首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The purpose of this study was to investigate how wheat cultivar, growth location, type of mill, LMW sugar composition of wheat flours, mixing time, and type of mixer affected yeast fermentation. Also studied was the effect of yeast fermentation and LMW sugar composition on hearth bread quality. To achieve this, 36 different flours were produced from two different mills using six different wheat cultivars grown at three locations. Yeast fermentation in doughs, measured as gas production, was determined using realtime pressure measurements and GasSmart software. A short mixograph mixing or spatula mixing was not efficient enough to rehydrate instant dry yeast. Compressed yeast and a short mixing time were enough to reach maximum fermentation rate. Maximum pressure after 210 min of fermentation was higher for instant dry yeast than for compressed yeast. Wheat cultivar and growth location had a significant effect on LMW sugar composition. Wheat cultivar, growth location, and type of mill used significantly affected pressure curve parameters. Oligosaccharides and damaged starch were positively correlated, and ash content and flour yield were negatively correlated with pressure curve parameters. Hearth bread characteristic crumb structure was positively correlated with all pressure curve characteristics except fast fermentation rate. Increased levels of mono‐ and disaccharides in wheat flour gave hearth breads with a more round shape.  相似文献   

2.
The effect of baking method on folates of rye and wheat breads, as well as the effect of sourdough fermentation of rye, were examined. Sourdough fermentations were performed both with and without added yeast, and samples were taken throughout the baking process. Samples were analyzed microbiologically for their total folate content after trienzyme extraction. Individual folate vitamers were determined by HPLC after affinity chromatographic purification. The lowest folate contents for both rye and wheat breads were found from breads baked without added yeast. Total folate content increased considerably during sourdough fermentation due to increased amounts of 10‐HCO‐H2folate, 5‐CH3‐H4folate, and 5‐HCO‐H4folate. Baker's yeast contributed markedly to the final folate content of bread by synthesizing folates during fermentation. Proofing did not influence total folate content but changes in vitamer distribution were observed. Folate losses in baking were ≈25%. The variety of sourdoughs and baking processes obviously lead to great variation in folate content of rye breads. The possibilities to enhance natural folate content of rye bread by improving folate retention in technological processes and by screening and combining suitable yeasts and lactic acid bacteria should be further investigated.  相似文献   

3.
The influence of bran particle size on bread‐baking quality of whole grain wheat flour (WWF) and starch retrogradation was studied. Higher water absorption of dough prepared from WWF with added gluten to attain 18% protein was observed for WWFs of fine bran than those of coarse bran, whereas no significant difference in dough mixing time was detected for WWFs of varying bran particle size. The effects of bran particle size on loaf volume of WWF bread and crumb firmness during storage were more evident in hard white wheat than in hard red wheat. A greater degree of starch retrogradation in bread crumb stored for seven days at 4°C was observed in WWFs of fine bran than those of coarse bran. The gels prepared from starch–fine bran blends were harder than those prepared from starch–unground bran blends when stored for one and seven days at 4°C. Furthermore, a greater degree of starch retrogradation was observed in gelatinized starch containing fine bran than that containing unground bran after storage for seven days at 4°C. It is probable that finely ground bran takes away more water from gelatinized starch than coarsely ground bran, increasing the extent of starch retrogradation in bread and gels during storage.  相似文献   

4.
Flours obtained by a specific polishing process were used to prepare sourdough and bread. Three fractions designated C‐1 (100–90%), C‐5 (60–50%), and C‐8 (30–0%) were studied. The pH, total titratable acidity levels, and buffering capacity of sourdoughs made from polished flours were significantly different from those of the control sourdough with No. 1 Canada Western Red Spring (CW), and they provided sourdough breads with better qualities than that of CW. The growth of lactic acid bacteria and yeast in polished flour sourdoughs were significantly accelerated during fermentation over that in CW sourdough. Higher maturation of polished flour sourdoughs softened the hardness of mixed dough. The intricate network of honeycomb structure gluten and uneven surface of starch granules were distinctly observed in SEM images. Substitutions of C‐5 or C‐8 sourdoughs for CW significantly increased the loaf volume and softened breadcrumbs more than CW sourdough. Flour qualities of polished flours such as suitable acidity and good buffering capacity caused by the bran fraction were effective for better growth and longer life of yeast in the dough during fermentation. Therefore, application of polished flours in sourdough bread would improve rheological properties of dough and bread as compared with CW sourdough.  相似文献   

5.
Free asparagine is an important precursor for acrylamide in cereal products. The content of free asparagine was determined in 11 milling fractions from wheat and rye. Whole grain wheat flour contained 0.5 g/kg and whole grain rye flour 1.1 g/kg. The lowest content was found in sifted wheat flour (0.2 g/kg). Wheat germ had the highest content (4.9 g/kg). Fermentation (baker's yeast or baker's yeast and sourdough) of doughs made with the different milling fractions was performed to investigate whether the content of free asparagine was reduced by this process. In general, most of the asparagine was utilized after 2 hr of fermentation with yeast. Sourdough fermentation, on the other hand, did not reduce the content of free asparagineas efficiently but had a strong negative impact on asparagine utilization by yeast. This indicates that this type of fermentation may result in breads with higher acrylamide content than in breads fermented with yeast only. The effect of fermentation time on acrylamide formation inyeast‐leavened bread was studied in a model system. Doughs (sifted wheat flour with whole grain wheat flour or rye bran) were fermented for a short (15+15 min) or a long time (180+180 min). Compared with short fermentation time, longer fermentation reduced acrylamide content in bread made with whole grain wheat 87%. For breads made with rye bran, the corresponding reduction was 77%. Hence, extensive fermentation with yeast may be one possible way to reduce acrylamide content in bread.  相似文献   

6.
《Cereal Chemistry》2017,94(6):991-1000
Wheat, an important crop in North Dakota and the United States, is often used for bread. Health concerns related to chronic diseases have caused a shift toward consumption of whole wheat bread. There has been some indication that the rate and amount of starch digestibility of whole wheat breads may be lower than for their refined flour counterparts. This research investigated the components of whole wheat bread that may reduce starch digestibility and impact nutritional quality. Six formulations of flour were used, which included two refined flours, two whole wheat flours, and two whole wheat flours with added starch. The starch was added to whole wheat flours to increase the starch level to that of the refined flour so that we can determine whether or not the dilution of the starch in whole wheat bread was a factor in lowering the estimated glycemic index (eGI) of whole wheat bread. White and whole wheat flours and breads were evaluated for chemical composition, baking quality by 1 , and eGI by the Englyst assay. Whole wheat breads had significantly (P < 0.05) higher mineral, protein, arabinoxylan, and phenolic acid contents, as well as significantly (P < 0.05) lower eGI. The starch molecular weight was also significantly (P < 0.05) higher for whole wheat and whole wheat + starch breads compared with white breads. The eGIs of refined flour breads were 93.1 and 92.7, whereas the eGIs of whole wheat and whole wheat + starch breads ranged from 83.5 to 85.1. Overall, several factors in the whole wheat bread composition can be found to affect the quality and starch hydrolysis.  相似文献   

7.
Whole sorghum flour was fermented (a five‐day natural lactic acid fermentation) and dried under forced draught at 60°C, and evaluated for its effect on sorghum and wheat composite bread quality. In comparison with unfermented sorghum flour, fermentation decreased the flour pH from 6.2 to 3.4, decreased total starch and water‐soluble proteins, and increased enzyme‐susceptible starch, total protein, and the in vitro protein digestibility (IVPD). Fermentation and drying did not decrease the pasting temperature of sorghum flour, but slightly increased its peak and final viscosity. In comparison with composite bread dough containing unfermented sorghum flour, fermented and dried sorghum flour decreased the pH of the dough from 5.8 to 4.9, increased bread volume by ≈4%, improved crumb structure, and slightly decreased crumb firmness. IVPD of the composite bread was also improved. Mixing wet fermented sorghum flour directly with wheat flour (sourdough‐type process) further increased loaf volume and weight and reduced crumb firmness, and simplified the breadmaking process. It appears that the low pH of fermented sorghum flour inactivated amylases and increased the viscosity of sorghum flour, thus improving the gas‐holding capacity of sorghum and wheat composite dough. Fermentation of sorghum flour, particularly in a sourdough breadmaking process, appears to have considerable potential for increasing sorghum utilization in bread.  相似文献   

8.
Gluten‐free breads, which are composed of gluten‐free flours, starch, and hydrocolloids, differ from wheat and rye breads in relation to texture, volume, and crumb structure. Moreover, the dietary fiber content is lower compared with wheat or rye breads. Cereal isolates of lactic acid bacteria frequently produce oligo‐ and homopolysaccharides from sucrose, which can improve the nutritional and technological properties of gluten‐free breads as prebiotic carbohydrates and hydrocolloids, respectively. Sorghum sourdough was fermented with Lactobacillus reuteri LTH5448 or Weissella cibaria 10M, which synthesize fructooligosaccharides (FOS) and levan, and isomaltooligosaccharides and dextran, respectively. The gluten‐free bread was produced with 14% sourdough addition. L. reuteri LTH5448 formed FOS and 1.5 g of levan/kg DM in quinoa sourdoughs. FOS were digested by the baker's yeast during proofing, and the levan could be qualitatively detected in the bread. W. cibaria 10M produced >60 g of isomaltooligosaccharides/kg DM and 0.6 g of dextran/kg DM, which could still be detected in the bread. Breads prepared with W. cibaria 10M were less firm compared with breads prepared with L. reuteri LTH5448 or a FOS and levan‐negative mutant of L. reuteri LTH5448. The addition of sourdoughs fermented with oligo‐ and polysaccharide forming starter cultures can increase the content of prebiotic oligosaccharides in gluten‐free breads.  相似文献   

9.
The effects of amylose content on thermal properties of starches, dough rheology, and bread staling were investigated using starch of waxy and regular wheat genotypes. As the amylose content of starch blends decreased from 24 to 0%, the gelatinization enthalpy increased from 10.5 to 15.3 J/g and retrogradation enthalpy after 96 hr of storage at 4°C decreased from 2.2 to 0 J/g. Mixograph water absorption of starch and gluten blends increased as the amylose content decreased. Generally, lower rheofermentometer dough height, higher gas production, and a lower gas retention coefficient were observed in starch and gluten blends with 12 or 18% amylose content compared with the regular starch and gluten blend. Bread baked from starch and gluten blends exhibited a more porous crumb structure with increased loaf volume as amylose content in the starch decreased. Bread from starch and gluten blends with amylose content of 19.2–21.6% exhibited similar crumb structure to that of bread with regular wheat starch which contained 24% amylose. Crumb moisture content was similar at 5 hr after baking but higher in bread with waxy starch than in bread without waxy starch after seven days of storage at 4°C. Bread with 10% waxy wheat starch exhibited lower crumb hardness values compared with bread without waxy wheat starch. Higher retrogradation enthalpy values were observed in breads containing waxy wheat starch (4.56 J/g at 18% amylose and 5.43 J/g at 12% amylose) compared with breads containing regular wheat starch (3.82 J/g at 24% amylose).  相似文献   

10.
This work was designed to compare the effects of different leavens (yeast, sourdough, and a mixture of both) on phytic acid (PA) degradation and to assess the repercussions of PA breakdown on phosphorus and magnesium solubility during bread-making. Sourdough fermentation was more efficient than yeast fermentation in reducing the phytate content in whole wheat bread (-62 and -38%, respectively). Furthermore, lactic acid bacteria present in sourdough enhanced acidification, leading to increased magnesium and phosphorus solubility. To intensify phytate breakdown, bran was incubated with microorganisms (yeast or sourdough) before bread-making. Using this new method, the percentage of phytate breakdown was near 90%, whereas 40% of phytate remained in traditional French bread. In conclusion, a prolonged fermentation with sourdough still leads to improved Mg and P solubility by decreasing phytate content and through acidification.  相似文献   

11.
The objective of this study was to test whether sourdough could improve quality and delay staling of gluten-free (GF) bread. Three strains of lactic acid bacteria used were Lactobacillus plantarum 2115KW, L. plantarum FST 1.11, and L. sanfranciscensis TMW 1.52, and these were subsequently compared with nonacidified control and chemically acidified sourdoughs, batters, and GF breads. Bread characteristics such as pH, total titratable acidity, and crumb hardness (five-day storage) were evaluated. Extrusion (texture analyzer) measurements showed that the sourdoughs became significantly softer during 24 hr of fermentation (P < 0.001). Both LP 2115KW and LP FST 1.11 strains grew better and produced more acid than LS 1.52. Confocal laser-scanning microscopy also revealed a breakdown in the structure of the sourdoughs over time. Crumb hardness increased significantly for all breads (P < 0.05). After five days of storage, two strains yielded significantly softer bread than the nonacidified control (P < 0.05). This was in distinct contrast to the chemically acidified control that at day 5 was significantly firmer than all other breads (P < 0.05). It was concluded that sourdough improves the delay in staling of GF bread, although the positive effects were smaller than those found in wheat bread.  相似文献   

12.
The effect of various sourdoughs and additives on bread firmness and staling was studied. Compared to the bread produced with Saccharomyces cerevisiae 141, the chemical acidification of dough fermented by S. cerevisiae 141 or the use of sourdoughs increased the volume of the breads. Only sourdough fermentation was effective in delaying starch retrogradation. The effect depended on the level of acidification and on the lactic acid bacteria strain. The effect of sourdough made of S. cerevisiae 141-Lactobacillus sanfranciscensis 57-Lactobacillus plantarum 13 was improved when fungal alpha-amylase or amylolytic strains such as L. amylovorus CNBL1008 or engineered L. sanfranciscensis CB1 Amy were added. When pentosans or pentosans, endoxylanase enzyme, and L. hilgardii S32 were added to the same sourdough, a greater delay of the bread firmness and staling was found. When pentosans were in part hydrolyzed by the endoxylanase enzyme, the bread also had the highest titratable acidity, due to the fermentation of pentoses by L. hilgardii S32. The addition of the bacterial protease to the sourdough increased the bread firmness and staling.  相似文献   

13.
Zinc and aluminum ions as chloride or sulfate salts at 50–500 ppm metal ion (flour basis) had no detrimental effect on fermentation of yeastleavened dough. Increased mixing times (≈10–50%) due to addition of aqueous solutions of zinc (250–500 ppm) or aluminum (150–250 ppm) ions to a bread formula was overcome by withholding salt until the final mixing stage. Breads made from commercial flours (12.5% protein) containing zinc (250–500 ppm) or aluminum (150–250 ppm) ions and no oxidant had improved loaf volume and crumb grain when compared with control bread, and no off-taste. Additionally, breads with added zinc or aluminum had better crumb grains and slower firming rates when compared with breads containing optimum l -ascorbic acid (50 ppm) or potassium bromate (20 ppm). Breads made from commercial flours (11.1% protein) and three laboratory flours (11.4–13.6% protein) containing zinc (250 ppm) or aluminum (150 ppm) ions also had improved loaf volumes and crumb grains. Zinc or aluminum ions in combination with l -ascorbic acid, but not potassium bromate, had a detrimental effect on bread quality. Scanning electron microscopy of freeze-dried bread doughs revealed that zinc and aluminum ions enhanced the film-coating property of gluten. One serving (one slice, 28 g) of bread made with 250 ppm zinc ion would provide 25% of the adult recommended dietary allowance of zinc.  相似文献   

14.
Stress relaxation in the wall of a gas bubble, as measured by the alveograph, was used to study surface tension at the gas-dough interface of doughs from flours producing differing bread crumb grains. The surface tensions in the various wheat flour doughs were not different. Dough rheological properties, as measured by both dynamic oscillatory rheometry and lubricated uniaxial compression, were not different for doughs made from wheat flours that gave breads with different crumb grains. However, when the effect of starch granule size on gas cell wall stability was tested, the presence of a greater proportion of large starch granules in wheat flour dough was sufficient to result in gas cell coalescence and open crumb grain in the final baked product. This suggests that starch granule size is at least one of the factors that affects the crumb grain of bread.  相似文献   

15.
Effect of freezing and frozen storage of doughs on bread quality   总被引:3,自引:0,他引:3  
The effects of freezing and storage in frozen conditions on bread quality, crumb properties, and aggregative behavior of glutenins were analyzed. The effect of different additives on bread quality was also studied. The results obtained showed that freezing and storage at -18 degrees C decreased the bread quality. Samples stored in frozen conditions supplemented with diacetyl-tartaric acid ester of monoglycerides, gluten, and guar gum produced breads of greater volume and more open crumb structure than those prepared with the base formulation (without additives). All additives analyzed increased the proof time. Crumb firmness increased with dough frozen storage and bread aging time at 4 degrees C. A decrease in the amount of glutenin subunits of high molecular mass was observed by electrophoresis analysis of the SDS-soluble proteins aggregates extracted from the frozen dough. This result suggested that the protein matrix of bread underwent depolymerization during storage in frozen conditions.  相似文献   

16.
17.
One commercial bread wheat flour with medium strength (11.3% protein content, 14% mb) was fractionated into starch, gluten, and water solubles by hand‐washing. The starch fraction was separated further into large and small granules by repeated sedimentation. Large (10–40 μm diameter) and small (1–15 μm diameter) starch fractions were examined. Flour fractions were reconstituted to original levels in the flour using composites of varying weight percentages of starch granules: 0% small granules (100% large granules), 30, 60, and 100% (0% large granules). A modified straight‐dough method was used in an experimental baking test. Crumb grain and texture were significantly affected. The bread made from the reconstituted flour with 30% small granules and 70% large granules starch had the highest crumb grain score (4.0, subjective method), the highest peak fineness value (1,029), and the second‐highest elongation ratio (1.55). Inferior crumb grain scores and low fineness and elongation ratios were observed in breads made from flours with starch fractions with 100% small granules or 100% large granules. As the proportion of small granules increased in the reconstituted flour, it yielded bread with softer texture that was better maintained than the bread made from the reconstituted reference flour during storage.  相似文献   

18.
The effect of addition of flours from the highly nutritious Andean crops quinoa (Chenopodium quinoa), kañiwa (Chenopodium pallidicaule), kiwicha (Amaranthus caudatus), and tarwi (Lupinus mutabilis) has been investigated in wheat doughs and fresh bread quality. The thermomechanical profile of wheat doughs and bread quality has been explored by increasing substitution of wheat flour at 0–100% by Andean crop flours. Dough blends were evaluated using the Chopin Mixolab device, whereas bread quality assessment comprised sensory (overall acceptability) and physicochemical (moisture, specific volume, texture, color) determinations in composite breads. In general, no breads with aerated crumb structure could be obtained from 100% Andean crop flours, with the exception of quinoa breads that had overall sensory values about half a completely perfect score, and which were not significantly different from the breads made from a 50:50 blend of wheat and quinoa. Replacement of wheat flour by ≤12.5% (tarwi), 25% (kañiwa), and 50% (kiwicha), respectively, still produced breads with good sensory acceptability but variable color and doughs with acceptable thermomechanical patterns. Partial substitution of wheat flour by Andean crop flours constitutes a viable option to improve the nutritional value of the breads, with acceptable technological performance of dough blends and composite breads.  相似文献   

19.
Barley is rich in nutritionally positive compounds, but the quality of bread made of wheat–barley composite flours is impaired when a high percentage of barley is used in the mixture. A number of enzymes have been reported to be useful additives in breadmaking. However, the effect of β‐glucanase on breadmaking has scarcely been investigated. In this paper, the influence of different levels (0.02, 0.04, 0.06, and 0.08%, based on composite flour) of β‐glucanase (100,000 U/g) on the properties of dough and bread from 70% wheat, 30% barley composite flour were studied. Although dough development time, dough stability, and protein weakening value decreased after β‐glucanase addition, dough properties such as softness and elasticity as well as bread microstructure were improved compared with the control dough. β‐Glucanase also significantly improved the volume, texture, and shelf life of wheat–barley composite breads. The use of an optimal enzyme concentration (0.04%) increased specific volume (57.5%) and springiness (21%), and it reduced crumb firmness (74%) and staling rate. Bread with added β‐glucanase had a better taste, softness, and overall acceptability of sensory characteristics compared with the control bread. Moreover, the quality of wheat–barley composite bread after addition of 0.04% β‐glucanase was nearly equal to the quality of pure wheat bread. These results indicate that dough rheological characteristics and bread quality of wheat–barley composite flour can be improved by adding a distinct level of β‐glucanase.  相似文献   

20.
The possible use of phytase as a breadmaking improver has been tested in whole wheat breads by adding different amounts of fungal phytase. The effect of phytase addition on the fermentation stage and the final bread quality was analyzed. The phytase addition shortened the fermentation period, without affecting the bread dough pH. Regarding the whole wheat bread, a considerable increase of the specific bread volume, an improvement of the crumb texture, and the width/height ratio of the bread slice were obtained. An in vitro assay revealed that the improving effect of phytase on breadmaking might be associated with the activation of alpha-amylase, due to the release of calcium ions from calcium-phytate complexes promoted by phytase activity. As a conclusion, phytase offers excellent possibilities as a breadmaking improver, with two main advantages: first, the nutritional improvement produced by decreasing phytate content, and second, all the benefits produced by alpha-amylase addition can be obtained by adding phytase, which promotes the activation of endogenous alpha-amylase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号