首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Wheat bran was extruded in a twin‐screw extruder at five specific mechanical energy (SME) levels (0.120, 0.177, 0.234, 0.291, and 0.358 kWh/kg, dwb) and the cholesterol‐lowering effects were compared with those of unprocessed wheat bran when fed to four‐week‐old male golden Syrian hamsters (n = 10/treatment) for three weeks. Diets contained 10% total dietary fiber, 10.3% fat, 3% nitrogen, and 0.4% cholesterol. Plasma total cholesterol and very‐low‐density lipoprotein cholesterol were significantly lower with 0.120 kWh/kg extruded wheat bran diet compared with the unextruded wheat bran control. Total triglycerides were significantly lower with 0.120 and 0.177 kWh/kg wheat bran diets compared with those fed 0.291 and 0.358 kWh/kg extruded wheat bran diets. Cholesterol digestibility, total liver cholesterol, and total liver lipids were significantly lower with all the extruded wheat bran diets compared with the unextruded wheat bran control. Cholesterol digestibility for the 0.291 kWh/kg wheat bran diet was also significantly lower than all other extruded diets. Significantly more sterols were excreted with diets containing 0.291 and 0.358 kWh/kg extruded wheat bran compared with the unextruded wheat bran control. Wheat bran extruded with 0.291 kWh/kg diet resulted in a 13% reduction in plasma cholesterol and a 29% reduction in low‐density lipoprotein cholesterol. Considering lowest cholesterol digestibility, significantly higher sterol excretion, desirable plasma lipo‐protein cholesterol profile, significantly lower liver weight, total liver lipids, and liver cholesterol, the wheat bran extruded at 0.291 kWh/kg appeared to have the most desirable healthful potential. Data suggest that cholesterol‐lowering potential of wheat bran could be enhanced by optimizing the energy input used in the extrusion process.  相似文献   

2.
Brans from rice, oats, corn, and wheat were cooked in a twin-screw extruder at either high or low energy input, and their cholesterol-lowering effects were compared with those of unprocessed brans when fed to four-week-old male golden Syrian hamsters (n = 10 per treatment) for three weeks. Peanut oil was added to oat, corn, and wheat bran during the extrusion process to match the oil content of rice bran. Diets contained 10% total dietary fiber, 10.3% fat, 3% nitrogen, and 0.3% cholesterol. Plasma and liver cholesterol and total liver lipids were significantly lower with low-energy extruded wheat bran compared with unprocessed wheat bran. Extrusion did not alter the hypocholesterolemic effects of rice, oat, or corn brans. Plasma and liver cholesterol levels with corn bran were similar to those with oat bran. Relative cholesterol-lowering effects of the brans, determined with pooled (extruded and unextruded) bran data, were rice bran > oat bran > corn bran > wheat bran. Rice bran diets resulted in significantly lower levels of total plasma cholesterol and very low density lipoprotein cholesterol compared with all other brans. Total liver cholesterol and liver cholesterol concentrations (mg/g) were significantly lower with high-energy extruded rice bran compared with the cellulose control group. Plasma cholesterol and total liver cholesterol values with low-energy extruded wheat bran were similar to those with rice bran (unextruded or extruded) diets. Lowered cholesterol with rice bran diets may result in part from greater lipid and sterol excretion with these diets. Results with low-energy extruded wheat bran suggest that this type of processing may improve the potential for lowering cholesterol with wheat bran products.  相似文献   

3.
This study was undertaken to evaluate the lipidemic response of rice bran and the possible enhancement of its healthful properties by using raw or processed white or brown rice in place of corn starch. All diets contained 10% total dietary fiber, 15% fat, and 0.5% cholesterol. Weanling male golden Syrian hamsters were fed cellulose control (CC), processed corn starch (PCS), cellulose with processed brown rice (CPBR), rice bran (RB), RB with white rice (RBWR), RB with processed white rice (RBPWR), RB with brown rice (RBBR), and RB with processed brown rice (RBPBR) diets. After three weeks, the PCS diet significantly lowered total plasma cholesterol (TC) compared with the CC, CPBR, RBWR, and RBPBR diets. RB and RBBR diets significantly lowered TC and LDL‐C compared with CPBR diet. All the RB‐containing and PCS diets significantly lowered liver cholesterol and liver lipid content. Processing white rice increased TDF content 240% and insoluble dietary fiber (IDF) 360%, whereas soluble dietary fiber (SDF) decreased by 25%. Uncooked brown rice contained 7 times as much TDF as uncooked white rice. Processing brown rice decreased its TDF, IDF and SDF contents by 12, 6, and 42%, respectively. The data suggest that a possible mechanism for cholesterol‐lowering by rice bran, with or without added raw or processed rice (white or brown), is by decreasing lipid digestibility and increasing neutral sterol excretion, whereas cholesterol‐lowering by processed corn starch is mediated through other mechanisms.  相似文献   

4.
Wheat bran contains good quality protein, but given its location inside aleurone cells, this protein has restricted digestibility. The aim of this work was to liberate and solubilize wheat bran proteins via cell wall degradation by using carbohydrate‐hydrolyzing and proteolytic enzymes without causing extensive protein hydrolysis. Bran incubated with water (without added enzymes) for 16 h increased the solubilized organic nitrogen content from 14.0 to 42.8%. Enzymes with solely carbohydrate‐hydrolyzing activity increased the water‐soluble pentosan and reducing sugar contents but did not significantly increase protein solubilization or protein release from the aleurone cells. Enzymes with proteolytic activity significantly increased the solubilization of protein to 58.2% already at 4 h. Significant protein hydrolysis was detected with a high dosage of protease. However, based on light microscopy, the enzymatic treatment mainly modified the proteins in the subaleurone layer, and it was less effective on proteins inside the aleurone cells. With optimized protease treatment (3 h, 35°C, and 550 nkat/g), effective protein solubilization (>48%) without extensive protein hydrolysis (free amino nitrogen content <45 mg/L) was achieved. In conclusion, intensive solubilization of proteins in the subaleurone layer of wheat bran is possible by using exogenous enzymes with proteolytic activities.  相似文献   

5.
Four-week-old male golden Syrian hamsters were fed diets containing cellulose (control, CC), cellulose + soy protein (CS), CS + vitamin E, (CSE), rice bran (RB), RB + vitamin E (RBE), oat bran (OB), and OB + vitamin E (OBE) for six weeks (n = 10/treatment). Diets contained (by weight) 10% total dietary fiber, 3% N, 20% fat, 0.5% cholesterol, and some diets had an additional 0.1% vitamin E. After six weeks, RB and OB diets resulted in significantly higher weight gain than the CC diet. Plasma low-density lipoprotein cholesterol (LDL-C) values and the LDL-C/high-density lipoprotein cholesterol ratio in hamsters fed CSE, RBE, OB, and OBE diets were significantly lower than in those fed CC diet. There were no significant differences in total plasma cholesterol values among the hamsters fed any of the diets. Liver cholesterol in animals fed OB and OBE diets was significantly lower than in all other groups. Foam cell areas in the inner bend of the aortic arch in animals fed all treatment diets were significantly reduced when compared with that in animals fed CC diet. The level of additional dietary vitamin E did not result in further significant reductions in foam cell area. The results of this study suggest that diets containing rice bran, oat bran, or soy protein significantly reduced the development of atherosclerosis in hypercholesterolemic hamsters.  相似文献   

6.
《Cereal Chemistry》2017,94(4):654-658
The bile acid binding capacity of wheat bran with different particle sizes was determined. Unmilled wheat bran with an average particle size of 900 μm (WB‐900), milled wheat bran at two particle sizes, 500 and 200 μm (WB‐500 and WB‐200), and all three bran samples washed with water (WWB‐900, WWB‐500, and WWB‐200) were mixed with bile acids at pH 6.3 to determine their in vitro adsorption capacity. On a dry matter basis, the order of relative bile acid binding values was WB‐900 ∼ WB‐500 > WWB‐900 > WB‐200 > WWB‐500 > WWB‐200. Data suggests that the surface area as measured by the Brunauer–Emmett–Teller (BET) method and water holding capacity may significantly affect the bile acid binding capacity of wheat bran. As the BET surface area increased with decreasing particle size, the water holding capacity and bile acid binding decreased. Bile acid binding capacity of wheat bran appears to be linked to the ability of the samples to physically adsorb the bile acids. Bile acid binding capacity significantly decreased with reduction in particle size of wheat bran after water washing.  相似文献   

7.
Variations in physical and compositional bran characteristics among different sources and classes of wheat and their association with bread‐baking quality of whole grain wheat flour (WWF) were investigated with bran obtained from Quadrumat milling of 12 U.S. wheat varieties and Bühler milling of six Korean wheat varieties. Bran was characterized for composition including protein, fat, ash, dietary fiber, phenolics, and phytate. U.S. soft and club wheat brans were lower in insoluble dietary fiber (IDF) and phytate content (40.7–44.7% and 10.3–17.1 mg of phytate/g of bran, respectively) compared with U.S. hard wheat bran (46.0–51.3% and 16.5–22.2 mg of phytate/g of bran, respectively). Bran of various wheat varieties was blended with a hard red spring wheat flour at a ratio of 1:4 to prepare WWFs for determination of dough properties and bread‐baking quality. WWFs with U.S. hard wheat bran generally exhibited higher dough water absorption and longer dough mixing time, and they produced smaller loaf volume of bread than WWFs of U.S. soft and club wheat bran. WWFs of two U.S. hard wheat varieties (ID3735 and Scarlet) produced much smaller loaves of bread (<573 mL) than those of other U.S. hard wheat varieties (>625 mL). IDF content, phytate content, and water retention capacity of bran exhibited significant relationships with loaf volume of WWF bread, whereas no relationship was observed between protein content of bran and loaf volume of bread. It appears that U.S. soft and club wheat bran, probably owing to relatively low IDF and phytate contents, has smaller negative effects on mixing properties of WWF dough and loaf volume of bread than U.S. hard wheat bran.  相似文献   

8.
The in vitro binding of bile acids of milled wheat bran (MWB) and milled extruded wheat bran (MEB) at five specific mechanical energy (SME) levels of 120 (MEB‐120), 177 (MEB‐177), 234 (MEB‐234), 291 (MEB‐291), and 358 (MEB‐358) Whr/kg on a fat‐free dry weight basis was determined using a mixture of bile acids secreted in human bile at duodenal physiological pH 6.3. Relative to cholestyramine (bile acid binding, cholesterol lowering drug) in vitro bile acid binding capacity on dry matter, total dietary fiber (TDF), and insoluble dietary fiber (IDF) basis was for MWB: 21, 43, 45%; the range for MEB was 18–21%, 34–41%, and 36–43%, respectively. MWB resulted in significantly higher bile acid binding than that of MEB at 120, 234, and 291 Whr/kg on a dry matter, TDF, and IDF basis. These results demonstrate the relative health‐promoting potential of MWB = MEB‐177 = MEB‐358 > MEB‐120 = MEB‐234 = MEB‐291 as indicated by the bile acid binding on a dry matter basis. Data suggest that significant improvement in health‐promoting (cholesterol‐lowering and cancer‐preventing) potential could be obtained in WB by milling (low‐cost processing) the bran to finer particle sizes and extruding (high‐cost technology). Milling WB to small particle size (weighted mean 0.508 mm) increased surface area, in addition it may have induced changes in the physical and chemical characteristics of WB or created new linkages, binding sites of the proteins, starches, and nonstarch polysaccharides, which significantly increased the bile acid binding ability of the MWB.  相似文献   

9.
In vivo experiments were conducted to verify whether arabinoxylooligosaccharides (AXOS) obtained as low molecular mass compounds by enzymic hydrolysis from wheat bran arabinoxylan (AX) can exert nutritional effects. Two feeding trials were performed on chickens fed diets with either wheat or maize as the main component. Supplementation of bran AXOS at either 0.5% (w/w) to the wheat‐based diet or at 0.25% (w/w) to the maize‐based diet diets significantly (P < 0.05) improved the feed conversion rate without increasing the body weight of the animals, thus pointing to improved nutrient utilization efficiency. The positive effect of bran AXOS supplementation on feed utilization efficiency was similar to that obtained by adding an AX‐degrading xylanase directly to the wheat‐based diet. No significant effect on feed utilization efficiency was obtained with another type of nondigestible oligosaccharide such as fructooligosaccharides (FOS) derived from chicory roots. Bran AXOS significantly increased the level of bifidobacteria but not total bacteria in the caeca of the chickens, an effect not observed with either xylanase or FOS addition. These data suggest that bran AXOS have beneficial nutritional effects and may act as prebiotics.  相似文献   

10.
One hundred‐eighty hypercholesterolemic subjects following the National Cholesterol Education Program Step One Diet were randomly divided into six groups (30 ± 2/group). Group 1 served as the control and received no fiber supplements. The fiber supplemented groups received 50 g/day of oat bran or amaranth from various sources: Group 2 (oat bran muffins); Group 3 (amaranth muffins); Group 4 (Oat Bran O's); Group 5 (Oat Bran Flakes); and Group 6 (a variety of oat bran products). Fasting serum total cholesterol (FSTC), low density‐, very low density‐, and high density‐lipoprotein cholesterol (LDL‐C, VLDL‐C, and HDL‐C) and serum triacylglycerols were measured before and after the 28‐day intervention. Three‐day diet records were completed before and after intervention. Subjects reduced (P < 0.05) the mean intake of total and saturated fat, and cholesterol. FSTC dropped more than twice as much (P < 0.05) as was observed with fat modification alone (Group 1 = ‐0.31 mmol/L), when oat bran was provided as flakes (Group 5 = ‐0.86 mmol/L) or in a variety of forms (Group 6 = ‐0.75 mmol/L). If the initial ratio of HDL‐C to FSTC was low, then supplementation did not decrease FSTC to the extent observed when the initial ratio was high. Compliance with the dietary interventions was best when the subjects gave the product a rating of ≤2.0 (on a 1–4 hedonic scale, with 1 being excellent). We can conclude from these data that fiber supplementation to reduce serum cholesterol is most effective in hypercholesterolemic individuals that have a greater proportion of HDL‐C. In addition, not all the oat bran products evaluated were able to lower cholesterol to the same extent, indicating that the ability of soluble fiber to reduce FSTC can be compromised by other dietary factors such as insoluble fiber.  相似文献   

11.
Fermentation by human fecal bacteria of fractions of wheat bran prepared by preprocessing technology were examined and compared with a β‐glucan‐rich oat bran and a purified β‐glucan (OG). The wheat fractions were essentially a beeswing bran (WBA), mainly insoluble dietary fiber, and an aleurone‐rich fraction (WBB) containing more soluble fiber and some β‐glucan (2.7%). The oat bran (OB) had more endosperm and was very rich in β‐glucan (21.8%). Predigestion of WBB and OB to mimic the upper gastrointestinal (GI) tract gave digested wheat bran fraction B (WBBD) and digested oat bran (OBD), respectively. These predigested fractions were fermented in a batch technique using fresh human feces under anaerobic conditions. Changes in pH, total gas and hydrogen production, short chain fatty acids (SCFA), and both soluble and insoluble β‐glucan and other polysaccharide components, as determined from analysis of monosaccharide residues, were monitored. Fractions showed increasing fermentation in the order WBA < WBBD < OBD < OG. Variations in SCFA production indicated that microbial growth and metabolism were different for each substrate. Polysaccharide present in the supernatant of the digests had disappeared after 4 hr of fermentation. Fermentability of oat and wheat β‐glucan reflected solubility differences, and both sources of β‐glucan were completely fermented in 24 hr. Although the overall patterns of fermentation indicated the relative amounts of soluble and insoluble fiber, the anatomical origin of the tissues played a major role, presumably related to the degree of lignification and other association with noncarbohydrate components.  相似文献   

12.
We recently reported that corn fiber oil contains high levels of three potential cholesterol-lowering phytosterol components: ferulate-phytosterol esters (FPE) (3–6 wt%), free phytosterols (1–2 wt%), and phytosterol-fatty acyl esters (7–9 wt%). A previous study also indicated that corn bran oil contained less phytosterol components than corn fiber oil. The current study was undertaken to attempt to confirm this preliminary observation using more defined conditions. Accordingly, oil was extracted from corn fiber and corn bran prepared under controlled laboratory conditions, using the same sample of corn hybrid kernels for each, and using recognized bench-scale wet-milling, and dry-milling procedures, respectively. After extraction, the chemical composition of the phytosterol components in the oil were measured. This study confirmed our previous observation—that FPE levels were higher in corn fiber oil than in corn bran oil. During industrial wet-milling, almost all of the FPE are recovered in the fiber fraction (which contains both fine and coarse fiber). During laboratory-scale wet-milling, ≈60–70% of the FPE are recovered in the coarse fiber (pericarp) and 30–40% are recovered in the fine fiber. During laboratory-scale dry-milling, <20% of the FPE are recovered in the bran (pericarp), and the rest in the grits. The recoveries of the other two phytosterol components (free phytosterols and phytosterol-fatty acyl esters) revealed a more complex distribution, with significant levels found in several of the dry- and wet-milled products.  相似文献   

13.
Six commercially grown samples of hard spring wheat were milled using a tandem Buhler laboratory mill. Individual flour streams and branny by‐products, as well as whole‐grain wheat and straight‐grade flour, were characterized in terms of total (TP), water‐extractable (WEP), and water‐unextractable (WUP) pentosans. One representative cultivar sample was analyzed for its ratio of arabinose to xylose (A/X). TP and WEP of whole grain wheat of the six samples had ranges of 5.45–7.32% and 0.62–0.90% (dm), respectively. Neither TP nor WEP of whole grain was related to ash content variation. There was significant variation in the distribution and composition of pentosans in 16 millstreams of all the wheat samples, including bran and shorts fractions; TP and WEP contents had ranges of 1.69–32.4% and 0.42–1.76% (dm), respectively. When ash contents exceeded ≈0.6% (dm), strong positive correlations were obtained between ash and TP contents, and between ash and WUP contents for all the millstreams. Among bran and shorts fractions, TP and WUP content increased in the order of coarse bran > fine bran > shorts; while WEP, WEP/WUP and A/X showed the opposite pattern of variation of shorts > fine bran > coarse bran. Bran and shorts fractions had pentosan contents several times higher than would be predicted from the relationship between pentosan and ash contents of the flour streams. Pentosans therefore represented a much more sensitive marker of flour refinement compared with ash content. Pentosans of endosperm were substantially different in their extractability and composition from those of bran. On this basis, different functionalities of pentosans of bran and endosperm would be expected. Results demonstrated the importance of milling extraction and millstream blending in the functionality and quality of wheat flour for breadmaking.  相似文献   

14.
Whole‐grain‐based diets have been suggested to reduce the incidence of cardiovascular disease and colon cancer. Phenolic compounds, most of which are present in the wheat bran, may be one of the factors contributing to whole‐grain health benefits. We measured the free, bound, and total phenolic content and antioxidant activity in the bran of 51 wheat cultivars belonging to eight Western Canadian spring wheat market classes grown in a replicated trial at Saskatoon, Saskatchewan, Canada. The free phenolic (extracted with 80% v/v aqueous ethanol) content ranged from 854.1 ± 265.1 to 1,754.9 ± 240.3 μg/g of bran gallic acid equivalent (GAE). Saponification followed by a liquid‐liquid solvent extraction released bound phenols ranging from 2,304.9 ± 483.0 to 5,386.1 ± 927.5 μg/g of bran GAE, contributing 66–82% of the total wheat bran phenolic content. Total phenolic content ranged from 3,406.4 ± 32.3 to 6,702.7 ± 19.6 μg/g of bran GAE, with the average being 5,197.2 ± 804.9 μg/g of bran GAE. Antioxidant activity ranged from 11.86 ± 2.59 to 20.12 ± 0.51%, while the overall average was 15.6 ± 2.2%. Based on varietal means, antioxidant activity correlated with free, bound, and total phenolic content (r = 0.8, P < 0.05).  相似文献   

15.
The influence of bran particle size on bread‐baking quality of whole grain wheat flour (WWF) and starch retrogradation was studied. Higher water absorption of dough prepared from WWF with added gluten to attain 18% protein was observed for WWFs of fine bran than those of coarse bran, whereas no significant difference in dough mixing time was detected for WWFs of varying bran particle size. The effects of bran particle size on loaf volume of WWF bread and crumb firmness during storage were more evident in hard white wheat than in hard red wheat. A greater degree of starch retrogradation in bread crumb stored for seven days at 4°C was observed in WWFs of fine bran than those of coarse bran. The gels prepared from starch–fine bran blends were harder than those prepared from starch–unground bran blends when stored for one and seven days at 4°C. Furthermore, a greater degree of starch retrogradation was observed in gelatinized starch containing fine bran than that containing unground bran after storage for seven days at 4°C. It is probable that finely ground bran takes away more water from gelatinized starch than coarsely ground bran, increasing the extent of starch retrogradation in bread and gels during storage.  相似文献   

16.
《Cereal Chemistry》2017,94(5):834-839
The effect of bran prehydration on the composition and bread‐baking quality was determined using bran and flour of two wheat varieties. Bran was hydrated in sodium acetate buffer (50mM, pH 5.3) to 50% moisture at 25 or 55°C for 1.5 or 12 h. The soluble sugar content in bran increased with prehydration. Decreases in phytate and soluble fiber were observed in prehydrated bran, but insoluble fiber was not affected by prehydration. Likewise, free phenolic content decreased, and there was little change in the content of bound phenolics in prehydrated bran. The compositional changes were greater in the bran prehydrated at 55 than at 25°C, and for 12 than for 1.5 h. Addition of prehydrated bran delayed dough development of bran and flour blends and slightly increased water absorption of dough. A higher loaf volume of fresh bread and lower crumb firmness of bread stored for 10 days were observed in bread containing bran prehydrated at 25°C than in bread containing nonhydrated bran or bran prehydrated at 55°C. The prehydration of bran at 25°C before being incorporated into refined flour for dough mixing improved bread quality by altering bran compositional properties, allowing enough water to be absorbed by fibrous materials in the bran and preventing water competition among dough constituents.  相似文献   

17.
The aim of this work was to assess the influence of wheat bran addition on the rheological properties of dough and on subsequent wheat bread volume and texture. Two types of bioprocessed bran (fermentation with yeast or with yeast plus enzymes) were studied in breadmaking at a substitution level of 20% (sufficient to deliver 6 g of dietary fiber per 100 g of product, the minimum for the European Food Safety Authority high‐fiber nutrition claim). Fermentation activated endogenous enzymes of bran, which together with exogenous enzymes modified the state of fiber in bran, resulting in solubilization of arabinoxylans and slight degradation of the insoluble fiber. Fermentation and enzyme treatment of bran compensated for the increased hardness (+100%) and the volume‐decreasing (–21%) effect observed with untreated bran. Analysis with partial least squares regression suggested the efficacy of bioprocessing to be based on solubilization of arabinoxylans, smaller particle size of bran, lower pasting viscosity of starch, improved resistance to extension, and accelerated CO2 production.  相似文献   

18.
The ability of high hydrostatic pressure processing to promote changes in both the structural properties of fiber and the interaction of fiber with water were addressed. Both coarse and fine bran from milling of common wheat were considered. Treatment‐induced morphological changes were most pronounced in fine bran, whereas treatment of coarse bran resulted in the largest change in water‐holding capacity. The significance of the process‐induced changes is discussed in terms of their practical relevance in the production of fiber‐enriched foods.  相似文献   

19.
Sorghum bran has potential to serve as a low‐cost feedstock for production of fuel ethanol. Sorghum bran from a decortication process (10%) was used for this study. The approximate chemical composition of sorghum bran was 30% starch, 18% hemicellulose, 11% cellulose, 11% protein, 10% crude fat, and 3% ash. The objective of this research was to evaluate the effectiveness of selected pretreatment methods such as hot water, starch degradation, dilute acid hydrolysis, and combination of those methods on enzymatic hydrolysis of sorghum bran. Methods for pretreatment and enzymatic hydrolysis of sorghum bran involved hot water treatment (10% solid, w/v) at 130°C for 20 min, acid hydrolysis (H2SO4), starch degradation, and enzymatic hydrolysis (60 hr, 50°C, 0.9%, v/v) with commercial cellulase and hemicellulose enzymes. Total sugar yield by using enzymatic hydrolysis alone was 9%, obtained from 60 hr of enzyme hydrolysis. Hot water treatment facilitated and increased access of the enzymes to hemicellulose and cellulose, improving total sugar yield up to 34%. Using a combination of starch degradation, optimum hot water treatment, and optimum enzymatic hydrolysis resulted in maximum total sugar yield of up to 75%.  相似文献   

20.
The in vitro bile acid binding by rice, oat, wheat, and corn brans was determined using a mixture of bile acids normally secreted in human bile at a physiological pH of 6.3. The objective of the study was to relate bile acid binding of cereal brans to health promoting properties. Three experiments were conducted testing substrates on an equal weight (dry matter) basis, an equal total dietary fiber (TDF) basis, and an equal TDF and equal fat basis. Each experiment was repeated to validate the results (for a total of six experiments). The relative in vitro bile acid binding of the cereal brans on an equal TDF basis considering cholestyramine as 100% bound was rice bran 51%, wheat bran 31%, oat bran 26%, and corn bran 5%. The data suggest that cholesterol lowering by rice bran appears to be related to bile acid binding. The primary mechanism of cholesterol lowering by oat bran may not be due to bile acid binding by soluble fiber. Bile acid binding did not appear to be proportional to the soluble fiber content of the cereal brans tested. Bile acid binding by wheat bran may contribute to cancer prevention and other healthful properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号