首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Antibodies specific for wheat proteins were used to identify protein fractions modified during extrusion of Hard Red Spring wheat flour (14% protein) under four different combinations of extrusion conditions (18 and 24% feed moisture and 145 and 175°C die temperature). Antibody binding was assessed on immunoblots of proteins extracted from flour and extrudates separated by SDS‐PAGE. Antibodies to high molecular weight glutenin subunits (HMW‐GS) and to B‐group low molecular weight glutenin subunits (LMW‐GS) recognized intact subunits from both flour and extrudates. Antibodies to C‐group LMW‐GS had diminished binding to extruded proteins. Glutenin‐specific antibodies also recognized protein in the extrudates migrating as a smear at molecular weights higher than intact subunits, indicating cross‐linked proteins. Antibodies recognized albumins or globulins in flour but not in extrudates, evidence that these fractions undergo significant modification during extrusion. Acid‐PAGE and antibody reaction of gliadins extracted in 1M urea and in 70% ethanol revealed total loss of cysteine‐containing α, β, γ‐gliadins but no obvious effects on sulfur‐poor ω‐gliadins, suggesting gliadin modification involves replacing intramolecular disulfides with intermolecular disulfide cross‐links. Identifying protein fractions modified during different extrusion conditions may provide new options for tailoring extrusion to achieve specific textural characteristics.  相似文献   

2.
Starch and gluten were isolated from 10 wheat cultivars or lines with varied amylose content. The rheological properties of 30% wheat flour gel, starch gel, and the gel of isolated gluten mixed with common starch were determined in dynamic mechanical testing under shear deformation, creep‐recovery, and compression tests under uniaxial compression. Variation of wheat samples measured as storage shear modulus (G′), loss shear modulus (G″), and loss tangent (tan δ = G″/G′) was similar between flour and starch gels and correlated significantly between flour and starch gel. The proportion of acetic acid soluble glutenin exhibited a significant relationship with tan δ of gluten‐starch mixture gel. The small difference in amylose content strongly affected the rheological parameters of flour gels in creep‐recovery measurement. Wheat flour gel with lower amylose content showed higher creep and recovery compliance that corresponded to the trend in starch gel. Compressive force of flour gel at 50 and 95% strain correlated significantly with that of starch gel. Gel mixed with the isolated gluten from waxy wheat lines appeared to have a weaker gel structure in dynamic viscoelasticity, creep‐recovery, and compression tests. Starch properties of were primarily responsible for rheological changes in wheat flour gel.  相似文献   

3.
The rheological properties of fresh gluten in small amplitude oscillation in shear (SAOS) and creep recovery after short application of stress was related to the hearth breadbaking performance of wheat flours using the multivariate statistics partial least squares (PLS) regression. The picture was completed by dough mixing and extensional properties, flour protein size distribution determined by SE‐HPLC, and high molecular weight glutenin subunit (HMW‐GS) composition. The sample set comprised 20 wheat cultivars grown at two different levels of nitrogen fertilizer in one location. Flours yielding stiffer and more elastic glutens, with higher elastic and viscous moduli (G′ and G″) and lower tan δ values in SAOS, gave doughs that were better able to retain their shape during proving and baking, resulting in breads of high form ratios. Creep recovery measurements after short application of stress showed that glutens from flours of good breadmaking quality had high relative elastic recovery. The nitrogen fertilizer level affected the protein size distribution by an increase in monomeric proteins (gliadins), which gave glutens of higher tan δ and flatter bread loaves (lower form ratio).  相似文献   

4.
The rheological properties of cooked white salted noodles made from eight wheat cultivars with varied amylose content were analyzed at small and large deformation. Their dynamic shear viscoelasticity was measured using a rheometer with parallel plate geometry. Compressive force and creep‐recovery curves were measured using various probes and sample shapes. Noodles with lower amylose content showed a lower storage shear modulus (G′) and a higher frequency dependence of G′. The G′ values of noodles were highly correlated with amylose content in wheat flour and with G′ values of 30 and 40% starch gels. Remarkable differences in the characteristics of creep‐recovery curves were observed between cultivars. The difference in amylose content in wheat flour reflected the creep‐recovery properties of noodles. A negative correlation was demonstrated between amylose content and both maximum creep and recovery compliance. The compressive force required for 20, 50, 80, and 95% strains was compared. At 20 and 50% strain, noodles made from lower amylose wheat flour showed lower compressive force. Noodles of waxy wheat had a higher compressive force than nonwaxy noodles when the strain was >80%, indicating the waxy wheat noodles are soft but difficult to completely cut through.  相似文献   

5.
The rheological properties of dough and gluten are important for end‐use quality of flour but there is a lack of knowledge of the relationships between fundamental and empirical tests and how they relate to flour composition and gluten quality. Dough and gluten from six breadmaking wheat qualities were subjected to a range of rheological tests. Fundamental (small‐deformation) rheological characterizations (dynamic oscillatory shear and creep recovery) were performed on gluten to avoid the nonlinear influence of the starch component, whereas large deformation tests were conducted on both dough and gluten. A number of variables from the various curves were considered and subjected to a principal component analysis (PCA) to get an overview of relationships between the various variables. The first component represented variability in protein quality, associated with elasticity and tenacity in large deformation (large positive loadings for resistance to extension and initial slope of dough and gluten extension curves recorded by the SMS/Kieffer dough and gluten extensibility rig, and the tenacity and strain hardening index of dough measured by the Dobraszczyk/Roberts dough inflation system), the elastic character of the hydrated gluten proteins (large positive loading for elastic modulus [G′], large negative loadings for tan δ and steady state compliance [Je0]), the presence of high molecular weight glutenin subunits (HMW‐GS) 5+10 vs. 2+12, and a size distribution of glutenin polymers shifted toward the high‐end range. The second principal component was associated with flour protein content. Certain rheological data were influenced by protein content in addition to protein quality (area under dough extension curves and dough inflation curves [W]). The approach made it possible to bridge the gap between fundamental rheological properties, empirical measurements of physical properties, protein composition, and size distribution. The interpretation of this study gave indications of the molecular basis for differences in breadmaking performance.  相似文献   

6.
In 1935, Bienenstock and coworkers claimed the presence of gluten-like material in the germ of the carob seed. The viscoelastic properties of the water-insoluble proteins isolated from carob germ, which we propose to call caroubin, have been confirmed by dynamic (G′ and G″) and static rheological measurements (texture profile analysis, viscoelastogram). Biochemical analyses showed important similarities (high glutamic acid content, size-exclusion HPLC profile, PAGE patterns of reduced and unreduced proteins) as well as large differences (high arginine and low cysteine and proline content of caroubin, carbohydrate composition) between caroubin and wheat gluten. Besides potential new industrial uses of carob seed, caroubin could be a valuable material to help us understand the physicochemical basis of the viscoelastic properties of plant protein complexes like wheat gluten.  相似文献   

7.
Transglutaminase (TG) catalyzes the formation of nondisulfide covalent crosslinks between peptide‐bound glutaminyl residues and ∊‐amino groups of lysine residues in proteins. Crosslinks among wheat gluten proteins by TG are of particular interest because of their high glutamine content. Depolymerization of wheat gluten proteins by proteolytic enzymes associated with bug damage causes rapid deterioration of dough properties and bread quality. The aim of the present study was to investigate the possibility of using TG to regain gluten strength adversely affected by wheat bug proteases. A heavily bug‐damaged (Eurygaster spp.) wheat flour was blended with sound cv. Augusta or cv. Sharpshooter flours. Dynamic rheological measurements, involving a frequency sweep at a fixed shear stress, were performed after 0, 30, and 60 min of incubation on doughs made from sound or blended flour samples. The complex moduli (G* values) of Augusta and Sharpshooter doughs blended with 10% bug‐damaged flour decreased significantly after 30 min of incubation. These dough samples were extremely soft and sticky and impossible to handle for testing purposes after 60 min of incubation. To test the possibility of using TG to counteract the hydrolyzing effect of bug proteases on gluten proteins, TG was added to the flour blends. The G* values of TG‐treated sound Augusta or Sharpshooter doughs increased significantly after 60 min of incubation. The G* values of the Augusta or Sharpshooter doughs blended with bug‐damaged flour increased significantly rather than decreased after 30 and 60 min of incubation when TG was included in the dough formulation. This indicates that the TG enzyme substantially rebuilds structure of dough hydrolyzed by wheat bug protease enzymes.  相似文献   

8.
Dough rheological characteristics obtained by alveograph testing, such as extensibility and resistance to extension, are important traits for determination of wheat and flour quality. A challenging issue that faces wheat breeding programs and some wheat research projects is the relatively large flour sample size of 250 g required for the standard alveograph method (AACCI Approved Method 54‐30.02). A modified dough preparation procedure for a small flour sample size was developed for the alveograph test method. A dough was prepared by mixing 80 g of flour with 60% water absorption (2.5% salt solution) for 4 min in a 100 g pin mixer; it was then sheeted and cut into three patties of defined thickness. Data generated by the modified dough preparation method were significantly correlated with the results from the approved alveograph method. The correlation coefficients (r) for each of six alveograph dough characteristics of 40 different advanced breeding lines and wheat varieties were 0.92 for P (mm H2O), 0.73 for L (mm), 0.83 for W (10–4 J), 0.90 for P/L, 0.90 for le (%), and 0.76 for G. The modified dough preparation was easier and more convenient than the approved method, and test time for the modified dough preparation was shorter by 20–25 min. This modified dough preparation procedure for the alveograph may be useful for wheat breeding programs as well as an alternative to the approved alveograph method for milling and baking industries and wheat quality research.  相似文献   

9.
Diacetyltartaric acid esters of monoglycerides (DATEM) and sodium stearoyl lactylate (SSL) displayed thermal events corresponding to glass transition temperature (Tg) and melting of crystalline domains, while monoglycerides (MG) exhibited an endothermic peak corresponding to melting of crystalline structures when heated in a differential scanning calorimeter. The plasticizing effect of water on Tg of gluten exhibited little apparent change in the presence of DATEM, MG, or SSL (glutensurfactant 10:1), in the moisture range of 6.5–21.3% as shown by mechanical spectrometry and differential scanning calorimetry. Glutensurfactant mixtures showed higher G′ and apart from gluten‐SSL, which displayed higher tan δ (G″/G′) at ≤2.51 rad/sec, lower tan δ values than gluten in the frequency range of 0.1–100 rad/sec. DATEM and SSL softened the gluten network before cross‐linking reactions, while MG shifted the onset of cross‐linking reactions to higher temperatures at moisture contents of 30–40%. Complete vitrification of the gluten network occurred at higher temperatures, at the indicated moisture contents, in the presence of surfactants. Softening of the matrix and the delay in cross‐linking of gluten, in the presence of surfactants, might allow for greater expansion of doughs during baking with concomitant increase in loaf volumes.  相似文献   

10.
The rheological properties of wheat doughs prepared from different flour types, water contents, and mixing times for a total of 20 dough systems were studied. The results were compared with the results of standard baking tests with the same factors. Water and flour type had a significant effect on storage modulus (G′) or phase angle measured by an oscillatory test both in the linear viscoelastic region and as a function of stress, and on compressional force measured as a function of time. The correlation of maximum force of dough in compression and G′ of dough measured within the linear viscoelastic region was r = 0.80. Correlation between the compression and oscillation test improved when all measuring points of the G′ stress curve were included (r = 0.88). The baking performance of the different doughs varied greatly; loaf volumes ranged from 2.9 to 4.7 mL/g. Although the water content of the dough correlated with the rheological measurements, the correlation of G′measured in the linear viscoelastic region or maximum force from stress‐time curve during compression was poor for bread loaf volumes. Mixing time from 4.5 to 15.5 min did not affect the rheological measurements. No correlation was observed with the maximum force of compression or G′ of dough measured in the linear viscoelastic region and baking performance. Good correlation of rheological measurements of doughs and baking performance was obtained when all the data points from force‐time curve and whole stress sweep (G′ as a function of stress) were evaluated with multivariate partial least squares regression. Correlation of all data points with loaf volume was r = 0.81 and 0.72, respectively, in compression and shear oscillation.  相似文献   

11.
The effect of moisture content on the linear viscoelastic properties of gliadin hydrated to 30 and 40% moisture content [gliadin(30%) and gliadin(40%), respectively] was determined. These two moisture contents bracketed the equilibrium moisture content of gliadin, which was 37.6%. Time‐temperature‐superposition was used to develop master curves of the elastic modulus (G′), viscous modulus (G″), dynamic viscosity (η′), and tan δ (G″/G′) from isothermal frequency sweep data obtained at 25–80°C. Smooth master curves were obtained for all of the viscoelastic functions for both gliadins. G′ and G″ showed a power law dependency on frequency (with G″ > G′) for frequencies <0.1 rad/sec for gliadin(30%) and <1 rad/sec for gliadin(40%). The low‐frequency‐limiting slopes on log‐log coordinates for G′ and G″ were 0.700 and 0.646 for gliadin(30%), respectively. Corresponding values were 0.658 and 0.614 for gliadin(40%). G′ crossed over G″ at a frequency of ≈0.3 rad/sec for gliadin(30%), while G′ and G″ for gliadin(40%) only became congruent at higher frequencies. Both gliadin samples showed appreciable frequency dependence of η′ over the entire frequency range, while η′ was greater for gliadin(30%) than for gliadin(40%) at all frequencies, but especially at the lowest frequencies. Tan δ increased gradually from a value of ≈1 at 0.1 rad/sec to ≈2 at the lowest frequency of 0.0002 rad/sec for both gliadins, but tan δ decreased rapidly for gliadin(30%) for frequencies >0.1 rad/sec. Thus, the main difference between gliadin(30%) and gliadin(40%) was that elastic effects (G′ > G″ and decreased tan δ were more prominent for gliadin(30%) at the higher frequencies. In addition, the frequency dependence of G′, G″, η′, and tan δ for the two gliadin samples was compared directly with two samples of poly(dimethylsiloxane) (PDMS) a linear silicone‐based entangled polymer with molecular weights (MW) of 140,000 and 385,000. The substantial differences in the magnitude and overall patterns of the frequency dependence of the viscoelastic functions between the gliadin and PDMS samples was attributed to the dominant effect that noncovalent secondary associations apparently have on the linear viscoelasticity of the gliadins. The energy of activation for flow (determined from the temperature dependence of the shift factors) for the gliadin samples for the range 25–45°C was higher than is typical for entangled linear polymer melts. The activation energy decreased for temperatures greater than ≈60°C for gliadin(30%) and ≈50°C for gliadin(40%). Thus, hydrated gliadin cannot be considered to be a simple viscoelastic liquid.  相似文献   

12.
A transglutaminase from Streptoverticillium sp. was used to create new covalent intermolecular cross‐links between proteins in gluten. This modification induced drastic changes in its physicochemical properties as well as in its rheological behavior. To understand these changes, we characterized the gluten extractability in acetic acid and identified the proteins of supernatant and pellet by immunoblotting using antibodies specific for each prolamin class. The proportion of soluble proteins decreased drastically after transglutaminase treatment due to the formation of large insoluble polymers as shown by SDS‐PAGE. Among the constitutive proteins of gluten, the high molecular weight glutenin subunits were the most affected in the transglutaminase reaction. The rheological behavior of gluten after 18 hr of incubation with transglutaminase was studied in shear by dynamic measurements over 10‐3 – 101 Hz frequency range and by creep and recovery tests. The behavior of treated glutens remained that of a transient network, but the viscoelastic response was shifted toward shorter times and the steady‐state viscosity was greatly increased. The enzymatic treatment caused a considerable reinforcement of the network. The modified glutens were also less sensitive to thermal processing than unmodified glutens, as shown by a lower amplitude of variation of storage modulus G′ with temperature after enzymatic treatment.  相似文献   

13.
The rheological properties of rye flour-water-salt doughs prepared from different flour types (different falling number and coarseness) at different water levels were studied after mixing and after 90 min of incubation (30°C and 80% rh). Both the effect of water and the coarseness of the flour had significant effects on storage modulus (G′) measured by oscillatory test in the linear viscoelastic region and on compressional force measured at large deformation. The results of the two rheological methods correlated very well with each other (correlation coefficients varied in the different doughs at r = 0.975–0.999). Dough rheological measurements suggested that falling number did not have a statistically significant effect on dough rheology after mixing or incubation. Although the two rheological methods correlated well, the responses for incubation were different. In the small deformation method, the storage modulus of all doughs, independent of the falling number, decreased during incubation, whereas in the large deformation method, only the hardness of doughs made from flours with lower falling number decreased during incubation. The rheological measurements of doughs after mixing and the viscosity measurements of flourwater suspension at 30 and 40°C did not correlate with each other. Total pentosans have great effect on viscosity measurements of flour-water suspensions, whereas flour particle size and soluble pentosans correlated more with rheological properties of doughs (r = 0.851 between G′ and soluble pentosans).  相似文献   

14.
The small deformation rheological properties of wheat flour doughs in relation to their structure and hydration were studied by dynamic mechanical thermal analysis, differential scanning calorimetry, and electron spin resonance. The effect of salt and triglycerides was also examined and compared with results we obtained previously on starch dispersions. Moisture content was adjusted to 48 or 60% (w/w, wb). Samples contained 0–16% NaCl (g/100 g of flour‐water) and 0–18% triolein or lard (g/100 g of flour‐water). The obtained results suggested that starch has an active role in determining the evolution of dough rheological characteristics during heating. The main factors controlling rheological behavior during thermal treatment are the volume fraction and deformability of starch granules. Gluten changes the viscoelasticity of the continuous phase and competes with starch for water. The addition of sodium chloride to flour dispersions shifted the structural disorganization and rigidity increased during heating to higher temperatures. At >7% NaCl, the reverse effect was observed. The mechanism controlling the effect of salt on dough rheological behavior was explained in terms of effect on water properties and on starch structure and hydration. Triglycerides had a lubricant effect (i.e., lowering G′ modulus) on the wheat flour dough system. These effects are of great importance for production and quality of bakery products.  相似文献   

15.
The effects of oxido-reductants on the rheological properties of wheat flour dough were evaluated by using a capillary rheometer and an oscillatory rheometer at three temperatures. The oxidants potassium iodate (KIO3) and l -ascorbic acid (l -AA) significantly increased the apparent viscosity and G′ and decreased loss tangent at low temperatures of 30 and 60°C due to enhanced formation of disulfide bonds. The reductant glutathione (GSH) had the opposite effect. Heating caused the gelatinization of starch, which diminished the effects of the oxido-reductants and produced doughs with similar rheological properties at 80°C. The correlation between dough rheology and characteristics of extruded noodles was also studied.  相似文献   

16.
Oxidation increased the strength of the dough. Addition of ascorbic acid or azodicabonamide (ADA) to dough increased both elastic modulus (G′) and viscous modulus (G″), while addition of cysteine decreased both values. Hydrogen peroxide, from either calcium peroxide or glucose oxidase, increased G′ and G″ and decreased tan δ (G″/G′) values. In addition to strengthening the dough, hydrogen peroxide dried the dough, but ADA did not. The absorption of doughs containing 20 GU of glucose oxidase (source of hydrogen peroxide) could be increased by ≈5% without altering the rheological properties. Presumably, the mobility of water in the gel formed by oxidative gelation decreased, thereby causing a drying of the dough.  相似文献   

17.
The effect of added fat content on the rheological properties of wheat flour doughs was determined for three different added fat contents (2.5, 5.0, and 7.5%) at 25°C using dynamic mechanical analysis (DMA) and stress relaxation (SR) tests. Frequency sweeps indicated that added fat had a plasticizing effect on G′ and G″ in the rubbery region. SR results were parameterized using a Maxwell model and a Williams-Watts (WW) model. The WW model indicated that each dough could be characterized by just two major relaxation modes, while four elements were needed for the Maxwell model. The average relaxation time for the shorter process was <1 sec and was not affected by added fat. However, the average relaxation time for the longer WW process actually increased from 107 to 261 sec with added fat up to 5%, and then decreased again. Taken together, these results suggest that added fat actually delayed the onset of viscous flow, while simultaneously attenuating the short-time elastic properties of the gluten fraction of the dough. Furthermore, rheological testing over a wide time (frequency) scale was needed to observe the effect of added fat on both the short-time elastic and longer-time viscous behavior of these doughs.  相似文献   

18.
《Cereal Chemistry》2017,94(6):970-977
The effects of damaged starch and NaCl (1 and 2% w/w [flour weight]) on the dough handling properties of a wheat flour (Triticum asetivum L. ‘Roblin’) were investigated with rheological and textural methods. Damaged starch levels of the base flour and three remilled flours (using reduction rolls with decreasing gap sizes) were 5.42, 6.23, 7.30, and 8.43%. Rheological measurements on the dough showed that the complex modulus increased and the loss tangent (tan δ) decreased with increasing damaged starch levels in the flour, indicating that greater amounts of damaged starch produced stiffer dough. The base flour produced doughs with the highest creep compliance value (J max), whereas the flour with the most damaged starch deformed the least. Higher levels of salt produced stiffer dough that deformed less, as evident by the higher complex modulus and lower creep compliance, compared with 1% NaCl. Damaged starch overall decreased dough stickiness (N), work of adhesion (N·s), and cohesiveness (mm). Increasing the salt content decreased the stickiness of the doughs. Increasing the damaged starch greatly increased dough extensibility at 1% NaCl. The greater amounts of damaged starch in the remilled flour mitigated some of the negative effects of reducing the salt content on the dough machinability.  相似文献   

19.
Understanding the relationship between basic and applied rheological parameters and the contribution of wheat flour protein content and composition in defining these parameters requires information on the roles of individual flour protein components. The high molecular weight glutenin subunit (HMW‐GS) proteins are major contributors to dough strength and stability. This study focused on eight homozygous wheat lines derived from the bread wheat cvs. Olympic and Gabo with systematic deletions at each of three HMW‐GS encoding gene loci, Glu‐A1, Glu‐B1, and Glu‐D1. Flour protein levels were adjusted to a constant 9% by adding starch. Functionality of the flours was characterized by small‐scale methods (2‐g mixograph, microextension tester). End‐use quality was evaluated by 2‐g microbaking and 10‐g noodle‐making procedures. In this sample set, the Glu‐D1 HMW‐GS (5+10) made a significantly larger contribution to dough properties than HMW‐GS coded by Glu‐B1 (17+18), while subunit 1 coded by Glu‐A1 made the smallest contribution to functionality. These differences remained after removing variations in glutenin‐to‐gliadin ratio. Correlations showed that both basic rheological characteristics and protein size distributions of these flours were good predictors of several applied rheological and end‐use quality tests.  相似文献   

20.
Gluten aggregation properties were investigated by means of the GlutoPeak device, a viscometer recently proposed as a rapid and sensitive test for measurement of wheat flour technological performance. In this study, 62 soft wheat flour samples of different quality and end use were utilized to evaluate if the GlutoPeak parameters could adequately predict chemical and rheological characteristics of soft wheat flour dough, that is, protein content measured by the Kjeldahl method, dough strength measured by a Chopin alveograph, and dough stability and water absorption measured by a Brabender farinograph. Linear correlation analysis showed that most GlutoPeak curve parameters were strongly correlated with protein content, dough strength, and water absorption. The statistical models, obtained by a stepwise multiple regression method, showed the GlutoPeak device to be a promising tool to characterize wheat flour (Radj2 = 0.84 for protein content, Radj2 = 0.71 for dough strength, and Radj2 = 0.67 for water absorption). The rather high accuracy of the prediction models for the three mentioned parameters confirmed that GlutoPeak parameters are well correlated with other frequently used flour quality parameters and are able to describe flour technological performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号