首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The formation and evolution of monoepoxy fatty acids, arising from oleic and linoleic acids, were investigated in olive oil and conventional sunflower oil, representatives of monounsaturated and polyunsaturated oils, respectively, during thermoxidation at 180 degrees C for 5, 10, and 15 h. Six monoepoxy fatty acids, cis-9,10- and trans-9,10-epoxystearate, arising from oleic acid, and cis-9,10-, trans-9,10-, cis-12,13-, and trans-12,13-epoxyoleate, arising from linoleic acid, were analyzed by gas chromatography after oil derivatization to fatty acid methyl esters. Considerable amounts, ranging from 4.29 to 14.24 mg/g of oil in olive oil and from 5.10 to 9.44 mg/g of oil in sunflower oil, were found after the heating periods assayed. Results showed that the monoepoxides quantitated constituted a major group among the oxidized fatty acid monomers formed at high temperature. For similar levels of degradation, higher contents of the monoepoxides were found in olive oil than in sunflower oil. Ten used frying oils from restaurants and fried-food outlets in Spain were analyzed to determine the contents of the monoepoxides in real frying oil samples. Levels ranged from 3.37 to 14.42 mg/g of oil. Results show that, for similar degradation levels, the monoepoxides were more abundant in the monounsaturated oils than in the polyunsaturated oils.  相似文献   

2.
The effect on O2 uptake during the mixing of yeasted dough, either unsupplemented or supplemented with glucose oxidase (GOX), horsebean flour (HB), soybean flour (SB), or combinations thereof, was studied using an airtight mixer. Two wheat flours with a low (flour A) and a high (flour B) content of free polyunsaturated fatty acids were used. Addition of HB or SB provokes a similar increase of O2 uptake for both wheat flours, whereas addition of GOX causes a larger increase for flour A than for flour B. When the wheat flours were supplemented with HB or SB, addition of GOX caused a small but significant increase of O2 uptake for flour A. This increase was not observed for flour B. The mixing tolerance of dough A, determined with the Chopin Consistograph, is increased by GOX addition. However, this effect is less pronounced when flour A is supplemented with HB or SB. Similarly, the relaxation index of dough B is decreased by GOX addition, but the decrease is less distinct in the presence of HB or SB. These results can be explained by a competition among yeast, GOX, and lipoxygenases (present in wheat, HB, and SB flours) for the O2 uptake by dough, which likely decreases the amount of hydrogen peroxide produced by GOX during dough mixing. This competition for O2 consequently also modifies the rheological properties of dough.  相似文献   

3.
To replace benzoyl peroxide as a bread dough-bleaching agent, pure and commercial oxido-reductases (peroxidases, catalases, glucose oxidases, lipoxygenase, and laccase) were screened based on degradation of β-carotene in a liquid system (5 μg of β-carotene/mL of 0.1M citrate phosphate buffer at pH 5.5 or 6.5) or dough. Peroxidases had the best bleaching activity; some catalases also showed bleaching potential in a liquid system but not in bread dough, suggesting that screening enzymes in liquid media has limited application for dough. In 100 g of flour, combinations of peroxidase (3,000 U), lipase (815–1,630 U), and linoleic acid (0–300 mg) completely bleached bread dough.  相似文献   

4.
In control dough, endogenous wheat lipase was inactive, because the triacylglycerol (TAG), 1,2-diacylglycerol (DAG1,2), and 1,3-diacylglycerol (DAG1,3) fractions of nonpolar lipids were not affected by mixing. Conversely, the free fatty acid (FFA) and monoacylglycerol (MAG) fractions decreased, mainly due to the oxidation of polyunsaturated fatty acids (PUFA) catalyzed by wheat lipoxygenase. Addition of exogenous lipase to flour (15 lipase units [LU] per gram of dry matter) resulted in substantial modification of nonpolar lipids during dough mixing. Due to the 1,3 specificity of the lipase used in this experiment, the TAG and DAG1,3 fractions decreased, whereas the MAG and FFA fractions increased. The DAG1,2 fraction increased at the beginning of mixing and decreased after 40 min of mixing. Moreover, part of the PUFA released by lipase activity was oxidized by wheat lipoxygenase, resulting in major losses of PUFA. Conversely, the net content of the saturated and monounsaturated fatty acids (SMUFA) remained constant, because the free SMUFA content increased primarily at the expense of the esterified forms. For a constant mixing time of 20 min, increasing the amount of lipase added to dough (from 2.5 to 25 LU/g of dry matter) resulted in a linear decrease in the TAG fraction and a linear increase in the SMUFA content in the FFA fraction. At the same time, the PUFA content of the FFA fraction increased only for additions of lipase to flour of >5 LU/g of dry matter, due to partial oxidation by wheat lipoxygenase.  相似文献   

5.
High cost and painstaking procedures associated with fatty acid analyses of maize kernel necessitate the use of alternative methods. NIR spectroscopy offers advantages in this respect for a variety of areas such as plant breeding, food and feed industries, and biofuel production, in which different forms of maize kernel (e.g., intact kernel, flour, or oil) are used as material. We investigated the possibility of estimating maize oil quality traits by using different samples (intact kernel, flour, and oil) and conventional regression methods (multiple linear regression [MLR] and partial least squares regression [PLSR]) applied to their NIR spectra. MLR and PLSR calibration models were developed for oleic acid, linoleic acid, oleic/linoleic acid ratios, total monounsaturated fatty acid, total polyunsaturated fatty acid (PUFA), and total saturated fatty acid by analyzing 120 maize samples. Robustness in terms of prediction accuracy of the models developed here was tested with a reserved set of samples (n = 30). The results suggested that fatty acids could be possibly estimated by calibrations developed from flour and oil samples with a high degree of accuracy, whereas intact samples did not offer satisfactory results. PLSR and MLR methods gave better results in flour and oil samples, respectively. PUFA was the trait that was most successfully estimated from both flour (for the PLSR model, standard error of the estimate [SEP] of 1.78%, relative performance to deviation [RPD] of 3.09, R2 = 0.93) and oil (for the MLR model, SEP of 0.85%, RPD of 6.52, R2 = 0.98) samples. We concluded that sample type and chemometric method should be handled as important factors in calibration development, and the effects of these factors may vary depending on the trait being analyzed.  相似文献   

6.
β‐Glucan shows great potential for incorporation into bread due to its cholesterol lowering and blood glucose regulating effects, which are related to its viscosity. The effects of β‐glucan concentration, gluten addition, premixing, yeast addition, fermentation time, and inactivation of the flour enzymes on the viscosity of extractable β‐glucan following incorporation into a white bread dough were studied under physiological conditions, as well as, β‐glucan solubility in fermented and unfermented dough. β‐Glucan was extracted using an in vitro protocol designed to approximate human digestion and hot water extraction. The viscosity of extractable β‐glucan was not affected by gluten addition, the presence of yeast, or premixing. Fermentation produced lower (P ≤ 0.05) extract viscosity for the doughs with added β‐glucan, while inactivating the flour enzymes and increasing β‐glucan concentration in the absence of fermentation increased (P ≤ 0.05) viscosity. The physiological solubility of the β‐glucan concentrate (18.1%) and the β‐glucan in the unfermented dough (20.5%) were similar (P > 0.05), while fermentation substantially decreased (P ≤ 0.05) solubility to 8.7%, indicating that the reduction in viscosity due to fermentation may be highly dependent on solubility in addition to β‐glucan degradation. The results emphasize the importance of analyzing β‐glucan fortified foods under physiological conditions to identify the conditions in the dough system that decrease β‐glucan viscosity so that products with maximum functionality can be developed.  相似文献   

7.
The objective of this experiment was to evaluate the effect of foliar fertilization of some micronutrients [i.e., manganese (Mn) and boron (B)] on reproductive yield and fatty acid concentrations of a standard sunflower hybrid (‘NuSun 636') irrigated with different concentrations of saline water made by dissolving sea salt. Reproductive yield showed a significant decrease with the increase in salt in the rooting medium. However, foliar sprays of boric acid (H3BO3) and manganese chloride (MnCl2) showed a significant increase in seed number, seed weight, and oil content of seeds in the nonsaline control, which persisted even under saline water irrigation. An increase under the MnCl2 spray was more than with H3BO3 irrespective of non saline or saline water irrigation. Increasing levels of salinity appeared to be responsible for a decrease in oleic monounsaturated fatty acid concentration and an increase in the linoleic polyunsaturated, palmitic and stearic saturated fatty acid content whereas no significant change was found in linolenic polyunsaturated fatty acid content. Foliar applications of H3BO3 and MnCl2 brought some beneficial alteration in fatty acid concentrations of sunflower. Foliar application of H3BO3 caused a significant increase in palmitic and stearic saturated fatty acids and linoleic polyunsaturated fatty acids in control as well as under saline conditions. Oleic monounsaturated fatty acid concentration showed a decline under H3BO3 treatment irrespective to nonsaline or saline conditions. Foliar applications of MnCl2 increased the concentration of palmitic saturated fatty acid and oleic monounsaturated fatty acid irrespective to the plant growth under non saline or saline conditions. While stearic saturated fatty acid, linoleic and linolenic polyunsaturated fatty acid decreased with the application of manganese as compared to the non sprayed control.  相似文献   

8.
Changes in the concentration of tocopherol, monophenols, o-diphenols, squalene, and polyunsaturated fatty acids in olive oil were evaluated during 1 year at various storage conditions. Samples of two different extra virgin olive oil (EOO), produced in Calabria (Italy), were stored in dark and in colorless bottles, filled up completely or to half, in order to simulate the domestic storage conditions. The extent of oxidation or photooxidation was monitored by periodic measurements of peroxide values and the rate of degradation of alpha-tocopherol, o-diphenols, squalene, and polyunsaturated fatty acids. The quantitative analysis of the constituents has been performed by HPLC-DAD, HPLC-MS, and GC-MS. The main changes in the concentrations of the analyzed compounds were associated with the major oxygen level in the half-empty glass bottles. alpha-Tocopherol was the first molecule to be oxidized (-20% after 2 months, -92% after 12 months). Squalene and o-diphenols were protected in the first months by the presence of alpha-tocopherol, and their content decreased significantly only after 6 and 8 months, respectively, in the half-empty bottles. The concentration of polyunsaturated fatty acids remained almost constant during 8 months for all four different storage conditions; their oxidation started when the level of the antioxidants decreased.  相似文献   

9.
Changes in the lipid composition of two standard infant formulas induced by 4 years of storage were determined. Lipids were thoroughly analyzed using different gas-liquid and liquid-liquid chromatographic techniques. Oleic acid and linoleic acid, which accounted for almost the total monounsaturated and polyunsaturated fatty acids, respectively, showed slight but significant decreases (P < 0.05) during the 4 years of storage (from 41.52 to 39.83% for oleic acid and from 17.35 to 15.99% for linoleic acid). Total trans fatty acid isomers showed low initial level (0.22% of total fatty acids), and such level remained unchanged during the storage period. Nonvolatile oxidation compounds including oxidized, dimeric, and polymeric triglycerides did not significantly increase during the storage period, although a significant loss of tocopherols was found in the surface oil fraction (10-15%). In general, the results obtained indicate that, although small losses of oleic and linolenic acid as well as tocopherols were found, the 4 year storage period did not lead to relevant changes in the lipid fraction of infant formulas.  相似文献   

10.
Fatty acid composition, oil content, free fatty acid content, and peroxide value of Baltic herring (Clupea harengus membras) and two processed products (fried fillets and fish burgers) were investigated. The highest oil content of the fillets was found in autumn (10%), at the time when the free fatty acids had their minimum (1.4%). The main fatty acids were oleic (18-23%), palmitic (17%), palmitoleic (8-12%), and docosahexaeneoic (8-10%) acids. The proportion of saturated fatty acids was a constant 23% all year around, whereas mono- and polyunsaturated acids varied from 34 to 39% and 33 to 37%, respectively. During processing the oil content doubled and the fatty acid composition changed to the pattern of the rapeseed oil used for frying. Oleic acid was a major fatty acid in the products comprising over 40% of the total fatty acids. The proportion of n-3 acids decreased during processing but the total amount of polyunsaturated acids remained fairly constant.  相似文献   

11.
In this study was analyzed the effect of crop year and harvesting time on the fatty acid composition of cv. Picual virgin olive oil. The study was carried out during the fruit ripening period for three crop seasons. The mean fatty acid composition of Picual oils was determined. The oils contained palmitic acid (11.9%), oleic acid (79.3%), and linoleic acid (2.95%). The content of palmitic acid and saturated fatty acids decreased during fruit ripening while oleic and linoleic acids increased. The amount of stearic and linolenic acids decreased. The amount of saturated acids, palmitic and stearic, and the polyunsaturated acids linoleic and linolenic was dependent on the time of harvest, whereas the amount of oleic acid varied with the crop year. The differences observed between crop years for both palmitic and linoleic acid may be explained by the differences in the temperature during oil biosynthesis and by the amount of summer rainfall for oleic acid content. A significant relationship was observed between the MUFA/PUFA ratio and the oxidative stability measured by the Rancimat method.  相似文献   

12.
Chemically treated dietary supplements (CTDS) were prepared with defatted soy flour, sunflower oil, dl-alpha-tocopheryl acetate (TA), and 2,3-butanedione (a generally recognized as safe chemical), and the effects on alpha-tocopherol (VE) concentration and fatty acid profile in ewe's milk were estimated. Ewes fed control diet (CD) had the lowest levels of milk VE (0.66 microg/mL) and serum VE (1.59 microg/mL). Feeding ewes the CD plus 500 IU of TA increased milk and serum VE by 30 and 70%, respectively, compared to ewes fed the CD. The CTDS-fed ewes showed further increased milk and serum VE levels by 40 and 32%, respectively, over those in ewes fed the CD plus 500 IU of TA. Feeding ewes CTDS did not affect milk fat content (3.13%) but altered the fatty acid composition by decreasing the levels of hypercholesteremic fatty acids, while increasing the content of linoleic acid (8.5%). Inclusion of CTDS in ruminant diets might produce nutritionally enhanced milk products.  相似文献   

13.
The aim of this work was to elucidate the underlying physical mechanism(s) by which bran influences whole grain dough properties by monitoring the state of water and gluten secondary structure in wheat flour and bran doughs containing 35–50% moisture and 0–10% added bran. The system was studied with attenuated total reflectance (ATR) FTIR spectroscopy. Comparison of the OH stretch band of water in flour dough with that in H2O‐D2O mixtures having the same water content revealed the formation of two distinct water populations in flour dough corresponding to IR absorption frequencies at 3,600 and 3,200 cm–1. The band intensity at 3,200 cm–1, which is related to water bound to the dough matrix, decreased and shifted to lower frequencies with increasing moisture content of the dough. Addition of bran to the dough caused redistribution of water in the flour and bran dough system, as evidenced by shifts in OH stretch frequency in the 3,200 cm–1 region to higher frequencies and a reduction in monomeric water (free water). This water redistribution affected the secondary structure of gluten in the dough, as evidenced by changes in the second‐derivative ATR‐FTIR difference spectra in the amide I region. Bran addition caused an increase in β‐sheet content and a decrease in β‐turn (β‐spiral) content. However, this bran‐induced transconformational change in gluten was more significant in the 2137 flour dough than in Overley flour dough. This study revealed that when bran is added to flour dough, water redistribution among dough components promotes partial dehydration of gluten and collapse of β‐spirals into β‐sheet structures. This transconformational change may be the physical basis for the poor quality of bread containing added bran.  相似文献   

14.
The balance between the vitamin E (tocochromanols) and polyunsaturated fatty acid (PUFA) contents mainly determines the susceptibility to lipid peroxidation and the storage stability of corn oil. In 1997, field experiments were conducted at two different locations to evaluate a collection of 30 corn hybrids for fatty acid profiles and tocochromanol contents. Hybrids differed significantly (p < 0.01) for major fatty acids, as well as for tocochromanol contents and composition. The major fatty acids were palmitic, oleic, and linoleic acids, whose contents were in the ranges 9.2-12.1%, 19.5-30.5%, and 53.0-65.3%, respectively. The tocopherol contents ranged as follows: alpha-tocopherol, 67-276 mg (kg of oil)(-1); beta-tocopherol, 0-20 mg (kg of oil)(-1); gamma-tocopherol, 583-1048 mg (kg of oil)(-1); delta-tocopherol, 12-71 mg (kg of oil)(-1); total tocopherol, 767-1344 mg (kg of oil)(-1). gamma-Tocopherol was the predominant derivative among all tocopherols. The tocotrienol contents were in the ranges 46-89, 53-164, and 99-230 mg (kg of oil)(-1) for alpha-, gamma-, and total tocotrienol contents, respectively. The tocotrienol profile was not characterized by the predominance of any tocotrienol homologue. alpha-Tocopherol was positively correlated with PUFA (r = 0.41) and with the vitamin E equivalent (vit E equiv) (r = 0.84), and it was not correlated with gamma-tocopherol. gamma-Tocopherol was highly correlated with total tocopherol and tocochromanol contents (r = 0.93 and r = 0.90, respectively), indicating that the contribution of this vitamer to the total tocochromanol content is the most important among all tocochromanols. The high positive correlation found between the vit E/PUFA ratio and the vit E equiv, as well as the absence of correlation between this ratio and PUFA indicates that a higher vit E/PUFA ratio can be easier achieved be increasing the vitamin E content than by modifying fatty acid profile in corn oil.  相似文献   

15.
The fatty acid profile of the subcutaneous fat of pigs and its evolution throughout fattening as affected by dietary conjugated linoleic acid (CLA), monounsaturated fatty acids (MUFA), and their interaction (CLAxMUFA) were studied. Three levels (0, 1, and 2%) of an enriched CLA oil (28% cis-9, trans-11 and 28% trans-10, cis-12 CLA) were combined with two levels of MUFA (low, 19% average; and high, 39% average) for pig feeding (288 gilts). Subcutaneous shot-biopsies were taken from 48 animals at the beginning of the trial (S1, 70 kg), 14 days later (S2, 80 kg), and at slaughter (S3, 107 kg). Inclusion of CLA in the diet caused an increase during fattening in cis-9, trans-11 CLA, trans-10, cis-12 CLA, and saturated fatty acids (SFA) contents of pig backfat and a decrease in MUFA and polyunsaturated fatty acids (PUFA). MUFA supplementation also led to a MUFA enrichment of backfat. The interaction CLAxMUFA affected the SFA content. The rates of accumulation of CLA isomers, SFA, and MUFA throughout the trial did not follow a linear behavior, such rates being higher from S1 to S2 than from S2 to S3. These rates were also influenced by dietary CLA and MUFA levels. The increase in the ratio of saturated to unsaturated fatty acids of backfat caused by dietary CLA might be balanced by supplementation of pig diets with MUFA.  相似文献   

16.
The variation in the seed shape, colour and yield, and content, yield and fatty acid composition of seed oil of 109 accessions of opium poppy Papaver somniferum, (majority of them Indian land races), was investigated. The seeds were white, pale yellow or light brown in colour, reniform or round in shape and varied in size up to three fold. The oil content, seed and the oil yield varied between 26 to 52%, 1.0 to 7.4 g/plant and 0.4 to 2.7 g/plant, respectively. The % content of palmitic, oleic and linoleic acid in the seed oil ranged between 9.3 to 40.0%, 7.5 to 58.4% and 0.7 to 72.7%, respectively. On average basis, the levels of major fatty acids in the seed oil were: oleic (37.1%) > palmitic (27.3%) > linoleic acid (17.2%). The palmitoleic, stearic and linolenic acids were present in the oils of only some of the accessions. Two of the accessions yielded linoleic acid rich seed oil of about the same quality as soybean and maize oils, and in four accessions, the proportion of palmitic, oleic and linoleic acids was roughly equal. The palmitic acid was relatively less and linoleic acid more in the seed oil from accessions rich in oil content. The oil that contained higher amount of oleic acid also contained higher amount of palmitic acid and relatively lower amount of linoleic acid. The correlation analyses revealed a strong positive relationship between seed yield and oil yield (r = +0.81), oil yield and oil content (r = +0.54) and oleic acid and palmitic acid content in the seed oil (r = +0.49), and a weak positive relationship between oil content and linoleic acid content of oil (r = +0.24), and a negative correlation was observed between oil content and palmitic acid content (r = –0.32), palmitic acid and linoleic acid (r = –0.55) and oleic acid and linoleic acid contents of oil (r = –0.68). The observations have permitted selection of accessions that are high seed and oil yielding and/or rich in linoleic, palmitic and oleic acids or containing palmitic, oleic and linoleic acids in about equal amounts.  相似文献   

17.
Barley is rich in nutritionally positive compounds, but the quality of bread made of wheat–barley composite flours is impaired when a high percentage of barley is used in the mixture. A number of enzymes have been reported to be useful additives in breadmaking. However, the effect of β‐glucanase on breadmaking has scarcely been investigated. In this paper, the influence of different levels (0.02, 0.04, 0.06, and 0.08%, based on composite flour) of β‐glucanase (100,000 U/g) on the properties of dough and bread from 70% wheat, 30% barley composite flour were studied. Although dough development time, dough stability, and protein weakening value decreased after β‐glucanase addition, dough properties such as softness and elasticity as well as bread microstructure were improved compared with the control dough. β‐Glucanase also significantly improved the volume, texture, and shelf life of wheat–barley composite breads. The use of an optimal enzyme concentration (0.04%) increased specific volume (57.5%) and springiness (21%), and it reduced crumb firmness (74%) and staling rate. Bread with added β‐glucanase had a better taste, softness, and overall acceptability of sensory characteristics compared with the control bread. Moreover, the quality of wheat–barley composite bread after addition of 0.04% β‐glucanase was nearly equal to the quality of pure wheat bread. These results indicate that dough rheological characteristics and bread quality of wheat–barley composite flour can be improved by adding a distinct level of β‐glucanase.  相似文献   

18.
The paper assess the variability of fat content and fatty acids profiles in seeds of a white lupin (Lupinus albus L.) domestic collection. The initial material comprised 371 accessions originated from 30 countries of Europe, Asia, Africa, North- and South America and Australia. According to data given by accession donors the material is divided into four classes of origin: wild lines, landraces, lines created by man and cultivars. Variability of fat content and fatty acids composition were estimated in seeds of each accession. The average fat content for analyzed collection is 9.81%. The broadest range of fat content was noticed for landraces and cultivars as compared to narrowest represented by lines created by man. Fat content ranged from 6.9% (induced mutant Wt 95497) to 14.1% (Polish cultivar Wt 95420 and the landrace Wt 95212 from Jordan). From a dietetic point of view, oil quality is more important than oil quantity in lupin seeds. On average the fatty acid (FA) in examined accessions ranked in following order of abundance: oleic acid (C18:1) > linoleic acid (C18:2) > linolenic acid (C18:3) > palmitic acid (C16:0) > eicosenoic acid (C20:1) > stearic acid (C18:0) ≈ erucic acid (C22:1). In respect to unsaturated fatty acid (UFA), monounsaturated oleic acid in each of estimated classes of accessions was predominant and most abundant (55.7%) in broad range of minimum–maximum values from 41.2 to 66.2%. The second examined monounsaturated fatty acid was erucic acid (1.74%) found in seeds of almost all studied accessions. An exception were four accessions defined similarly to rapeseeds as “zero erucic” forms. In seeds of few accessions a content of erucic acid exceeded 3%. Among polyunsaturated fatty acids linoleic FA (ω?6) dominated followed by linolenic FA (ω?3). Both FA were in the range 13.7–33.2% and 5.6–12.8% with mean values on the level 19.6 and 10.1%, respectively. As a consequence, the examined white lupin seeds showed a very favourable ω?3/ω?6 FA ratio (0.51), ranging from 0.21 to 0.87, much higher than that of most vegetable oils. Fat content was positively correlated with stearic and oleic fatty acids and negatively with palmitic, linoleic, linolenic and erucic acid.  相似文献   

19.
Until now few comparisons of nutritional compounds in premature green and mature yellow wheat have been reported. In this study, the contents of amino acids, vitamins, mineral compounds, phytosterols, and fatty acids as well as the proximate composition of premature green and mature yellow wheat were investigated. Premature green wheat had lower protein content (12.0 g/100 g db) and higher dietary fiber content (19.3 g/100 g db) than mature yellow wheat (13.6 and 14.3 g/100 g db for protein and dietary fiber, respectively). Despite a small difference in total amino acids, protein in premature wheat had a significantly greater proportion of essential amino acids: 16.1, 39.9, and 32.7 mg/g of protein for methionine, lysine, and threonine, respectively. Furthermore, the protein digestibility‐corrected amino acid scores of whole grain premature green and mature yellow wheat were 62.8 and 46.4, respectively, showing significant difference (P < 0.05). Total fatty acids content was 2.66 g/100 g db for premature green wheat and 2.21 g/100 g db for mature yellow wheat. Vitamin C, β‐carotene (provitamin A), α‐ and γ‐tocopherol, and niacin were the major vitamins in premature green wheat, whereas vitamin C and β‐carotene were not detected in mature yellow wheat. The results obtained indicated that premature green wheat has potential for the human diet because of its desirable nutritional value.  相似文献   

20.
A series of physical and chemical changes occur as oil palm fruits ripen in the bunch. We evaluated changes in lipid content in the mesocarp and fruits, and the chemical composition of fatty acids (FA), triacylglycerol (TAG), tocols, and carotenes of the lipids extracted from fruits of three commercial tenera cultivars, namely, Deli×La Me?, Deli×Ekona, and Deli×Avros, planted in two different geographical regions in Colombia, during the ripening process 12, 14, 16, 18, 20, 22, and 24 weeks after anthesis (WAA). It was found that 12 WAA the mesocarp contained less than 6% of total lipids. Oil content increased rapidly after 16 WAA, reaching the maximum oil content of 55% in fresh mesocarp and 47% in fresh fruits at 22 WAA, which was found the optimal time for harvesting. Changes in FA and TAG showed that total polyunsaturated fatty acids (PUFA) and triunsaturated triacylglycerols (TUTAG) decreased, while total saturated fatty acids (SFA) and disaturated triacylglycerols (DSTAG) increased, over the ripening period. Changes in FA were mainly observed in palmitic, oleic, linoleic, and linolenic acids, and in POP, POO, POL, and OLL for the TAGs evaluated. Levels of tocols changed depending on whether they were tocopherols or tocotrienols. In the earliest stages tocopherols were predominant but decreased rapidly from 6600 mg kg(-1) of oil at 14 WAA to 93 mg kg(-1) of oil at 22 WAA. Tocotrienols appeared at the same time as oil synthesis started, and became the main source of total tocols, equivalent to 87% in total lipids extracted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号