposed more slowly than unburned SOM, but the exact nature of SOM changes in the recently burned stand are unclear. Finally, we found no evidence that post-fire changes in soil microbial community composition significantly affect decomposition. Taken together, our study has demonstrated that boreal forest fires can suppress microbial decomposition due to post-fire changes in abiotic factors and the composition of SOM. Models that predict the consequences of increased wildfires for C storage in boreal forests may increase their predictive power by incorporating the observed negative response of microbial decomposition to boreal wildfires.  相似文献   

11.
Timber harvesting influences both above and belowground ecosystem nutrient dynamics. Impact of timber harvesting on soil organic matter (SOM) mineralization and microbial community structure was evaluated in two coniferous forest species, ponderosa pine (Pinus ponderosa) and lodgepole pine (Pinus contorta). Management of ponderosa pine forests, particularly even-aged stand practices, increased the loss of CO2-C and hence reduced SOM storage potential. Changes in soil microbial community structure were more pronounced in ponderosa pine uneven-aged and heavy harvest stands and in lodgepole pine even-aged stand as compared to their respective unmanaged stands. Harvesting of trees had a negative impact on SOM mineralization and soil microbial community structure in both coniferous forests, potentially reducing coniferous forest C storage potential.  相似文献   

12.
ABSTRACT

The aim of this study was to examine the usefulness of physical and chemical fractionation in quantifying soil organic matter (SOM) in different stabilized fraction pools. Soil samples from three land use types in Lorestan province, Southwest Iran were examined to account for the amount of organic carbon and nitrogen in different SOM fractions. Size/density separation and chemical oxidation methods were applied to separate the SOM fractions including particulate organic matter (POM), Si + C (silt and clay), DOC (dissolved organic C), rSOM (oxidation-resistant organic carbon and nitrogen) and S + SA (sand and stable aggregates). The values obtained for TOC, TN, and HWC were highest in forest lands followed by the range and agricultural lands. Among the SOM fractions, S + SA showed the highest values (5.75, 5.77 and 20.6 g kg?1 for agriculture, range and forest lands respectively) followed by POM, Si + C, rSOM, and DOC. The concentrations of C and N in the labile fractions obtained the higher values than in the stabilized fractions. Forest lands had the highest amounts of organic C and N among all fractions whereas agricultural lands showed highest values for inorganic C content of soils in different fractions.  相似文献   

13.
To understand the spatial and temporal dynamics of soil microbial biomass and its role in soil organic matter and nutrient flux in disturbed tropical wet-evergreen forests, we determined soil microbial biomass C, N and P at two soil depths (0–15 and 15–30 cm), along a disturbance gradient in Arunachal Pradesh, northeastern India. Disturbance resulted in considerable increase in air temperature and light intensity in the forest and decline in the soil nutrients concentration, which affected the growth of microbial populations and soil microbial biomass. There were significant correlations between bacterial and fungal populations and microbial biomass C, N and P. Soil microbial population was higher in the undisturbed (UD) forest stand than the disturbed forest stands during post-monsoon and less during rainy season due to heavy rainfall. Greater demand for nutrients by plants during rainy season limited the availability of nutrients to soil microbes and therefore, low microbial biomass C, N and P. Microbial biomass was negatively correlated with soil temperature and pH in all the forest stands. However, there were significant positive relationships among microbial biomass C, N and P. Percentage contribution of microbial C to soil organic C was higher in UD forest, whereas percentage contribution of microbial biomass N and P to total N and total P was higher in the moderately disturbed site than in the highly disturbed (HD) site. These results reveal that the nutrient retention by soil microbial biomass was greater in the selective logged stand and would help in the regeneration of the forest upon protection. On the other hand, the cultivated site (HD) that had the lowest labile fractions of soil organic matter may recover at a slower phase. Further, minimum and maximum microbial biomass C, N and P during rainy and winter seasons suggest the synchronization between nutrient demand for plant growth and nutrient retention in microbial biomass that would help in ecosystem recovery following disturbance.  相似文献   

14.
Mineral nutrient inputs to soil may alter microbial activity and consequently influence the accumulation of microbial residues. In this study, we investigated the effects of application rates and ratios of mineral fertilizers on the microbial residue carbon(MRC) of reddish paddy soils after long-term(15-year) fertilizer applications in southern China. Contents of three soil amino sugars as microbial residue contents were determined and MRC were calculated based on amino sugars. Results showed that three individual amino sugar contents increased as fertilizer application rates increased until maximum values were reached at a rate of 450-59-187 kg ha~(-1) year~(-1)(N-P-K). The three amino sugar contents then declined significantly under the highest mineral fertilizer application rate of 675-88-280 kg ha~(-1) year~(-1)(N-P-K). In addition, to enhance the microbial residue contents, it was more beneficial to double P(N:P:K= 1:0.26:0.41) in fertilizers applied to the P-deficient reddish paddy soils than to double either N(N:P:K = 2:0.13:0.41) or K(N:P:K= 1:0.13:0.82). The contents of the three individual amino sugars and microbial residues under different fertilizer application rates and ratios were significantly and positively correlated with soil organic carbon(SOC), total N, total P, and p H. Increases in values of the fungal C to bacterial C ratios showed that soil organic matter(SOM) stability increased because of the fertilizer applications over the past 15 years. The contents and ratios of amino sugars can be used as indicators to evaluate the impact of mineral fertilizer applications on SOM dynamics in subtropical paddy soils. The results indicated that fertilizer applications at a rate of 450-59-187 kg ha~(-1) year~(-1)(N-P-K) may improve crop yields, SOC contents, and SOC stability in subtropical paddy soils.  相似文献   

15.
Soil organic matter(SOM)in boreal forests is an important carbon sink.The aim of this study was to assess and to detect factors controlling the temperature sensitivity of SOM decomposition.Soils were collected from Scots pine,Norway spruce,silver birch,and mixed forests(O horizon)in northern Finland,and their basal respiration rates at five different temperatures(from 4 to 28℃)were measured.The Q_(10) values,showing the respiration rate changes with a 10℃ increase,were calculated using a Gaussian function and were based on temperature-dependent changes.Several soil physicochemical parameters were measured,and the functional diversity of the soil microbial communities was assessed using the MicroResp?method.The temperature sensitivity of SOM decomposition differed under the studied forest stands.Pine forests had the highest temperature sensitivity for SOM decomposition at the low temperature range(0–12℃).Within this temperature range,the Q_(10) values were positively correlated with the microbial functional diversity index(H'_(mic))and the soil C-to-P ratio.This suggested that the metabolic abilities of the soil microbial communities and the soil nutrient content were important controls of temperature sensitivity in taiga soils.  相似文献   

16.
生物碳可以防止土壤活性有机质矿化吗?   总被引:2,自引:0,他引:2  
Biochar could help to stabilize soil organic(SOM) matter, thus sequestering carbon(C) into the soil. The aim of this work was to determine an easy method i) to estimate the effects of the addition of biochar and nutrients on the organic matter(SOM)mineralization in an artificial soil, proposed by the Organization for Economic Co-operation and Development(OECD), amended with glucose and ii) to measure the amount of labile organic matter(glucose) that can be sorbed and thus be partially protected in the same soil, amended or not amended with biochar. A factorial experiment was designed to check the effects of three single factors(biochar, nutrients, and glucose) and their interactions on whole SOM mineralization. Soil samples were inoculated with a microbial inoculum and preincubated to ensure that their biological activities were not limited by a small amount of microbial biomass, and then they were incubated in the dark at 21℃ for 619 d. Periodical measurements of C mineralized to carbon dioxide(CO_2) were carried out throughout the 619-d incubation to allow the mineralization of both active and slow organic matter pools. The amount of sorbed glucose was calculated as the difference between the total and remaining amounts of glucose added in a soil extract. Two different models, the Freundlich and Langmuir models, were selected to assess the equilibrium isotherms of glucose sorption. The CO_2-C release strongly depended on the presence of nutrients only when no biochar was added to the soil. The mineralization of organic matter in the soil amended with both biochar and glucose was equal to the sum of the mineralization of the two C sources separately. Furthermore, a significant amount of glucose can be sorbed on the biochar-amended soil, suggesting the involvement of physico-chemical mechanisms in labile organic matter protection.  相似文献   

17.
《Geoderma》2001,99(1-2):27-49
In the global carbon cycle, soil organic matter (SOM) is a major source/sink of atmospheric carbon. Clay minerals stabilize part of the SOM through mineral–organic matter binding. Stabilization of organic matter is essential for tropical soils. Since the climatic conditions of the tropics favor decomposition of organic matter, tropical soils would be very poor in organic matter without this stabilization process. This research aims at determining the effect of clay mineralogy on the amount and composition of organic matter that is bound to the mineral surface. We focused on organic matter that is associated with kaolinite and smectite. We characterized kaolinite- and smectite-associated SOM in soils from seven countries, employing 13C NMR spectroscopy and Py-GC/MS. The content of carbon in the total clay-size fraction showed no significant difference between kaolinitic and smectitic soils. This suggests that the total amount of organic carbon in the clay-size fraction is independent of the clay mineralogy. We first extracted the clay fraction with NaOH and thereafter with Na4P2O7. About half of the kaolinite-associated SOM was extractable by NaOH. In the smectitic soils, pyrophosphate extracted more organic carbon than did NaOH. The Py-GC/MS and NMR results indicate that kaolinite-associated SOM is enriched in polysaccharide products, while smectite-associated organic matter contains many aromatic compounds. We suggest that different clay minerals use different binding mechanisms to complex SOM. As a result, the composition of clay-associated organic matter would be influenced by the type of clay that is dominantly present in the soil.  相似文献   

18.
This paper investigated the flow of carbon into different groups of soil microorganisms isolated from different particle size fractions. Two agricultural sites of contrasting organic matter input were compared. Both soils had been submitted to vegetation change from C3 (Rye/Wheat) to C4 (Maize) plants, 25 and 45 years ago. Soil carbon was separated into one fast-degrading particulate organic matter fraction (POM) and one slow-degrading organo-mineral fraction (OMF). The structure of the soil microbial community were investigated using phospholipid fatty acids (PLFA), and turnover of single PLFAs was calculated from the changes in their 13C content. Soil enzyme activities involved in the degradation of carbohydrates was determined using fluorogenic MUF (methyl-umbelliferryl phosphate) substrates.We found that fresh organic matter input drives soil organic matter dynamic. Higher annual input of fresh organic matter resulted in a higher amount of fungal biomass in the POM-fraction and shorter mean residence times. Fungal activity therefore seems essential for the decomposition and incorporation of organic matter input into the soil. As a consequence, limited litter input changed especially the fungal community favoring arbuscular mycorrhizal fungi. Altogether, supply and availability of fresh plant carbon changed the distribution of microbial biomass, the microbial community structure and enzyme activities and resulted in different priming of soil organic matter.Most interestingly we found that only at low input the OMF fraction had significantly higher calculated MRT for Gram-positive and Gram-negative bacteria suggesting high recycling of soil carbon or the use of other carbon sources. But on average all microbial groups had nearly similar carbon uptake rates in all fractions and both soils, which contrasted the turnover times of bulk carbon. Hereby the microbial carbon turnover was always faster than the soil organic carbon turnover and higher carbon input reduced the carbon storage efficiency from 51% in the low input to 20%. These findings suggest that microbial community preferentially assimilated fresh carbon sources but also used recycled existing soil carbon. However, the priming rate was drastically reduced under carbon limitation. In consequence at high carbon availability more carbon was respired to activate the existing soil carbon (priming) whereas at low carbon availability new soil carbon was formed at higher efficiencies.  相似文献   

19.
Soil organic matter (SOM) and its different pools have key importance in nutrient availability, soil structure, in the flux of trace gases between land surface and the atmosphere, and thus improving soil health. This is particularly critical for tropical soils. The rates of accumulation and decomposition of carbon in SOM are influenced by several factors that are best embodied by simulation models. However, little is known about the performance of SOM simulation model in an acid tropical soil under different tillage systems including no-tillage (NT). Our objective was to simulate soil organic matter dynamics on an Acrisol under no-tillage and different plowed systems using Century model. Tillage systems consisted of no-tillage, disc plow, heavy disc harrow followed by disc plow, and heavy disc harrow. Soil C stocks simulated by Century model showed tendency to recovery only under no-tillage. Also, simulated amounts of C stocks of slow and active pools were more sensitive to management impacts than total organic C. The values estimated by Century of soil C stocks and organic carbon in the slow and passive pools fitted satisfactorily with the measured data. Thus fitted, except for the active pool, Century showed acceptable performance in the prediction of SOM dynamics in an acid tropical soil.  相似文献   

20.
Soil organic matter (SOM) pools and soil available calcium (Caexch) were monitored during a 4-year period in an experimental chestnut stand treated for the restoration of timber production. In 2004 the stand was cut and stumps were grafted. Before the forestry operations, the biocycling process seemed to contrast soil nutrient loss, returning Ca to mineral soil through plant activity. Therefore, we hypothesized that the regrowing vegetation after forestry operations would supply Ca to the soil surface and maintain a certain soil fertility level. In fact, from 2005, a progressive recovery of 460 mg Caexch kg?1 year?1 at the soil surface was found, corresponding to about 5 % of the Ca of the leaf litter (8,605 mg Ca kg?1, chestnut leaves sampled in 2007). However, the Caexch seemed to depend on the humified C (r 2?=?0.858; p?<?0.01). At the soil surface, the humified C decreased. Therefore, other processes involving SOM dynamics may be taken into account. After the first year, the scarce presence of litter layer at the soil surface could have exacerbated soil erosion and reduction of SOM content, as shown by the change in horizon thickness and C amount. In later years a litterfall layer was present due to the regrowing vegetation and soil erosion was reduced, but SOM turnover did not change. In parallel the amount of microbial biomass C and soil respiration increased. Because the addition of new C source from regrowing vegetation can stimulate soil microbial activity, we hypothesized that the occurrence of a priming effect in our soil could further affect soil C and nutrient availability in later years management change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号