首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of baking method on folates of rye and wheat breads, as well as the effect of sourdough fermentation of rye, were examined. Sourdough fermentations were performed both with and without added yeast, and samples were taken throughout the baking process. Samples were analyzed microbiologically for their total folate content after trienzyme extraction. Individual folate vitamers were determined by HPLC after affinity chromatographic purification. The lowest folate contents for both rye and wheat breads were found from breads baked without added yeast. Total folate content increased considerably during sourdough fermentation due to increased amounts of 10‐HCO‐H2folate, 5‐CH3‐H4folate, and 5‐HCO‐H4folate. Baker's yeast contributed markedly to the final folate content of bread by synthesizing folates during fermentation. Proofing did not influence total folate content but changes in vitamer distribution were observed. Folate losses in baking were ≈25%. The variety of sourdoughs and baking processes obviously lead to great variation in folate content of rye breads. The possibilities to enhance natural folate content of rye bread by improving folate retention in technological processes and by screening and combining suitable yeasts and lactic acid bacteria should be further investigated.  相似文献   

2.
Degradation of added folic acid and native folates in micronutrient‐fortified corn masa and tortillas was evaluated using masa prepared from either nixtamalized corn flour or fresh nixtamal. Variations in masa pH, masa holding time at an elevated temperature, and iron source failed to show significant differences in folate loss in corn flour masa prepared in the laboratory. Masa was subsequently prepared from fresh nixtamal in a commercial mill in Mexico, and fortified with one of two different micronutrient premixes containing iron, zinc, B‐vitamins, and either unencapsulated or lipid‐encapsulated folic acid. Folate loss in commercial masa increased significantly with prebake masa holding time for both premixes. Unencapsulated folic acid showed a 73% loss after 4 hr of holding, compared to 60% loss for encapsulated. The difference was statistically significant, indicating a protective effect from the lipid coating. No significant differences in folate levels were found between prebake masa and baked tortillas. Holding baked tortillas for up to 12 hr also had no effect on folate levels. Native folate showed no significant losses throughout the process. Results from the commercial tortilla mill indicate that most of the loss in added folic acid occurs during prebake holding of masa, possibly from microbial degradation.  相似文献   

3.
Flour qualities of polished wheat flours of three fractions, C‐1 (100–90%), C‐5 (60–50%), and C‐8 (30–0%), obtained from hard‐type wheat grain were used for the evaluation of four kinds of baking methods: optimized straight (OSM), long fermentation (LFM), sponge‐dough (SDM) and no‐time (NTM) methods. The dough stability of C‐5 in farinograph mixing was excellent and the maturity of polished flour doughs during storage in extensigraph was more improved than those of the commercial wheat flour (CW). There were no significant differences in the viscoelastic properties of CW dough after mixing, regardless of the baking method, while those of polished flour doughs were changed by the baking method; this tendency became clear after fermentation. The polished flours could make a better gluten structure in the dough samples after mixing or fermentation using LFM and SDM, as compared with other baking methods. Baking qualities such as specific volume and storage properties of breads from all polished flours made with SDM increased more than with other methods. In addition, viscoelastic properties of C‐5 and C‐8 doughs fermented by SDM were similar to those of CW, and the C‐5 breadcrumb showed softness similar to that of the CW. Also, SDM could make C‐5 bread with significantly higher elasticity and cohesiveness after storage for five days when compared with CW bread. Therefore, SDM with long fermentation, as compared with other baking methods, was considered suitable for use with polished flours to give better effects on dough properties during fermentation, resulting in more favorable bread qualities.  相似文献   

4.
The baking performance of a set of flours from 13 wheat cultivars was determined by means of two different microscale baking tests (10 g of flour each). In the micro‐rapid‐mix test the dough was mixed for a fixed time at a high speed, whereas the microbaking test used mixing to optimum dough consistency in a microfarinograph. Quality parameters such as sedimentation value, crude protein content, dough and gluten extension data, and microfarinograph data were also determined. Finally, quality‐related protein fractions (gliadins, glutenins, SDS‐soluble proteins, and glutenin macropolymer) were quantitated by extraction/HPLC methods with reversed‐phase and gel‐permeation columns. All quality parameters were correlated with the bread volumes of both baking tests. The results demonstrated that the microbaking test (adapted mixing time) was much more closely related to the quality parameters than the micro‐rapid‐mix test (fixed mixing time), which hardly showed any correlation. Among the standard quality parameters, only the crude protein content showed a medium correlation with the bread volume of the microbaking test (r = 0.71), whereas the contents of gliadins (r = 0.80), glutenins (r = 0.76), and glutenin macropolymer (r = 0.80) appeared to be suitable parameters to predict the baking performance of wheat flour. All other quality parameters were not or were only weakly correlated and unsuitable for predicting baking performance.  相似文献   

5.
After the U.S. mandate of folic acid fortification of enriched grain products, a report indicated higher than expected fortification. Limited information is available on folic acid in enriched products. We measured the folate content in 92 sandwich breads (46 white breads and 46 whole wheat breads) in Birmingham, Alabama, during 2001-2003. The mean folate content in white bread declined significantly from 2001 to 2002 or 2003, whereas the decline in folate content in whole wheat bread containing enriched flour was not significant. White bread contained significantly more folate than whole wheat bread containing enriched flour in 2001 and 2003. In 2002 and 2003, >40% of breads made of enriched flour contained <115 microg of folate/100 g and >70% contained <160 microg/100 g. These percentages were markedly higher than those in 2001. Our data suggest that folic acid in breads containing enriched flour declined after 2001 and monitoring of fortification may be necessary.  相似文献   

6.
The dough properties and baking qualities of a novel high‐amylose wheat flour (HAWF) and a waxy wheat flour (WWF) (both Triticum aestivum L.) were investigated by comparing them with common wheat flours. HAWF and WWF had more dietary fiber than Chinese Spring flour (CSF), a nonwaxy wheat flour. Also, HAWF contained larger amounts of lipids and proteins than WWF and CSF. There were significant differences in the amylose and amylopectin contents among all samples tested. Farinograph data showed water absorptions of HAWF and WWF were significantly higher than that of CSF, and both flours showed poorer flour qualities than CSF. The dough of WWF was weaker and less stable than that of CSF, whereas HAWF produced a harder and more viscous dough than CSF. Differential scanning calorimetry data showed that starch in HAWF dough gelatinized at a lower temperature in the baking process than the starches in doughs of WWF and CSF. The starch in a WWF suspension had a larger enthalpy of gelatinization than those in HAWF and CSF suspensions. Amylograph data showed that the WWF starch gelatinized faster and had a higher viscosity than that in CSF. The loaves made from WWF and CSF were significantly larger than the loaves made from HAWF. However, the appearance of bread baked with WWF and HAWF was inferior to the appearance of bread baked with CSF. Bread made with WWF became softer than the bread made with CSF after storage, and reheating was more effective in refreshing WWF bread than CSF bread. Moreover, clear differences in dough and bread samples were revealed by scanning electron microscopy. These differences might have some effect on dough and baking qualities.  相似文献   

7.
A reducing solution of 2-mercaptoethanol and its oxidized form 2-hydroxyethyl disulfide, whose variable concentrations set variable disulfide reduction potentials, was applied to progressively reduce the disulfide bonds of proteins extracted from doughs made from Meneba and Robin Hood flour. Several dough proteins had disulfide bonds stronger than those of other dough proteins. A SDS-sedimentation method was applied to monitor the baking of dough into bread. Dough proteins susceptible to heat (baking) were studied by SDS-fractionation, extraction with reducing alcoholic solution, SDS-PAGE, and N-terminal protein sequencing. High or low molecular weight glutenins, α, β, and γ-gliadins, α-amylase inhibitor, and α-amylase trypsin inhibitor were identified among the dough proteins modified by heat (as shown by reduced solubility in aqueous-SDS solution). The heat-induced modification of the gliadins and glutenins might contribute to the coagulation of dough proteins, while the heat-induced modification of the amylase or trypsin inhibitors might contribute to the regulation of endogenous or exogenous amylolytic or proteolytic activities in dough or bread.  相似文献   

8.
The effects of ferulic acid and transglutaminase (TG) on the properties of wheat flour dough and bread were investigated. Ferulic acid and TG were blended with hard wheat flour at levels of 250 and 2,000 ppm of flour weight, respectively. The addition of ferulic acid reduced the mixing time and mixing tolerance. The addition of TG did not obviously affect the mixing properties. Significant effects of ferulic acid plus TG on the rested dough texture were observed for overmixed dough. The maximum resistance (Rmax) of the dough was significantly reduced with the addition of ferulic acid but increased with the addition of TG. The addition of TG with ferulic acid restored the Rmax reduced by ferulic acid alone. The proportion of SDS‐soluble high molecular weight proteins in the dough increased with the addition of ferulic acid and decreased with TG, when assessed with size‐exclusion HPLC fractionation. Although the addition of TG improved the handling properties of the dough made sticky with added ferulic acid, it did not improve the quality of the bread with added ferulic acid as measured by loaf volume and firmness.  相似文献   

9.
Variations in physical and compositional bran characteristics among different sources and classes of wheat and their association with bread‐baking quality of whole grain wheat flour (WWF) were investigated with bran obtained from Quadrumat milling of 12 U.S. wheat varieties and Bühler milling of six Korean wheat varieties. Bran was characterized for composition including protein, fat, ash, dietary fiber, phenolics, and phytate. U.S. soft and club wheat brans were lower in insoluble dietary fiber (IDF) and phytate content (40.7–44.7% and 10.3–17.1 mg of phytate/g of bran, respectively) compared with U.S. hard wheat bran (46.0–51.3% and 16.5–22.2 mg of phytate/g of bran, respectively). Bran of various wheat varieties was blended with a hard red spring wheat flour at a ratio of 1:4 to prepare WWFs for determination of dough properties and bread‐baking quality. WWFs with U.S. hard wheat bran generally exhibited higher dough water absorption and longer dough mixing time, and they produced smaller loaf volume of bread than WWFs of U.S. soft and club wheat bran. WWFs of two U.S. hard wheat varieties (ID3735 and Scarlet) produced much smaller loaves of bread (<573 mL) than those of other U.S. hard wheat varieties (>625 mL). IDF content, phytate content, and water retention capacity of bran exhibited significant relationships with loaf volume of WWF bread, whereas no relationship was observed between protein content of bran and loaf volume of bread. It appears that U.S. soft and club wheat bran, probably owing to relatively low IDF and phytate contents, has smaller negative effects on mixing properties of WWF dough and loaf volume of bread than U.S. hard wheat bran.  相似文献   

10.
The Rheo Extrusion Meter (REM) measures the time for vertical upward extrusion of wheat flour dough (subsequently referred to as extrusion time, ET) as a measure of its consistency. ET evidently increases with dough consistency. ETs are highly reproducible and sensitive to differences in dough moisture content. A single REM analysis takes 20 min, and the measured ET can be converted into the correct baking absorption at a given temperature. The heights of the extruded dough pieces are negatively correlated with straight‐dough bread loaf specific volume, both when comparing different flour samples and when adjusting moisture content of dough prepared from a given flour sample. The REM also allows determination of the consistency of complex wheat flour based systems and the impact of vital wheat gluten or ascorbic acid thereupon. Furthermore, in contrast to the farinograph, it detects the impact of endoxylanases hydrolyzing water‐extractable arabinoxylan on dough consistency.  相似文献   

11.
A dual label stable isotope dilution assay was developed to trace the deconjugation efficiency of polyglutamic folate vitamers converted to their monoglutamic analogues. For this purpose, [(13)C(5)]-pteroylheptaglutamate was synthesized and added during extraction of foods as a tracer isotopologue along with [(2)H(4)]-5-methyltetrahydrofolate, [(2)H(4)]-5-formyltetrahydrofolate, [(2)H(4)]-tetrahydrofolate, [(2)H(4)]-10-formylfolate, and [(2)H(4)]-folic acid. The [(2)H(4)]-labeled folates were used as internal standards for the monoglutamates. Deconjugation converted the addition tracer [(13)C(5)]-pteroylheptaglutamate to the detection tracer [(13)C(5)]-folic acid, which was quantified along with unlabeled folic acid using [(2)H(4)]-folic acid as the internal standard. LC-MS/MS enabled the unequivocal differentiation of the three isotopologues. This tracing was used to optimize deconjugation efficiency, which was achieved by using 4-morpholineethanesulfonic acid buffer for extraction at pH 5.0 . The optimized assay revealed limits of detection for the folate vitamers ranging between 2.0 and 5.6 pmol per assay (equivalent to 2.2-6.6 μg/100 g dry mass), recoveries ranging between 98 and 105% and relative standard deviations in inter-assay precision ranging between 2 and 6%. The assay was applied to quantitate folates in spinach, beans, cheeses, bread, wheat germs, and yeast .  相似文献   

12.
Bread made from a mixture of wheat and lupin flour possesses a number of health benefits. The addition of lupin flour to wheat flour during breadmaking has major effects on bread properties. The present study investigated the lupin and wheat flour protein interactions during the breadmaking process including dough formation and baking by using proteomics research technologies including MS/MS to identify the proteins. Results revealed that qualitatively most proteins from both lupin and wheat flour remained unchanged after baking as per electrophoretic behavior, whereas some were incorporated into the bread gluten matrix and became unextractable. Most of the lupin α-conglutins could be readily extracted from the lupin-wheat bread even at low salt and nonreducing/nondenaturing extraction conditions. In contrast, most of the β-conglutins lost extractability, suggesting that they were trapped in the bread gluten matrix. The higher thermal stability of α-conglutins compared to β-conglutins is speculated to account for this difference.  相似文献   

13.
Dough strength is needed for efficient breadmaking quality. This property is strongly influenced in wheat (Triticum aestivum L.) by gluten seed storage proteins and, in particular, by high‐molecular‐weight (HMW) glutenin subunit composition. Experiments were designed to elevate expression of a key native HMW glutenin subunit (1Dy10) via genetic engineering and to determine whether resultant flours can be used in sponge and dough applications, the most common commercial bread‐baking procedure. Both unblended and blended samples from transgenic and nontransgenic sister lines were tested, with blended samples being formed by addition to a control sample. Dough properties, as determined by farinograph evaluation, were improved by the transgene‐encoded increases in 1Dy10 in both undiluted and blended flours. Mean farinograph stability of transgenic samples was twice that of the control, and blends with transgenic samples demonstrated increases in stabilities proportional to the amount of transgenic flour included. Mean farinograph quality numbers of transgenic samples, and of all blends containing transgenic flour, were significantly higher than both the control and all nontransgenic treatments. In the sponge and dough bake procedure, undiluted transgenic samples induced lower scores, relative to both control and undiluted nontransgenic samples, for water absorption, crumb body firmness, and loaf volume. In blends, however, the transgenic samples resulted in improvements in some sponge and dough loaf attributes, including loaf symmetry and crumb color score, without any concomitant loss of loaf volume in transgenic blends. These improved variables relate to finished product appearance and to consumer selection in markets. The use of transgenic flours with increased 1Dy10 glutenin content in commercial blends could provide advantages in sponge and dough bake applications.  相似文献   

14.
Many Mexican women are deficient in folic acid. Fortification of the corn tortilla could be an effective way to help increase the folic acid levels among the Mexican population. Previous studies have shown significant folic acid losses in the masa dough as it is held before baking. This loss in folic acid could be owing to utilization by lactic acid bacteria naturally present in the masa. The objective of this study was to determine the effect of bacteria native to corn masa on the folic acid content in masa. Bacteria in dough samples from six mills in Guadalajara, Mexico, were isolated and identified. Bacterial isolates were inoculated into sterile fortified corn masa flour, which was converted to masa and held at 56°C for 0, 3, and 6 h, replicating the conditions of freshly milled masa as held before baking. All samples, including the control, showed losses of folic acid between 66 and 79% w/w in the first 3 h of incubation. Because folic acid degradation in the sterile control sample was not different than the inoculated sample results, the decline in folic acid was not owing to bacteria (mainly Streptococcus spp.) present in the masa flour but appeared to be a chemical degradation related to time and temperature.  相似文献   

15.
不同种类大豆蛋白粉对面包加工特性的影响   总被引:8,自引:2,他引:6  
为探索大豆蛋白作为营养补充剂在面包中应用时,对面团物理特性和焙烤特性产生的影响,该文考察了不同种类的大豆蛋白制品,包括大豆分离蛋白、灭酶全脂粉、活性全脂粉、活性脱脂粉、灭酶脱脂粉对面团粉质特性、拉伸特性和焙烤特性的影响。结果表明,面粉的吸水率与大豆蛋白粉氮溶解指数显著相关,面团的抗拉阻力受大豆蛋白添加量的影响明显。大豆蛋白粉的加入,对面包比体积产生不利影响,下降趋势与大豆蛋白粉对面团拉伸特性的影响显著相关。大豆蛋白粉有软化面包质地的作用,活性全脂粉表现最为明显。大豆蛋白粉的加入量占面粉质量分数的3%时,对面包口感影响不明显,当加入量超过面粉质量分数的7%时,容易出现发粘和豆腥味等现象。  相似文献   

16.
Breads baked from wheat flours (protein contents 14.1–16.5% at 14.0% mb) that were pretreated with 2–3 mL of gaseous acetic acid per kg of wheat flour, showed maximum bread height and specific volume (cm3/g). Flour-water suspension and the crumb pH values were gradually decreased with increased amounts of acetic acid. Gas generation and dough expansion tests with bread dough showed that the addition of the same amount of acetic acid, which achieved maximum specific volume, also showed the highest rate of gas generation and dough expansion. However, increasing acetic acid decreased these values. Scanning electron microscope (Cryo-SEM) observation showed that the bread dough made from the same acetic acid-treated flour indicated continuum and no cracks in the dough matrix. Evaluation of mixograms showed the decrease of mixing stability with increased acetic acid levels. Viscosity and water binding capacity of flour-water suspensions were sharply increased by the addition of acetic acid at pH 5.0–3.5.  相似文献   

17.
In situ enrichment of bread with arabinoxylan‐oligosaccharides (AXOS) through enzymic degradation of wheat flour arabinoxylan (AX) by the hyperthermophilic xylanase B from Thermotoga maritima (rXTMB) was studied. The xylanolytic activity of rXTMB during breadmaking was essentially restricted to the baking phase. This prevented problems with dough processability and bread quality that generally are associated with thorough hydrolysis of the flour AX during dough mixing and fermentation. rXTMB action did not affect loaf volume. Bread with a dry matter AXOS content of 1.5% was obtained. Further increase in bread AXOS levels was achieved by combining rXTMB with xylanases from Pseudoalteromonas haloplanktis or Bacillus subtilis. Remarkably, such a combination synergistically increased the specific bread loaf volume. Assuming an average daily consumption of 180 g of fresh bread, the bread AXOS levels suffice to provide a substantial part of the AXOS intake leading to desired physiological effects in humans.  相似文献   

18.
Twenty‐seven durum wheat genotypes originating from different geographical areas, all expressing LMW‐2 at Glu‐B3, and five bread wheats were evaluated for flour mixing properties, dough physical characteristics, and baking performance. Gluten polymeric composition was studied using size‐exclusion HPLC of unreduced flour protein extracts. As a group, durum wheats had poorer baking quality than bread wheats in spite of higher protein and total polymer concentrations. Durum wheats exhibited weaker gluten characteristics, which could generally be attributed to a reduced proportion of SDS‐unextractable polymer, and produced less extensible doughs than did bread wheats. However, substantial variation in breadmaking quality attributes was observed among durum genotypes. Better baking performance was generally associated with greater dough extensibility and protein content, but not with gluten strength related parameters. Extensibility did not correlate with gluten strength or SEHPLC parameters. Genotypes expressing high molecular weight glutenin subunits (HMW‐GS) 6+8 exhibited better overall breadmaking quality compared with those expressing HMW‐GS 7+8 or 20. Whereas differences between genotypes expressing HMW‐GS 6+8 and those carrying HMW‐GS 7+8 could only be attributed to variations in extensibility, the generally inferior baking performance of the HMW‐GS 20 group relative to the HMW‐GS 6+8 group could be attributed to both weaker and less extensible gluten characteristics.  相似文献   

19.
Breadmaking properties were determined for formulations that included durum, soft, and spring wheat flour, using a pound-loaf sponge-dough baking procedure. Up to 60% durum or soft wheat flour plus 10% spring wheat flour could be incorporated at the sponge stage for optimum dough-handling properties. At remix, the dough stage required 30% spring wheat flour. Bread made with 100% spring wheat flour was used as a standard for comparison. Bread made with 60% durum flour exhibited internal crumb color that was slightly yellow. When storing pound bread loaves for 72 hr, crumb moisture content remained unchanged. Crumb firmness and enthalpy increased the most in bread made with 60% soft wheat flour. Crumb firmness increased the least in bread made with 100% spring wheat flour. Enthalpy changed the least in bread made with 60% durum flour. Crumb moisture content was significantly correlated with crumb firmness (r = -0.82) and enthalpy (r = -0.65). However, crumb moisture content was specific for each type of flour and a function of flour water absorption; therefore, these correlations should be interpreted with caution. Crumb firmness and enthalpy were significantly correlated (r = 0.65). Ball-milling flour resulted in an increase in water absorption of ≈2% and in crumb moisture content of ≈0.5% but had no effect on either crumb firmness or enthalpy.  相似文献   

20.
The rheological properties of wheat doughs prepared from different flour types, water contents, and mixing times for a total of 20 dough systems were studied. The results were compared with the results of standard baking tests with the same factors. Water and flour type had a significant effect on storage modulus (G′) or phase angle measured by an oscillatory test both in the linear viscoelastic region and as a function of stress, and on compressional force measured as a function of time. The correlation of maximum force of dough in compression and G′ of dough measured within the linear viscoelastic region was r = 0.80. Correlation between the compression and oscillation test improved when all measuring points of the G′ stress curve were included (r = 0.88). The baking performance of the different doughs varied greatly; loaf volumes ranged from 2.9 to 4.7 mL/g. Although the water content of the dough correlated with the rheological measurements, the correlation of G′measured in the linear viscoelastic region or maximum force from stress‐time curve during compression was poor for bread loaf volumes. Mixing time from 4.5 to 15.5 min did not affect the rheological measurements. No correlation was observed with the maximum force of compression or G′ of dough measured in the linear viscoelastic region and baking performance. Good correlation of rheological measurements of doughs and baking performance was obtained when all the data points from force‐time curve and whole stress sweep (G′ as a function of stress) were evaluated with multivariate partial least squares regression. Correlation of all data points with loaf volume was r = 0.81 and 0.72, respectively, in compression and shear oscillation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号