首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
2.
We examined the malting and brewing performances of a lipoxygenase‐1 (LOX‐1) null line of barley (Hordeum vulgare L.). The LOX‐normal malt and the LOX‐null malt were prepared from F4 populations derived from a single cross. We could not observe any major differences in the general malt characteristics between the two malts. A brewing trial was performed using these malts. The analysis of the wort and beer revealed that the absence of LOX‐1 had little effect on the general characteristics of the wort and beer. In contrast, beer made from the LOX‐null malt showed reduced levels of beer‐deteriorating substances, trans‐2‐nonenal (T2N), and trihydroxyoctadecenoic acid (THOD). In the sensory evaluation, well‐trained panel members recognized the significant superiority of the aged LOX‐null beer in terms of staleness. These results show that the LOX‐1 null barley line can be effectively used to improve the flavor stability of beer without changing the other important beer qualities.  相似文献   

3.
Barley is considered a healthy food because of its high content of β‐glucan and phenolic antioxidants. In the current study, 28 black, blue, and yellow barleys were investigated in terms of their composition of free and bound phenolic acids and 2,2‐diphenyl‐1‐picrylhydrazyl radical scavenging capacity. Free phenolics were based on aqueous methanol extraction, whereas bound phenolics were extracted following alkaline hydrolysis. Phenolics were then separated and quantified by liquid chromatography and the Folin–Ciocalteu method. Significant differences were observed between the three barley color groups, and within each color group a wide range of phenolics concentrations existed. Ferulic acid was the predominant phenolic acid in free and bound extracts, followed by p‐coumaric acid in all the barleys investigated. Total phenols content and individual phenolic acids strongly correlated with free radical scavenging capacity of barley. Black and blue barley were found to be related and distinct from yellow barley. The results showed significant variations in phenolics among barleys, with a potential for the development of barley grains with high content of phenolic compounds as antioxidant potential.  相似文献   

4.
Detailed studies were carried out on the influence of corn size distribution on the values obtained for diastatic power (DP) of commercially malted barley. Malted barley was screened using a screening box, and the DP activities of the different corns retained on the different compartments of the screening box were determined. The malt samples retained on the 2.8 mm screen had the highest DP activity, whereas the small corns (相似文献   

5.
Determination of the labile soil carbon (C) and nitrogen (N) fractions and measurement of their isotopic signatures (δ13C and δ15N) has been used widely for characterizing soil C and N transformations. However, methodological questions and comparison of results of different authors have not been fully solved. We studied concentrations and δ13C and δ15N of salt‐extractable organic carbon (SEOC), inorganic (N–NH4+ and N–NO3?) and organic nitrogen (SEON) and salt‐extractable microbial C (SEMC) and N (SEMN) in 0.05 and 0.5 m K2SO4 extracts from a range of soils in Russia. Despite differences in acidity, organic matter and N content and C and N availability in the studied soils, we found consistent patterns of effects of K2SO4 concentration on C and N extractability. Organic C and N were extracted 1.6–5.5 times more effectively with 0.5 m K2SO4 than with 0.05 m K2SO4. Extra SEOC extractability with greater K2SO4 concentrations did not depend on soil properties within a wide range of pH and organic matter concentrations, but the effect was more pronounced in the most acidic and organic‐rich mountain Umbrisols. Extractable microbial C was not affected by K2SO4 concentrations, while SEMN was greater when extracted with 0.5 m K2SO4. We demonstrate that the δ13C and δ15N values of extractable non‐microbial and microbial C and N are not affected by K2SO4 concentrations, but use of a small concentration of extract (0.05 m K2SO4) gives more consistent isotopic results than a larger concentration (0.5 m ).  相似文献   

6.
We hypothesized that the combined effect of rising levels of atmospheric carbon dioxide (CO2) and increasing use of genetically modified (GM) crops in agriculture may affect soil food-webs. So we designed a study for the assessment of the effects of elevated CO2 (eCO2) concentrations and GM barley on a soil-mesofauna community employing a 2nd tier mesocosm test system. The GM barley, Hordeum vulgare cv. Golden Promise, had a modified content of amino acids and it was compared with three non-GM barley cultivated varieties including the isogenic line. Our mesocosm experiment was conducted in a greenhouse at ambient (aCO2) and eCO2 (+80 ppm) levels and included a multispecies assemblage of Collembola, Acari and Enchytraeidae with either a GM or conventional spring barley varieties. To detect food-web changes we added dried maize leaves naturally enriched in δ13C and δ15N relative to the soil substrate. Soil, plants and animals were collected after five and eleven weeks. We found that the eCO2 concentration did not affect the plant biomass, but the predatory mite and two collembolan species showed significantly lower abundances at eCO2. The densities of three collembolan species (Folsomia fimetaria, Proisotoma minuta and juveniles of Mesaphorura macrochaeta) was significantly lower in the GM treatment compared to some of the non-GM varieties. F. fimetaria was less abundant in presence of GM barley compared to the cultivated barley variety “Netto” at both CO2 levels, while the density of P. minuta was significantly reduced with the GM barley compared to variety “Netto” at aCO2 and the isogenic variety at eCO2. Maize litter acted as a food source for the community, as it was revealed by δ13C values in microarthropods. Microarthropod δ13C decreased over time, which indicates a diet change of the species towards carbon derived from barley, due to maize litter decomposition. The industrially produced CO2 gas also had a role as an isotopic marker, as the different δ13C values were reflected in the barley and in the collembolan species. GM barley did not affect δ13C and δ15N values of soil animals indicating that the overall trophic structure of the mesofauna community was not changed compared to the non-GM cultivated varieties. The mesocosm methodology integrating stable isotope analysis demonstrates the potential of the multi-species mesocosm as a tool to detect and track changes in the soil trophic interactions in response to environmental pressures, climate and novel agricultural crops.  相似文献   

7.
8.
Soil carbon dioxide (CO2) efflux is an important component of the carbon (C) cycle but the biological and physical processes involved in soil CO2 production and transport are not fully understood. To improve our knowledge, we present a new approach to measure simultaneously soil CO2 concentrations and efflux, and their respective isotopic signatures (δ13C‐CO2). To quantify soil air 13CO2 and 12CO2 concentrations, we adapted a method based on CO2 diffusion from soil pores into tubes with a highly gas‐permeable membrane wall. These tubes were placed horizontally at different depths in the soil. Air was sampled automatically from the tubes and injected through a diluting system into a tuneable diode laser absorption spectrometer. The CO2 and δ13C‐CO2 vertical profiles were thus obtained at hourly intervals. Our tests demonstrated the absence of fractionation in the membrane tubes for δ13C‐CO2. Subsequently, we set up field experiments for two forest soils, which showed that natural soil CO2 concentrations and δ13C‐CO2 were not affected significantly by the measurement system. While δ13C‐CO2 in air‐filled pores below 5 cm was constant over 3 days, we observed large diurnal variations in δ13C‐CO2 efflux. However, the average difference between the two measurements was close to ?4.4‰, which supports steady‐state diffusion over this 3‐day period. This new method seems to be a very effective way to measure the δ13C‐CO2 profile of the soil atmosphere, and demonstrates that the fractionation that occurs during diffusion is the main transport process that affects the δ13C‐CO2 of the soil CO2 efflux on a daily timescale while advection may account for within‐day variations.  相似文献   

9.
Molecular characteristics were determined for mixed-linkage (1→3) (1→4)-β-d -glucans (β-glucans) extracted from Azhul, Crystal, Waxbar, and Prowashonupana barleys. β-Glucans in extracts (with or without α-amylase, protease, hemicellulase, or xylanase treatment) were separated from other components by high-performance size-exclusion chromatography and detected with multiple-angle laser light scattering, refractive index, and fluorometry following postrefractive index treatment with Calcofluor. Pretreatment of barley with 70% ethanol (80°C, 4 hr) reduced β-glucanase activity by ~20%. Hot-alcohol treatment also reduced β-glucan extraction at 23 and 65°C by 42 and 14%, respectively. Molecular weights of β-glucans in the first water extract were generally higher than in succeeding water and alkali extracts. Weight average molecular weights ranged from 0.44 × 106 to 2.34 × 106 g/mol after α-amylase treatment to remove interfering starch. Interference due to pentosans was not demonstrated using enzyme treatments.  相似文献   

10.
Although lipids and fatty acids (FA) represent only 1–3% of the grain weight, they can play an important role in regulating, modulating, and determining several chemical and physical properties of the grain and corresponding malts. The aim of this study was to evaluate the relationships between the content of FA in grain, malt, and wort with malt quality characteristics such as hot water extract (HWE) and apparent attenuation limit (AAL) in different commercial malting barley varieties. High and positive correlations were found between myristic acid and HWE (r = 0.71) and between stearic acid and AAL (r = 0.76), with intermediate correlations between palmitic, oleic, linoleic, and linolenic acids and AAL (r = >0.50) in grain. High and negative correlations were found between stearic acid and HWE (r = –0.66), and high and negative correlations were found between palmitic (r = −0.74) and linoleic (r = −0.60) acids and AAL in the wort. Results from this study showed that lipids, as well as the combination of unsaturated and saturated FA, might play a role in determining differences in HWE and AAL between the barley varieties analyzed. No clear evidence on HWE was observed when grain and malt samples from the same variety were compared. These results indicated that lipids and FA should be considered together with starch properties to explain differences between HWE and AAL.  相似文献   

11.
Abstract

Applications of zinc (Zn) and copper (Cu) at excessive rates may result in phytotoxicity. Experiments were conducted with mixtures of soils that were similar except for their Zn and Cu levels. The critical toxicity levels (CTL) in the soils and plants for these elements were determined. Peanut (Arachis hypogaea L.), soybean [Glycine max (L.) Merr.], corn (Zea mays L.), and rice (Oryza sativa L.) were the crops grown. One soil mixture had Mehlich 3‐extractable Zn concentrations up to 300 mg dm‐3 with no corresponding increase in soil Cu; two soil mixtures had soil Zn concentrations up to 400 and 800 mg dm‐3 with a corresponding increase in soil Cu up to 20 and 25 mg dm‐3, respectively; and four soil mixtures had no increase in soil Zn, but had Mehlich 1‐extractable Cu concentrations from 6 to 286 mg kg‐1. Under a given set of greenhouse conditions, the estimated Mehlich 3‐extractable Zn CTL was 36 mg dm‐3 for peanut, 70 mg dm‐3 for soybean, between 160 and 320 mg dm‐3 for rice, and >300 mg dm‐3 for corn. No soil Cu CTL was apparent for peanut or soybean, but for corn it was 17 mg dm‐3 and for rice 13 mg dm‐3. With different greenhouse procedures and the Mehlich 1 extractant, the soil CTL for rice was only 4.4 mg kg‐1. Therefore, peanut and soybean were more sensitive to Zn toxicity, whereas corn and rice were more sensitive to Cu toxicity. Plant Zn CTL for peanut was 230 mg kg‐1, while that for soybean was 140 mg kg‐1. Copper appeared to be toxic to corn and rice at plant concentrations exceeding 20 mg kg‐1.  相似文献   

12.
In highly weathered tropical conditions, soil organic matter is important for soil quality and productivity. We evaluated the effects of deforestation and subsequent arable cropping on the qualitative and quantitative transformation of the humic pool of the soil at three locations in Nigeria. Cultivation reduced the humic pool in the order: acetone‐soluble hydrophobic fraction (HE) > humic acid (HA) > humin (HU) > fulvic acid (FA), but not to the same degree at all three sites. The C and N contents, as well as the C/N ratios of humic extracts, were large and not substantially influenced by land use. The δ13C values of the humic extracts were invariably more negative in forested soils thereby showing a dilution of δ13C signature with cultivation from C3 to C4 plants. The δ13C values of apolar HE fractions were generally more negative, indicating a reduced sensitivity compared with other humic fractions to turnover of crop residues. The contents of hydrophobic constituents (alkyl and aromatic C), as revealed by cross‐polarization magic angle spinning (CPMAS) 13C‐NMR spectroscopy, in HA, FA and HU were generally < 50%, with the exception of larger hydrophobicity in HU in the forested soil at Nsukka and HA in that at Umudike. The HE fraction contained significantly more apolar constituents, and consequently had a larger intrinsic hydrophobicity than the other humic fractions. The larger reduction of apolar humic constituents than of the less hydrophobic humic fractions, when these soils were deforested for cultivation, indicates that at those sites the stability of accumulated organic matter is to be ascribed mainly to the selective preservation of hydrophobic compounds.  相似文献   

13.
A second‐degree simplex lattice mixture design was used to study the effects of soy, dairy, and soy‐dairy blends of powdered proteins in three high‐protein food bar models (sugar syrup, polyol syrup, and reduced‐sugar syrup). Overall protein performance was evaluated based on textural changes during accelerated storage, bar integrity, and dough stickiness and was a strong function of the syrup model used (R2 = 92.33%). Nuclear magnetic resonance (NMR) relaxometry was used to measure relaxation times (T2, T2*, and T1) at 20°C and to create state diagrams (temperature, T2* curves) for the individual powdered proteins and syrups over a temperature range of –35 to 50°C. Increases in relaxation times for powdered protein samples were indicative of better overall protein performance, whereas increases in relaxation times for syrup samples were associated with increases in moisture content and concentration of polyols. Increases in water activity (aw) of the bars during accelerated storage suggested an elevated rate of hardening for polyol‐containing bars that was caused by a decrease in the amount of water capable of acting as a plasticizer in the product. Proteins were separated into four types (A, B, C, and D) based on the shape of the state diagram curve. Predicted to be the most stable, type D proteins (SUPRO 313 and SUPRO 430) offered the most versatility and, when blended with other proteins, often induced synergistic softening effects in the nutrition bars which led to an extended product shelf life. The NMR state diagram technique appears to be a valuable tool for predicting overall performance of powdered proteins in sugar‐, polyol‐, and reduced‐sugar syrup based food bars.  相似文献   

14.
Isotopic fractionation of dissolved organic carbon percolating through the soil is often interpreted as due to microbial transformation. We investigated the potential effects of sorption on the δ13C of dissolved organic C in field and laboratory experiments. We sampled the organic C in soil water at two forested sites and measured sorption with intact mineral soil and individual minerals (dolomite, ferrihydrite, goethite, and quartz). The dissolved organic C was separated into hydrophilic and hydrophobic fractions using a resin approach. The δ13C values of bulk soils, alkaline‐extractable organic C, and dissolved organic C and its fractions were measured. Hydrophilic and hydrophobic fractions in forest floor seepage water were characterized by 13C‐NMR spectroscopy. At both sites, δ13C of dissolved organic C increased with increasing depth, suggesting that decomposition contributes to the loss of the dissolved organic C. However, there was an enrichment of hydrophilic organic C in the soil solution as the water moved down the soil. The δ13C values of hydrophilic fractions were less negative than those of hydrophobic fractions. The smaller δ13C in the hydrophobic fraction was due to the large contribution of compounds derived from lignin that are depleted in 13C. As the isotope composition of both fractions of dissolved organic C did not change throughout the profile, changes in δ13C of total organic C reflected changes in the relative proportions of its hydrophilic and hydrophobic fractions. The sorption experiments with minerals and soil cores gave similar results. When dissolved organic C came into contact with mineral material, the δ13C of that remaining in solution increased due to preferential sorption of the 13C‐depleted hydrophobic fractions. Moreover, the soils released hydrophilic organic C with large δ13C values, increasing the δ13C of organic C in effluents from soil compared with that in the inflow. Thus, selective sorption of organic C fractions changes δ13C in a way that mimics metabolic transformation and decomposition.  相似文献   

15.
A new procedure to determine individual sugar (sucrose, glucose, and fructose) 13C isotope ratios, using liquid chromatography-isotope ratio mass spectrometry (HPLC-IRMS), has been developed to improve isotopic methods devoted to the study of honey authenticity. For this purpose 79 commercial honey samples from various origins were analyzed. Values of delta13Choney ranged from -14.2 to -27.2", and delta13Cprotein ranged from -23.6 to -26.9". A very strong correlation is observed between the individual sugar 13C ratios, which are altered in the event of sugar addition, even at low levels. The use of Deltadelta13C [fruct-glu], Deltadelta13C [fruct-suc], and Deltadelta13C [gluc-suc] systematic differences as an authenticity criterion permits the sugar addition [C3, beet sugar; or C4, cane sugar, cane syrup, isoglucose syrup, and high-fructose corn syrup (HFCS)] to be reliably detected (DL = 1-10%). The new procedure has advantages over existing methods in terms of analysis time and sensitivity. In addition, it is the first isotopic method developed that allows beet sugar addition detection.  相似文献   

16.
Soil conservation measures such as establishing grass barriers or cover crops effectively control erosion but also provoke competition, which reduces yields of companion crops. We used 13C and 15N natural abundance profiles to identify the causes of competition of soil conservation measures on a field with 59% slope in Northwest Vietnam three years after establishment. Treatments were maize under farmer’s practice (T1, control), maize with Guinea grass barriers (T2), maize under minimum tillage (MT) with Pinto peanuts as cover crop (T3), and maize under MT and relay cropped with Adzuki beans (T4). A pretest using data from zero-N plots revealed that abundance of water and limited nitrogen availability induced low grain N concentrations, enriched leaf δ13C, and reduced maize grain yield. Similar low N leaf concentrations and elevated δ13C values were observed in maize growing close to frequently pruned grass barriers under positive water balance conditions, indicating that yield decline in these rows can be attributed mainly to N competition. Enriched δ15N values of maize from rows next to barriers indicated reliance on soil N rather than on 15N-depleted fertiliser N. Vigorous cover crop growth under MT resulted in maize yield decline due to N competition while relay-cropped legumes did not trigger inter-species competition having a similar maize yield, leaf N concentration, δ13C, and δ15N as the control.  相似文献   

17.
Summary In Bhutan, barley is usually grown in mountainous regions over 2,000 m elevation. The barleys investigated were six-rowed naked, and classified into three groups by spike and awn characters; lax spike and long awn, dense spike and long awn, and dense spike and elevated hood. They also varied in spike color; yellow, purple and black. For isozymes, there was no variation at Aat2 and Aat3 loci for aspartate aminotransferase in the Bhutanese barley.However, allelic variations at Est1, Est2 and Est4 loci for esterase were detected, and three genotypes consisting of their allelic combinations were found. Most of the collections were heterogeneous for these features. Combinations between spike-awn types and esterase genotypes were not at random, indicating that genetic diversities resulted from mechanical mixtures of different types. These types were distributed with geographical regularity in Bhutan. In comparing the spike-awn type and esterase genotype in barley collections from other regions of the Himalayas, the Bhutanese barleys were s-imilar to the Tibetan ones, but were much different from the Nepalese barleys. This suggests that the Bhutanese barleys had been introduced from Tibet.  相似文献   

18.
Abstract

The objective of this study was to compare mid‐infrared (MIR) an near‐infrared (NIR) spectroscopy (MIRS and NIRS, respectively) not only to measure soil carbon content, but also to measure key soil organic C (SOC) fractions and the δ13C in a highly diverse set of soils while also assessing the feasibility of establishing regional diffuse reflectance calibrations for these fractions. Two hundred and thirty‐seven soil samples were collected from 14 sites in 10 western states (CO, IA, MN, MO, MT, ND, NE, NM, OK, TX). Two subsets of these were examined for a variety of C measures by conventional assays and NIRS and MIRS. Biomass C and N, soil inorganic C (SIC), SOC, total C, identifiable plant material (IPM) (20× magnifying glass), the ratio of SOC to the silt+clay content, and total N were available for 185 samples. Mineral‐associated C fraction, δ13C of the mineral associated C, δ13C of SOC, percentage C in the mineral‐associated C fraction, particulate organic matter, and percentage C in the particulate organic matter were available for 114 samples. NIR spectra (64 co‐added scans) from 400 to 2498 nm (10‐nm resolution with data collected every 2 nm) were obtained using a rotating sample cup and an NIRSystems model 6500 scanning monochromator. MIR diffuse reflectance spectra from 4000 to 400 cm?1 (2500 to 25,000 nm) were obtained on non‐KBr diluted samples using a custom‐made sample transport and a Digilab FTS‐60 Fourier transform spectrometer (4‐cm?1 resolution with 64 co‐added scans). Partial least squares regression was used with a one‐out cross validation to develop calibrations for the various analytes using NIR and MIR spectra. Results demonstrated that accurate calibrations for a wide variety of soil C measures, including measures of δ13C, are feasible using MIR spectra. Similar efforts using NIR spectra indicated that although NIR spectrometers may be capable of scanning larger amounts of samples, the results are generally not as good as achieved using MIR spectra.  相似文献   

19.
The foam stability of beer is one of the important key factors in evaluating the quality of beer. The purpose of this study was to investigate the relationship between the level of malt modification (degradation of protein, starch, and so on) and the beer foam stability. This was achieved by examining foam-promoting proteins using two-dimensional gel electrophoresis (2DE). We found that the foam stability of beer samples brewed from the barley malts of cultivars B and C decreased as the level of malt modification increased; however, the foam stability of cultivar A did not change. To identify the property providing the increased foam stability of cultivar A, we analyzed beer proteins using 2DE. We analyzed three fractions that could contain beer foam-promoting proteins, namely, beer whole proteins, salt-precipitated proteins, and the proteins concentrated from beer foam. As a result, we found that in cultivar A, some protein spots did not change in any of these three protein fractions even when the level of malt modification increased, although the corresponding protein spots in cultivars B and C decreased. We analyzed these protein spots by peptide mass finger printing using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. As a result, all of these spots were identified as barley dimeric alpha-amylase inhibitor-I (BDAI-I). These results suggest that BDAI-I is an important contributor to beer foam stability.  相似文献   

20.
Flour samples from seven different barleys, including covered and naked barleys and barleys with normal, waxy, and high‐amylose starches, as well as the high fiber barley Prowashonupana, were impact‐milled and air‐classified in a pilot unit. Six fractions (F1–F5 and C5) with increasing particle size were obtained from each barley. All fractions were analyzed for ash, protein, starch, dietary fiber, and total and unextractable β‐glucan. Ash was enriched in C5; covered barleys (4.3–5.7% of dry matter) had a higher ash content than naked barleys (2.1–3.2%). Starch was enriched in F4 for normal and waxy barleys (72–79%) and in F3 for high‐amylose barleys (72–75%). Protein was enriched in F1 (14–26%) for the different barleys. β‐glucan was enriched in F5 and C5 (7–23%), Prowashonupana had the highest value. The extractability of β‐glucan decreased with increasing particle size, probably because of lower amounts of endogenous β‐glucanase and poorer availability of the substrate in larger particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号