首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
葛孟清  钟嵘  卢亚萍  黄超  肖鑫  房经贵 《核农学报》2022,36(11):2239-2248
为解决葡萄园中由葡萄修剪产生的大量叶片残留问题,提高修剪产生的叶片的利用价值,本试验以8612、玫瑰香、红鸡心3个红叶葡萄品种和葡萄园皇后、玫瑰露、秋红3个绿叶葡萄品种不同发育时期的叶片为研究对象,利用MATLAB软件对整张叶片的图像数据进行提取,计算色差值;利用超高效液相-质谱法(LC-MS)检测花色苷的成分和含量,探讨不同发育时期叶片中花色苷不同组分的变化规律。结果表明,不同发育时期的红色和绿色叶片色差指数L*a*b*变化趋势明显不同,共检测到18种花色苷组分,包括花青素类(4种)、甲基花青素类(4种)、花翠素类(4种)、甲基花翠素类(2种)和二甲基花翠素类(4种)。以上5类花色苷在红色叶片中均被检测到,绿叶品种中未发现花翠素类和甲基花翠素类花色苷。花色苷定量结果显示,红色叶片不同发育时期花色苷含量为123.468~855.001 mg·100g-1,绿色叶片花色苷含量为4.407~44.517 mg·100g-1。甲基化类花色苷占比随叶片发育均逐渐增大。花色苷酰化修饰类型分析结果发现,香豆酰化类型花色苷含量高于其他酰化类型花色苷,在花色苷总含量中所占比例较高,而阿魏酰化和糖酰化类花色苷含量非常少。色差和不同类型花色苷成分的相关性分析结果表明,红色叶片的色差指数与更多类型的花色苷含量存在相关关系。红色葡萄叶片中花色苷种类丰富、含量较高,是花色苷类化合物的潜在来源,具有很大的利用价值。本研究通过对叶片中花色苷成分和含量进行了详细调查,为今后葡萄园中叶片的加工再利用提供了依据。  相似文献   

2.
The main flavonols found in seven widespread Vitis vinifera red grape cultivars include the 3-glucosides and 3-glucuronides of myricetin and quercetin and the 3-glucosides of kaempferol and isorhamnetin. In addition, the methoxylated trisubstituted flavonols, laricitrin and syringetin, were predominantly found as 3-glucosides. As minority flavonols, the results suggest the detection of the 3-galactosides of kaempferol and laricitrin, the 3-glucuronide of kaempferol, and the 3-(6' '-acetyl)glucosides of quercetin and syringetin. The flavonol profiles based on the eight above-mentioned flavonols allowed the cultivar differentiation of the grape samples. With regard to flavonol biosynthesis in the berry skin, quercetin 3-glucuronide predominated at véraison, followed by quercetin 3-glucoside, and only trace amounts of trisubstituted flavonols were detected. The proportion of quercetin 3-glucoside remained almost constant during berry ripening, whereas the proportion of quercetin 3-glucuronide decreased and the other flavonols, especially myricetin 3-glucoside, increased their importance. In wines, flavonol 3-glycosides coexisted with their corresponding free aglycones released by hydrolysis. The presence of laricitrin, syringetin, and laricitrin 3-glucoside in red wines is reported here for the first time. The extent of hydrolysis was widely variable among wines made from the same grape cultivar, and the results suggest the influence of the type of aglycone and glycoside on the rate of hydrolysis. Due to hydrolysis, the differentiation of single-cultivar wines gave acceptable results only when aglycone-type flavonol profiles were used.  相似文献   

3.
Among the methods that have been developed for anthocyanin characterization, matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS) offers several analytical advantages in terms of speed, minimal sample handling, specificity, and reliability, without requiring any previous chromatographic separation. This study used MALDI-TOF MS to profile the anthocyanins from the berry skins of 23 red grape varieties clustered as (i) authentic Vitis vinifera grapes, (ii) American hybrid cultivars, and (iii) Casavecchia cultivars, previously characterized as functional crosses of V. vinifera with nondefined hybrid grapevines. Anthocyanin profiling demonstrated evidence of several varietal traits that enabled the differentiation of authentic V. vinifera from hybrid cultivars on a molecular basis. In particular, acyl 3,5-O-diglucoside anthocyanins were established as easily monitored molecular markers of the hybrid varieties. It was also demonstrated that MALDI-post source decay MS is a powerful tool to differentiate isobaric 3,5-O-diglucosides and their derivatives, which prevail in hybrid cultivars, from acylated 3-O-glucoside anthocyanins.  相似文献   

4.
The detailed phenolic composition (anthocyanins, flavonols, hydroxycinnamic acid derivatives, stilbenes, and flavan-3-ols) in the skin and flesh of the new BRS Clara and BRS Morena seedless table grapes has been studied using HPLC-DAD-ESI-MS/MS. The two grapes, especially BRS Morena, contained high amounts of phenolic compounds, mainly located in their skins and qualitatively not different from those found in Vitis vinifera grapes. In addition, BRS Morena (a teinturier variety) showed qualitatively different phenolic compositions in its skin and flesh, mainly affecting the anthocyanin and flavonol profiles. Consistent with high phenolic contents, high antioxidant capacity values were registered for both grape varieties, especially for BRS Morena. Proanthocyanidins and hydroxycinnamoyl-tartaric acids were the major phenolic compounds found in BRS Clara and were also important in BRS Morena, although anthocyanins were the main phenolic compounds in the latter case. These results suggest that the entire grapes, including the skin, may potentially possess properties that are beneficial to human health. In this context, the BRS Morena grape can be considered as a high resveratrol producer.  相似文献   

5.
The influence of growing season (winter vs summer) on the synthesis and accumulation of phenolic compounds and antioxidant properties was studied in five grape cultivars for three consecutive years. Four phenolic compound parameters (total phenols, flavonoids, flavan-3-ols, and anthocyanins) and three antioxidant property parameters [2,2-diphenyl-1-picrylhydrazyl radical scavenging, 2,2-azinobis(3-ethylbenzothiazolinesulfonic acid) radical scavenging, and ferric reducing antioxidant power] were investigated. Results showed that both phenolic compounds and antioxidant properties in the seed and skin of winter berries were significantly (p < 0.05) higher than those of summer berries for all of the cultivars investigated. The anthocyanin profiles of berry skins appeared to be extremely consistent in different years for the same crop, whereas they varied greatly between the two crops within the same year (winter vs summer). Winter berries contained richer glucosides of delphinidin, cyanidin, peonidin, and malvidin than summer berries. These seasonal variations of phenolic compounds and antioxidant properties on grape berries were largely contributed by climatic factors such as temperature, solar radiation, rainfall, and hydrothermic coefficient between different growing seasons.  相似文献   

6.
Flavonols are products of the flavonoid biosynthetic pathway, which also give rise to anthocyanins and condensed tannins in grapes. We investigated their presence in the berry skins of 91 grape varieties (Vitis vinifera L.), in order to produce a classification based on the flavonol profile. The presence of laricitrin 3-O-galactoside and syringetin 3-O-galactoside in red grapes is reported here for the first time. In red grapes, the main flavonol was quercetin (mean = 43.99%), followed by myricetin (36.81%), kaempferol (6.43%), laricitrin (5.65%), isorhamnetin (3.89%), and syringetin (3.22%). In white grapes, the main flavonol was quercetin (mean = 81.35%), followed by kaempferol (16.91%) and isorhamnetin (1.74%). The delphinidin-like flavonols myricetin, laricitrin, and syringetin were missing in all white varieties, indicating that the enzyme flavonoid 3',5'-hydroxylase is not expressed in white grape varieties. The pattern of expression of flavonols and anthocyanins in red grapes was compared, in order to gain information on the substrate specificity of enzymes involved in flavonoid biosynthesis.  相似文献   

7.
Benzothiadiazole (BTH) and methyl jasmonate (MeJ) have been described as exogenous elicitors of some plant defense compounds, polyphenols among them. The objective of this study was to determine whether the application of BTH or MeJ to grape clusters at the beginning of the ripening process had any effect on the accumulation of the main flavonoid compounds in grapes (anthocyanins, flavonols, and flavanols) and the technological significance of these treatments in the resulting wines. The results obtained after a 2 year experiment indicated that both treatments increased the anthocyanin, flavonol, and proanthocyanidin content of grapes. The wines obtained from the treated grapes showed higher color intensity and total phenolic content than the wines made from control grapes. The exogenous application of these elicitors, as a complement to fungicide treatments, could be an interesting strategy for vine protection, increasing, at the same time, the phenolic content of the grapes and the resulting wines.  相似文献   

8.
Flavonoids have been reported to lower oxidative stress and possess beneficial effects on cardiovascular diseases and chronic inflammatory diseases associated with nitric oxide (NO). Common phenolic compounds, including phenolic acids, flavonols, isoflavones, and anthocyanins, present in fruits were investigated for their effects on NO production in LPS/IFN-gamma-activated RAW 264.7 macrophages. Phenolic compounds at the range of 16-500 microM that inhibited NO production by > 50% without showing cytotoxicity were the flavonols quercetin and myricetin, the isoflavone daidzein, and the anthocyanins/anthocyanidins pelargonidin, cyanidin, delphinidin, peonidin, malvidin, malvidin 3-glucoside, and malvidin 3,5-diglucosides. Anthocyanins had strong inhibitory effects on NO production. Anthocyanin-rich crude extracts and concentrates of selected berries were also assayed, and their inhibitory effects on NO production were significantly correlated with total phenolic and anthocyanin contents. This is the first study to report the inhibitory effects of anthocyanins and berry phenolic compounds on NO production.  相似文献   

9.
A rapid and comprehensive qualitative method has been developed to characterize the different classes of polyphenols, such as anthocyanins, flavonols, phenolic acids, and flavanols/proanthocyanidins, in grape products. The detection was achieved by two runs with the same LC gradient in different MS ionization modes and mobile phase modifiers (positive ionization mode and 0.4% trifluoroacetic acid for anthocyanins and flavonols; negative ionization mode and 0.1% formic acid for phenolic acids and flavanols). From an analysis of the MS and UV data and in comparison with the authenticated standards, a total of 53 compounds were identified, including 33 anthocyanins, 12 flavonols, 4 phenolic acids, and 4 flavanols/proanthocyanidins. With the method developed, a survey was then conducted to qualitatively assess the composition of polyphenols among 29 different grape products including original grape, grape juice, grape wine, and grape-derived dietary supplements, and their chemical profiles were systematically compared. This method provided a comprehensive qualitative insight into the composition of polyphenols in grape-derived products.  相似文献   

10.
The Saskatoon berry is currently cultivated in many parts of the world for its suitability for various food products and due to its high content of nutrients and polyphenols. To determine the phytochemical profile of a Saskatoon plant, polyphenols from leaves, stems, and berries were screened from four cultivars grown in Finland using HPLC-DAD and HPLC-ESI/MS. The phenolic composition and concentrations varied among plant parts and cultivars. The main berry components were cyanidin-based anthocyanins (63% of the phenols), quercetin-derived flavonol glycosides, and hydroxycinnamic acids. The total anthocyanin content varied between 258.7 and 517.9 mg/100 fresh weight among cultivars. Protocatechuic acid was found for the first time in Saskatoon berries. The leaves consisted of quercetin- and kaempferol-derived glycosides (41% of the phenols), hydroxycinnamic acids (36%), catechins, and some neolignans. Quercetin 3-galactoside and 3-glucoside, (-)-epicatechin, and chlorogenic acid were the main phenolics in the leaves of all cultivars. The stem components were flavanone and flavonol glycosides (55% of the phenols), catechins (38%), and hydroxybenzoic acids. Concentrations of the main compound, eriodictyol 7-glucoside, varied among cultivars from 3.3 to 6.5 mg/g of stem dry weight. Very high proanthocyanidin contents were found in stems and leaves (10-14% of dry biomass), whereas berries contained a low amount of proanthocyanidins (3% of dry biomass). The findings reveal that leaves and stems of Saskatoon cultivars possess high amounts of various phenolic compounds that may offer new functional raw materials for a wide range of food and health products.  相似文献   

11.
The phenolic compounds hydroxycinnamates, anthocyanins, flavonols, and flavan-3-ols of sweet cherry cultivars Burlat, Saco, Summit, and Van harvested in 2001 and 2002 were quantified by HPLC-DAD. Phenolics were analyzed at partially ripe and ripe stages and during storage at 15 +/- 5 degrees C (room temperature) and 1-2 degrees C (cool temperature). Neochlorogenic and p-coumaroylquinic acids were the main hydroxycinnamic acid derivatives, but chlorogenic acid was also identified in all cultivars. The 3-glucoside and 3-rutinoside of cyanidin were the major anthocyanins. Peonidin and pelargonidin 3-rutinosides were the minor anthocyanins, and peonidin 3-glucoside was also present in cvs. Burlat and Van. Epicatechin was the main monomeric flavan-3-ol with catechin present in smaller amounts in all cultivars. The flavonol rutin was also detected. Cultivar Saco contained the highest amounts of phenolics [227 mg/100 g of fresh weight (fw)] and cv. Van the lowest (124 mg/100 g of fw). Phenolic acid contents generally decreased with storage at 1-2 degrees C and increased with storage at 15 +/- 5 degrees C. Anthocyanin levels increased at both storage temperatures. In cv. Van the anthocyanins increased up to 5-fold during storage at 15 +/- 5 degrees C (from 47 to 230 mg/100 g of fw). Flavonol and flavan-3-ol contents remained quite constant. For all cultivars the levels of phenolic acids were higher in 2001 and the anthocyanin levels were higher in 2002, which suggest a significant influence of climatic conditions on these compounds.  相似文献   

12.
The influence of four day/night growing temperature combinations (18/12, 25/12, 25/22, and 30/22 degrees C) on phenolic acid, flavonol, and anthocyanin content and their antioxidant activities against peroxyl radicals (ROO(*)), superoxide radicals (O(2)(*)(-)), hydrogen peroxide (H(2)O(2)), hydroxyl radicals (OH(*)), and singlet oxygen ((1)O(2)) in fruit juice of Earliglow and Kent strawberry (Fragaria x ananassa Duch.) cultivars was studied. Pelargonidin-based anthocyanins such as pelargonidin 3-glucoside (291.3-945.1 microg/g fresh wt.), pelargonidin 3-rutinoside (24.7-50.9 microg/g fresh wt.), and pelargonidin 3-glucoside-succinate (62.2-244.0 microg/g fresh wt.) were the predominant anthocyanins in strawberry fruit juice. The content of cyanidin-based anthocyanins, cyanidin 3-glucoside and cyanidin 3-glucoside-succinate, was much lower than that of pelargonidin-based anthocyanins. Strawberry growth in high temperature conditions significantly enhanced the content of p-coumaroylglucose, dihydroflavonol, quercetin 3-glucoside, quercetin 3-glucuronide, kaempferol 3-glucoside, kaempferol 3-glucuronide, cyanidin 3-glucoside, pelargonidin 3-glucoside, pelargonidin 3-rutinoside, cyanidin 3-glucoside-succinate, and pelargonidin 3-glucoside-succinate in strawberry juice. Plants grown in the cool day and cool night temperature (18/12 degrees C) generally had the lowest phenolic acid, flavonols, and anthocyanins. An increase in night temperature from 12 to 22 degrees C, with the day temperature kept constant at 25 degrees C, resulted in a significant increase in phenolic acid, flavonols, and anthocyanins. These conditions also resulted in a significant increase in antioxidant capacity. The highest day/night temperature (30/22 degrees C) yielded fruit with the most phenolic content as well as ROO(*), O(2)(*)(-), H(2)O(2), OH(*), and (1)O(2) radical absorbance capacity. Fruit of Kent cv. strawberry had higher values of phenolic acid, flavonols, anthocyanins, and antioxidant capacities than fruit of Earliglow cv. strawberry under all temperature regimes.  相似文献   

13.
Phenolic compounds of 14 pomace samples originating from red and white winemaking were characterized by HPLC-MS. Up to 13 anthocyanins, 11 hydroxybenzoic and hydroxycinnamic acids, and 13 catechins and flavonols as well as 2 stilbenes were identified and quantified in the skins and seeds by HPLC-DAD. Large variabilities comprising all individual phenolic compounds were observed, depending on cultivar and vintage. Grape skins proved to be rich sources of anthocyanins, hydroxycinnamic acids, flavanols, and flavonol glycosides, whereas flavanols were mainly present in the seeds. However, besides the lack of anthocyanins in white grape pomace, no principal differences between red and white grape varieties were observed. This is the first study presenting comprehensive data on the contents of individual phenolic compounds comprising all polyphenolic subclasses of grapes including a comparison of several red and white pomaces from nine cultivars. The results obtained in the present study confirm that both skins and seeds of most grape cultivars constitute a promising source of polyphenolics.  相似文献   

14.
The prefermentation addition of copigments led to significantly different red wines according to the copigment structure (flavonol or hydroxycinnamic acid) and the grape cultivar [Tempranillo (= Cencibel) or Cabernet Sauvignon]. The flavonol rutin enhanced copigmentation and anthocyanin extraction, improving the red color, but the hydroxycinnamic acids (especially caffeic acid) had converse results. The above effects were higher in Cabernet Sauvignon wines, particularly if rutin or p-coumaric acid was used. These wines showed the highest copigmentation as they contained more anthocyanins and flavonols, whereas the coumaroylated anthocyanins of Tempranillo wines could have prevented the action of the added copigments. After 21 months, the main pyranoanthocyanins found were the malvidin-3-glucoside 4-vinylphenol and the malvidin-3-glucoside 4-vinylcatechol (pinotin A) adducts. The results suggested that the former adduct was primarily generated following enzymatic decarboxylation of p-coumaric acid during fermentation, whereas pinotin A was formed through a pure chemical reaction, which depended on the concentration of free caffeic acid during aging.  相似文献   

15.
The structure of flavonoids in food plants affects bioactivity and important nutritional attributes, like micronutrient bioavailability. This study investigated flavonol and anthocyanin compositions of cowpea (Vigna unguiculata) of varying genotypes. Black, red, green, white, light brown, and golden brown cowpea phenotypes were analyzed for anthocyanins and flavonols using ultra performance liquid chromatography-tandem quadrupole mass spectrometry. Eight anthocyanins and 23 flavonols (15 newly identified in cowpea) were characterized. Mono-, di-, and tri(acyl)glycosides of quercetin were predominant in most phenotypes; myricetin and kaempferol glycosides were present only in specific phenotypes. The red phenotypes had the highest flavonol content (880-1060 μg/g), whereas green and white phenotypes had the lowest (270-350 μg/g). Only black (1676-2094 μg/g) and green (875 μg/g) phenotypes had anthocyanins, predominantly delphinidin and cyanidin 3-O-glucosides. Cowpea phenotype influenced the type and amount of flavonoids accumulated in the seed; this may have implications in selecting varieties for nutrition and health applications.  相似文献   

16.
The relationships between grapevine (Vitis vinifera) vigor variation and resulting fruit anthocyanin accumulation and composition were investigated. The study was conducted in a commercial vineyard consisting of the same clone, rootstock, age, and vineyard management practices. The experimental design involved assigning vigor zones in two vineyard sites based upon differences in vine growth. Fruits and wines were analyzed by HPLC from designated vigor zones in 2003 and 2004. Average berry weight (grams), average dry skin weight (milligrams), degrees Brix, and pH were higher and titratable acidity (grams per liter) was lower in 2003 compared to 2004. In 2003, only the highest and lowest vigor zones had differences in berry weight, whereas there were no differences in 2004. In both years, high vigor zones had lower degrees Brix and higher titratable acidity (milligrams per liter). Accumulation of anthocyanins (milligrams per berry) was greater in 2003 compared to 2004. There was a trend for lower anthocyanin concentration (milligrams per berry) in high vigor zones in both years. In 2004 compared to 2003, there was a higher proportion of malvidin-3-O-glucoside and lower proportions of the other four anthocyanins (delphinidin-, cyanidin-, petunidin-, and peonidin-3-O-glucosides) found in Pinot Noir. In both years, site A had proportionally higher peonidin-3-O-glucoside and lower malvidin-3-O-glucoside than site B. Some of these differences may be related to the higher exposure and temperatures found in site B compared to site A and also in the low vigor zones.  相似文献   

17.
Berries contain a large variety of different phenolic compounds such as anthocyanins, flavonols, tannins, and phenolic acids. Due to variation in the nature and content of the phenolic compounds, the antioxidant effect and other bioactivities of berry phenolics are strongly dependent on the berry raw material as the activities differ between the different phenolic constituents. In the present study, wild rowanberries ( Sorbus aucuparia ) and four cultivated sweet rowanberries, Burka, Granatnaja, Titan, and Zoltaja, were characterized for their phenolic composition and screened for antioxidant, antimicrobial, and antiadhesive activities. The HPLC and LC-MS analyses of phenolic composition revealed that the main phenolic constituents were caffeoylquinic acids, varying from 56 to 80% total phenolics. The cultivated species contained less caffeoylquinic acids and more anthocyanins (up to 28.5%). The phenolics derived from wild rowanberries were significantly effective at inhibiting lipid oxidation both in liposomes and in emulsions, especially when assessed by inhibition of the formation of hexanal (86-97% inhibition depending on concentration). The increase in anthocyanin content in the cultivated species did not result in significantly increased antioxidant activity. Both wild and cultivated rowanberry phenolics exhibited a bacteriostatic effect toward Staphylococcus aureus . In addition, the phenolic extract from Zoltaja was weakly inhibitory toward Salmonella sv. Typhimurium, whereas both Zoltaja- and Granatnaja-derived phenolics retarded Escherichia coli growth. The phenolic extracts of wild rowanberries and Burka showed an inhibitory effect on hemagglutination of E. coli HB101 (pRR7), which expresses the M hemagglutinin. It can be concluded that cultivation of rowanberries resulted in increased anthocyanin content, but this did not diminish their bioactivity in comparison to wild rowanberries rich in caffeoylquinic acids.  相似文献   

18.
Flavonoids have been reported to demonstrate their benefits in lowering oxidative stress and beneficial effects on cardiovascular and chronic inflammatory diseases. Common phenolic compounds, including phenolic acids, flavonols, isoflavones, and anthocyanins, present in fruits, vegetables, and grains were investigated for their effects on the production of tumor necrosis factor alpha (TNF-alpha) in LPS/IFN-gamma-activated RAW 264.7 macrophages. Gallic acid and (+)-catechin showed small but significant effects, whereas chlorogenic acid had no effect on TNF-alpha production. The flavonol quercetin inhibited TNF-alpha production, but kaempferol and myricetin induced the secretion of TNF-alpha. The isoflavone genistein was an inhibitor of TNF-alpha, whereas daidzein induced TNF-alpha production. Glycosylation of genistein changed its inhibitory effects to TNF-alpha induction, and glycosylation of daidzein had no effect on its activity. Anthocyanidins/anthocyanins and anthocyanin-rich extracts induced TNF-alpha production and acted as modulators of the immune response in activated macrophages. This is the first study to report the effects of anthocyanins and berry extracts on TNF-alpha production.  相似文献   

19.
Muscadine grapes have unique aroma and flavor characteristics. Although a few studies reported high polyphenols content of muscadine grapes, little research has been conducted to evaluate the phenolic compounds bioactivities in any muscadine grape cultivar. The objective of this study was to evaluate the effect of phenolic compounds in muscadine grapes on cancer cell viability and apoptosis. Four cultivars of muscadine (Carlos, Ison, Noble, and Supreme) were assessed in this study. Phenolic compounds were extracted from muscadine skins and further separated into phenolic acids, tannins, flavonols, and anthocyanins using HLB cartridge and LH20 column. Some individual phenolic acids and flavonoids were identified by HPLC. Anthocyanin fractions were more than 90% pure. The effect of different fractions on the viability and apoptosis of two colon cancer cell lines (HT-29 and Caco-2) was evaluated. A 50% inhibition of cancer cell population growth for the two cell lines was observed at concentrations of 1-7 mg/mL for crude extracts. The phenolic acid fractions showed a 50% inhibition at the level of 0.5-3 mg/mL. The greatest inhibitory activity was found in the anthocyanin fraction, with a 50% inhibition at concentrations of approximately 200 microg/mL in HT-29 and 100-300 microg/mL in Caco-2. Anthocyanin fractions also resulted in 2-4 times increase in DNA fragmentation, indicating the induction of apoptosis. These findings suggest that polyphenols from muscadine grapes may have anticancer properties.  相似文献   

20.
The foliar fertilization has been used as an important agrotechnical measure to avoid deficiencies and to improve quality. During the two consecutive years, a study has been performed on Vitis vinifera L. (cv. 'Cardinal') to examine whether a grape berry quality has been affected by the foliar application of PK fertilizer. A liquid mineral fertilizer containing 15% P2O5, 20% K2O with 0.1% B, 0.1% Mn and 0.01% Mo (% w/w) has been sprayed three times at rate of 8 L ha(-1) every 14-15 days starting at about 15 days before veraison. The sugars, organic acids and flavonoids (anthocyanins, flavonols and flavan-3-ols) have been analyzed by the high performance liquid chromatography in the grape berries. The foliar fertilization of grapevine can accelerate the accumulation of sugars and anthocyanins, whereas climatic factors and yearly fluctuations influence the content of sugars, organic acids, and phenolic compounds in general. The effect of fertilizer spraying on flavonols and flavan-3-ols has not been found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号