首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
The work of the Dokuchaev Soil Institute site on soil classification during the last three years is analyzed. The main subject of the discussion is the Classification and Diagnostics of Soils of Russia (2004) as compared to the classification of 1977. The website’s visitors, mainly soil scientists performing survey under contracts or involved in organizing environmental monitoring consult the diagnostics and names of their objects according to the new classification. The principles and structure of the classification system and criteria for distinguishing the basic taxa are accepted by practically everybody; the proposals on the correction of the diagnostics of soil horizons and their characteristics are made for a wide spectrum of soils. Many of the suggestions were taken into account by the authors in the last edition of this classification (2008). The users of the site are especially interested in anthropogenically modified soils, primarily in urban soils and soils disturbed by mining operations. Among the site’s visitors are many students and postgraduates, who are especially active during the examination periods.  相似文献   

2.
3.
4.
5.
The analysis of the responses of users of the substantive-genetic Russian soil classification system revealed some problems concerning the genetic (diagnostic) horizons. Applying horizons is essential since soil diagnostics are based on their identification and their combinations in soil profiles. In the recent Russian system, there are many diagnostic horizons, and their recognition is not always easy. This review is aimed at displaying the main elements and the genetic essence of the horizons, as well as the reasons to choose the diagnostic criteria and parameters for most of them. The horizons are grouped into genetic sets, and the specific properties of the horizons are emphasized, as well as the differences between the horizons and the feasibility to introduce new horizons. A rough comparison of the diagnostic horizons in the Russian and WRB systems revealed the considerable similarity of the taxa, whose definitions depend on the presence of the diagnostic horizons: these are the orders and soil reference groups, respectively.  相似文献   

6.
Several attempts were made in the past to identify high-level soil microfabrics, following the ideas of Kubiëna. They resulted in proposals to identify specific fabric types, soil materials, somas, formations, or morphotypes, based on the combinations of micromorphological characteristics of the studied horizons of soils. These units present complex (integrated, typical, and central) micromorphological images of soil horizons or materials. Using the available information on Russian soils, the author defined the “micromorphotypes” of soil horizons by illustrating this approach by two examples of simple and complicated genetic horizons. Emphasis was put on genetic and diagnostic aspects of micromorphological interpretations, which is traditional for Russian micromorphological studies. Moreover, the definition of “micromorphotypes” was derived from the ideas of diagnostic horizons, which serve as a base for the new Russian soil classification system. Examples of “micromorphotypes” are discussed for a Chernozem and major mineral horizons of loamy soils with textural profile (correlated with Albeluvisols in the WRB system). They illustrate the morphogenetic principles applied, and also bring to light some problems concerning the choice and hierarchy of criteria used for a number of soils.This “micromorphotypes” approach may contribute to the diagnostics of horizons for soil classification, for detection of human impacts, and for the identification of paleosols and their diagenetic changes. To facilitate contacts with nonprofessionals in micromorphology, a simple terminology and a priority of pedogenic principles seem to be preferable.  相似文献   

7.
Classiology can be defined as a science studying the principles and rules of classification of objects of any nature. The development of the theory of classification and the particular methods for classifying objects are the main challenges of classiology; to a certain extent, they are close to the challenges of pattern recognition. The methodology of classiology integrates a wide range of methods and approaches: from expert judgment to formal logic, multivariate statistics, and informatics. Soil classification assumes generalization of available data and practical experience, formalization of our notions about soils, and their representation in the form of an information system. As an information system, soil classification is designed to predict the maximum number of a soil’s properties from the position of this soil in the classification space. The existing soil classification systems do not completely satisfy the principles of classiology. The violation of logical basis, poor structuring, low integrity, and inadequate level of formalization make these systems verbal schemes rather than classification systems sensu stricto. The concept of classification as listing (enumeration) of objects makes it possible to introduce the notion of the information base of classification. For soil objects, this is the database of soil indices (properties) that might be applied for generating target-oriented soil classification system. Mathematical methods enlarge the prognostic capacity of classification systems; they can be applied to assess the quality of these systems and to recognize new soil objects to be included in the existing systems. The application of particular principles and rules of classiology for soil classification purposes is discussed in this paper.  相似文献   

8.
This paper considers three topical problems—the definition of peat soils as natural-historical formations and the estimation of their profile thickness, the analysis of the genesis of organic soils, and the principles of the classification of peat soils. Based on the experimental data of long-term studies, it was concluded that peat soils may include the whole peat layer and the upper horizons of the surface mineral soil. The organic and mineral parts of the natural structures were found to be a genetically homogeneous soil profile, which has the same history of development. The upper layer of the peat soils should be considered as the horizon reflecting the contemporary stage of the soil formation. A hierarchy of peat soils is analyzed for developing their classification.  相似文献   

9.
Considering the nature of soil and the ends which a classification must serve, principles are stated whereby a soil classification may be devised for application over extensive areas of varied soil composition. Naturally occurring bodies of soil, each with a high degree of homogeneity, are apparent rather than real individuals as their properties overlap to form a continuum. This continuum is multi-dimensional because soil is characterized by numerous properties. The procedure of devising a classification is one of subdividing the continuum such that class boundaries accommodate, as far as possible, apparent individuals rather than of grouping like apparent individuals together. A classification may be used to locate the position of a profile in the continuum and so define its relationship with other profiles. It may also be used to indicate the soil composition of land by using soil classes on a map to show differences in the soil mantle. The latter procedure may best be regarded as land classification or soil mapping rather than soil classification; a class of land or mapped area seldom contains profiles belonging exclusively to a single class, whereas a soil class never contains profiles of another class. The soil form, a specific arrangement of diagnostic horizons, is introduced as a category above the series to facilitate the identification of soil profiles. Member series of a form are defined according to property variations within the diagnostic horizons of the form. It is suggested that a binomial system of profile nomenclature, using the form and the series, would have much to commend it.  相似文献   

10.
11.
The analysis of literature sources and a database on soil physical properties collected by the Department of Soil Physics and Amelioration of Soils of the Faculty of Soil Science of Moscow State University made it possible to compare three major constituents of the particle-size distribution analysis (PSDA): (a) the classification of soil separates with respect to their sizes and the classification of soil textures, (b) the procedures used to prepare soil samples for the PSDA, and (c) the specificity of the determination of the particle-size distribution by different methods. It was shown that there are good physical and statistical grounds for the conversion of data on the particle-size distribution from the Russian classification system into other systems. Much larger problems are related to the pretreatment of soil samples for the PSDA. The diversity of existing methods, classification schemes, and technical devices based on different physical principles (sedimentation and laser diffractometry) should be taken into account in the analysis and quantitative conversion of particle-size distribution data from a given classification system into another system. The Russian classification of soil textures and soil particle-size groups developed by N.A. Kachinskii has certain advantages and can be easily converted into other systems. In the choice of a particular system, it is important to take into account the goals of the study. Agreement between soil scientists concerning the major constituents of the PSDA has to be reached.  相似文献   

12.
13.
14.
Chernozem-like soils with light-colored acid eluvial horizons are widespread in the forest-steppe zone of European Russia. Their formation is related to gleying under the conditions of a stagnant-percolative water regime on leached rocks. It is closely associated with the evolution of salinized soils (Gedroits’s scheme). However, these soils have not been included in the soil classifications of the Soviet Union and Russia. Based on the principles of substantial-genetic classification, one of the authors of this article [3–5, 10] referred them to gleyed podzolic chernozem-like soils, which are considered as an individual genetic soil type. With respect to agroecological aspects, they are different from the leached chernozems in their low productivity and difficulty of tillage. This article covers the problems of genesis, classification, and melioration of gleyed podzolic chernozem-like soils in the north of the forest-steppe zone of European Russia and their possible association with dark-colored podbels.  相似文献   

15.
16.
17.
A large-scale soil map of one of the farms in the south of Karelia has been analyzed. This map was initially compiled in 1979 on the basis of the official Classification and Diagnostics of Soils of the Soviet Union (1977). We have corrected it with the use of the new Classification and Diagnostics of Russian Soils. Both the names of the map units and the particular delineations on the map have been changed. These changes are related to differences in the principles of soil diagnostics in the old and new classification systems and to real changes in the soil cover that have taken place after the map’s compilation. In particular, large areas of peat bogs have been drained, and the cultivated peat soils have been subjected to accelerated mineralization. Surface planing works after digging drainage channels have also changed the soil cover pattern. The revised large-scale soil map developed on the basis of the new classification system gives more adequate information about the real soil cover.  相似文献   

18.
On the interfluves and in small depressions of the Ryazan forest-steppe, under periodic stagnation of surface water, acid chernozem-like soils with a relatively thick humus horizon, podzolic horizons, and marble-colored gleyed B1 and B2 horizons are formed. The eluvial horizons of these soils contain Mn-Fe nodules, and dark humus coatings occur in the illuvial horizons. In the spring, the eluvial horizons of these soils are excessively moistened and gravitational water stagnates on the soil surface for 3–4 weeks. The formation of the acid light-colored eluvial horizons of the soils on leached rocks is related to gleying under the conditions of the stagnant-percolative regime. Their total thickness is 15–25 cm and more. According to the properties of their solid phase, these horizons are similar to the podzolic horizons of soddy-podzolic gleyed soils. These soils have not been represented in the classification systems of soils of the USSR and Russia. Based on the principles of the substantial-genetic classification, one of the authors of this article [9] referred this soil to gleyed podzolic chernozem-like soils, thus, considering it as an individual genetic soil type. The gleyed podzolic chernozem-like soils differ from the leached chernozems by their low productivity and difficulty of tillage. In humid and moderately moist years, the death of crops or a reduction in yield are probable because of the excess of moisture.  相似文献   

19.
The factors of soil formation are not directly taken into account in the new profile-genetic Russian soil classification system; they are not reflected in the names and diagnostics of the soils. At the same time, as well as in many other modern soil classification systems, including the American Soil Taxonomy and the WRB system, the choice of the diagnostic criteria, the establishment of the relationships between them, and the setting of the quantitative boundaries between the soil taxa are based on our perception of soil geneses with due account for the factors of soil formation. In contrast to the ecological-genetic soil classification system of 1977, information on the factors of soil formation in the new system is encoded in the properties of the soil horizons. In some cases, this is insufficient for the definite geographic localization of soils and complicates the practical application of the new classification system. In this context, information on the ecological niches of soil types was included in the field manual on soil correlation-an abridged version of the soil classification system published in 2008—in the form of special tables developed for native and agrogenic soils. The analysis of these tables made it possible to outline certain geographic regularities in the distribution of soil types belonging to the trunk of postlithogenic soils.  相似文献   

20.
Evaluation of soil transformations and degradation is important not only for agriculture, but also for fundamental research on identification of new features for classification. In 1999, new Lithuanian soil classification (LTDK-99) was developed by adopting the diagnostic principles of WRB 1998. Together with new knowledge, it highlighted some relevant soil research and classification problems. Not only new terms but also diagnostic features of several newly distinguished first-level soils groups are being discussed, especially for the identification of cambisols, planosols, arenosols, and regosols. Additionally, a group of stagnosols is suggested for inclusion into this classification. The presence of glaciogenic secondary clay minerals in Lithuanian cambisols does not imply unambiguous brownification involvement, neither any study shows cambisols having specific to brownification iron minerals. The intensively occurring lesive in these soils questions correctness of identification of cambisols additionally aggravated by strong and deep anthropogenization of the soil profiles within the territorial range. Complex glaciogenesis makes it difficult to identify Lithuanian planosols. WRB 2014 (update 2015) identifies planosols according to the pedogenesis in old, strongly weathered binomial deposits using examples mostly from South American, South and East African plateaus of the subtropical zone. The same classification assigns planosols identified in Lithuania to stagnosols, that is, to the soils characterized by binomial genesis and stagnification. The diagnostic features of arenosols and regosols are similar in both groups and are related to primitive pedogenesis. Difficulties in distinguishing between the two groups in Lithuania are strengthened by the intensive cultivation of the ecosystems in their territorial range. The existing problems in Lithuanian soil diagnostics underline the questions of soil classification in general, especially regarding the evolution tendencies in soil classification. The article draws attention to the soil diagnostic aspects like distribution and genesis of clay particles, genesis of territory, and anthropogenic transformation for the improvement of soil identification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号