共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of the present study was to investigate effects of debranching, autoclaving‐storing cycles, and drying processes (oven‐drying or freeze‐drying) on RS contents, thermal, pasting, and functional properties of high‐amylose maize starches (Hylon V and Hylon VII). The resistant starch (RS) contents increased (≤57.8%) with increasing autoclaving‐storing cycles. RS contents of oven‐dried samples were higher than those of freeze‐dried samples due to ongoing retrogradation of starch during oven drying at 50°C. Debranching caused a significant decrease in peak transition temperature and enthalpy values as compared with native starches. Solubility and water binding values of RS preparations were higher than those of native starches. Addition of native and autoclaved samples had improving effect on emulsion properties of albumin. Cold viscosity values of oven‐dried samples were lower as compared with freeze‐dried samples; this might be due to higher number of H‐bonds in the oven‐dried samples expected to be formed during drying. Debranching and autoclaving‐storing cycles caused decreases in peak, breakdown, and final viscosity values. The results of present study showed that debranching and heat treatments increased the RS contents and improved the functional properties of high‐amylose maize starches. 相似文献
2.
Effect of Partial Acid Hydrolysis and Heat‐Moisture Treatment on Formation of Resistant Tuber Starch
Structural characteristics of resistant starch (RS) were investigated. Tuber starches, hydrolyzed with 1N HCl at 35°C for 8 hr followed by autoclaving‐cooling treatment, were heated at 100°C for 16 hr after adjusting the moisture content to 20 or 30%. RS content of the tuber starches ranged from 5.4 to 22.7% depending on the source and type of treatment. Gelatinization parameters of RS isolated from partially acid‐hydrolyzed starch with autoclaving‐cooling followed by heat‐moisture treatment (HMT) showed higher enthalpy (ΔH) values and lower peak temperature (Tp) compared with non‐acid‐hydrolyzed RS. R values, the difference between completion and initial temperatures, and ΔH of RS increased by HMT. The X‐ray diffraction patterns of potato and sweet potato RS isolated from partially acid‐hydrolyzed starch with autoclaving‐cooling showed distinct sharp peaks at 15, 25, 27, and 28°, which decreased by HMT. 相似文献
3.
High‐amylose wheat flour was used to substitute for normal wheat flour in breadmaking and formation of resistant starch (RS) in bread during storage was determined. Substitution with high‐amylose wheat flour (HAF) decreased peak and final viscosities, breakdown, and setback. Doughs with HAF substitutions were weaker and less elastic, and absorbed more water than those of the normal wheat flour. After baking, RS contents in breads with 10, 30, and 50% HAF substitutions were 1.6, 2.6, and 3.0% (db), respectively, higher than that of the control (0.9%, db). The levels of RS increased gradually during storage for one, three, and five days. With substitutions of 30 and 50% HAF, the total levels of dietary fiber (DF) and RS in bread after five days of storage were 15.5 and 16.8% (db), respectively, as compared to 13.0% (db) in bread from the normal wheat flour. The loaf volumes and appearances of bread crumbs made from HAF substitutions of 10 and 30% were not significantly different from those of the control, whereas the substitution with 50% HAF decreased loaf volume and resulted in inferior appearance of breadcrumbs. The firmness of breadcrumbs increased along with increase in the level of HAF substitutions after baking. During storage, the firmness of breadcrumb with 10% HAF substitutions was higher than that of the control, whereas breads with 30 and 50% HAF substitutions had similar firmness to the control. As a result, HAF might be used to substitute for up to 50% normal wheat flour to make bread with acceptable bread quality and significantly high amount of RS. 相似文献
4.
A high‐amylose, non‐floury corn, a floury corn, and a 1:1 blend were made into masa and then tortillas. The masa flour made with the high‐amylose corn had a greater amount of resistant starch (RS 28.8%) and a greater amount of total dietary fiber (TDF 42.1%) than that with the floury corn (RS 2.9%, TDF 9.6%), producing a high‐fiber tortilla. The masa was evaluated for pasting properties using a Rapid ViscoAnalyser (RVA). The high‐amylose masa slurry gelatinized little at 95°C. The floury masa had the greatest peak viscosity, whereas the 1:1 blend was intermediate in value. Sensory evaluations of the tortillas for the textural attributes showed the floury tortillas to be chewier, more rollable, and grittier than the high‐amylose tortillas, whereas the blend tortillas were intermediate for most attributes. The cutting force of the high‐amylose tortillas, measured on a texture analyzer, was very low; the blend and floury tortillas required more force. Chewiness was correlated to rollability (r = 0.99, P = 0.05). The %RS and %TDF were correlated to rollability (r = –0.99), and cutting force (r = 0.99). The floury and blend tortillas had firm textures expected of desirable tortillas, whereas the high‐amylose tortillas broke under little force, and would not roll. The high‐amylose tortillas had high amounts of RS and TDF but poor texture. The blend tortillas retained most floury tortilla textural properties, making them suitable products for consumer use. 相似文献
5.
In this study, 3% aqueous high‐amylose maize starch (Hylon VII) dispersions were heated to temperatures of 140–165°C. The onset and rate of gel formation was observed using a small‐strain oscillation rheometer as a function of temperature from 90 to 25°C. The gel formation clearly began earlier in high‐amylose starch paste preheated at lower temperatures, but the rate of gelation was slower and the resulting gel was weaker in comparison with starch pastes preheated at higher temperatures. In addition, the structure of the final gels was studied using large deformation compression measurements. The most rigid gel structure on the basis of small and large deformation tests was obtained for high‐amylose starch gel preheated to 150–152°C, depending on the type of measurement. The rate of gelation was also fastest in that temperature range. High‐amylose gels heated to higher temperatures lost their rigidity. The molecular weight distribution of starch molecules was measured by size‐exclusion chromatography. Heating caused extensive degradation of amylopectin, which had a great effect on amylose gel formation and the final gel properties of high‐amylose maize starch. Micrographs of Hylon VII gels showed that phase separation of starch components visible in light microscopy occurred on heating to higher temperatures. 相似文献
6.
Starch nanoparticles (SNP) from maize starches of varying amylose content (0–71%) were prepared by acid hydrolysis (3.16M H2SO4, at 40°C up to 6 days) followed by repeated water washings. During the washing cycles, nonwaxy starches (normal, Hylon V, and Hylon VII) had suspended particles in the water washings, which were not evident in waxy starch. Microscopic examination revealed the presence of SNP in the “cloudy supernatants” of nonwaxy starches and in the “final washed residue” of waxy maize. The objective of this study was to collect SNP fractions accordingly and determine whether variation in the native starch amylose content would influence the yield, morphology, and crystallinity of the SNP. In nonwaxy starches, the yield of SNP increased up to 26.6% with hydrolysis time and was proportional to the amylose content. Morphology of SNP differed with starch type: flat/elliptical (500 nm) in waxy, oval/irregular (50–200 nm) in normal, oval/round (40–50 nm) in Hylon V, and square/polygonal (50–100 nm) in Hylon VII. X‐ray diffraction confirmed the presence of A‐type crystals in SNP from all starch types and a crystalline transformation from B‐ to A‐type in Hylon starches. The relative crystallinity of SNP was higher than their native starch counterparts. 相似文献
7.
High‐amylose (80%) corn starch was modified by hydroxypropylation with different molar substitution (MS). The unique microstructure of high‐amylose starch keeps its granules intact after hydroxypropylation. However, the microstructures and thermal properties strongly depend on the MS of hydroxypropylation. With increasing MS, the granule size was increased, which is partly due to disrupted granule structure, particularly in the amorphous region. Unlike normal starch, the modified high‐amylose corn starch showed a narrow gelatinization range measured by differential scanning calorimetry (DSC), which can be explained by destruction of amylose‐lipid complex. Internal microstructures and morphologies of hydroxypropylated starch were investigated using confocal laser scanning microscopy and to further explore the mechanism of chemical reaction and phase transitions. 相似文献
8.
Type III resistant starch (RS) is understood to be due to the ordered structure formation in the process of retrogradation. Most treatments of granular high‐amylose maize starch (HAMS) do not completely eliminate the original ordered structure. We hypothesized that residual ordered structure would constrain subsequent physical reassociation of chains and the formation of RS. The objective was to generate differences in enzyme susceptibility using two means of precipitation of fully dispersed starch and to relate differences in enzyme susceptibility to the structure of the precipitates. Dispersions in sodium hydroxide were precipitated either with ethanol or ammonium sulfate. RS and the timecourse of digestion were determined. Crystallinity and helicity were estimated using wide‐angle X‐ray diffraction and solid‐state 13C CP/MAS NMR, respectively. Precipitation of whole starch with ethanol led to lower RS values (≈24%) than precipitation with ammonium sulfate (≈39%) and also to higher reaction rate constants for an early component of digestion. Ethanol precipitation of a branched starch fraction gave essentially no RS, whereas ammonium sulfate precipitation of the same branched material had >20% RS. Ethanol precipitates contained single helices, in most but not all cases, contributing to V‐type crystallinity. Ammonium sulfate precipitates had double helices contributing to B‐type crystallinity. 相似文献
9.
Lai Ming Tam Harold Corke Wilson T. Tan Jiansheng Li Lilia S. Collado 《Cereal Chemistry》2004,81(4):475-480
Maize starches extracted from selected maize cultivars with 0.2–60.8% amylose contents were used to produce bihon-type noodles. Starch dough using a pregelatinized starch binder was prepared and extruded through a laboratory-scale extruder simulating the traditional process of making bihon in the Philippines. The normal maize starches with amylose content of ≈28% were successfully used for bihon-type noodle production, but waxy maize starches with 0.2–3.8% amylose content and high-amylose maize starches with 40.0–60.8% amylose content failed to produce bihon-type noodles. Viscoamylograph profile parameters and swelling volume are significantly correlated to amylose content of maize starch samples evaluated. These physicochemical properties may be used to indicate that the starch samples at normal amylose levels may be used for bihon-type noodles. Starch noodles produced in the laboratory were not significantly different in terms of either cooking quality or textural properties from two commercially produced maize noodle samples, except for adhesiveness. The laboratory process and fabricated extruder can be used to produce bihon-type noodles. 相似文献
10.
Recovering starch from barley is problematic typically due to interference from β‐glucan (the soluble fiber component), which becomes highly viscous in aqueous solution. Dry fractionation techniques tend to be inefficient and often result in low yields. Recently, a protocol was developed in our laboratory for recovering β‐glucan from barley in which sieving whole barley flour in a semiaqueous (50% ethanol) medium allowed separation of the starch and fiber fractions without activating the viscosity of the β‐glucan. In this report, we investigate an aqueous method which further purifies the crude starch component recovered from this process. Six hulless barley (HB) cultivars representing two each of waxy, regular, and high‐amylose cultivars were fractionated into primarily starch, fiber, and protein components. Starch isolates primarily had large granules with high purity (>98%) and yield range was 22–39% (flour dry weight basis). More importantly, the β‐glucan extraction efficiency was 77–90%, meaning that it was well separated from the starch component during processing. Physicochemical evaluation of the starch isolates, which were mainly composed of large granules, showed properties that are typical of the barley genotypes. 相似文献
11.
High‐amylose starch acetate (DS 2) was processed in a Brabender twin‐screw extruder with ethanol and isopropanol as blowing agents at concentrations of 0, 2, 5, 10, 15, and 25%. A constant temperature of 150°C, a constant screw speed of 140 rpm, and a die nozzle with diameter of 4.0 mm and length of 16.2 mm were used to study the role of blowing agents on the expansion of the extrudates. Extrudates without blowing agent shrunk considerably after exiting the die as the cells collapsed drastically after expansion. Stable radial expansion of the extrudates increased with increase in the ethanol concentration to an optimum value of 18.0 at 5% (db) ethanol concentration and decreased with further increase in the ethanol concentration. Stable radial expansion increased to a maximum of 17.0 as the concentration of isopropanol was increased to 25% (db), though the rate of increase in expansion decreased with the increase in isopropanol concentration >10%. Flashing off of blowing agents aided in removing the heat generated during extrusion. The faster the extrudate cooled, the less likely it was to shrink. SEM were used to observe the effects of concentration of blowing agents on cell morphology. Various phenomena involved during the expansion are discussed. To obtain an extrudate with high expansion and low density, isopropanol at 15–25% (db) was found most suitable in this study. 相似文献
12.
《Cereal Chemistry》2017,94(2):262-269
The molecular size distribution of maize starch nanoparticles (SNP) prepared by acid hydrolysis (3.16M H2SO4) and their amylase‐resistant counterparts, before and after debranching, was investigated. The weight average molecular weight (Mw) and linear chain length distribution were determined by high‐performance size‐exclusion chromatography (HPSEC) and high‐performance anion‐exchange chromatography (HPAEC), respectively. The objective was to understand the role of amylose involvement in the formation of SNP showing different crystalline structures (A‐ and B‐types). The HPSEC profiles of SNP before debranching from waxy, normal, and high‐amylose maize starches showed broad monomodal peaks. Debranched SNP from waxy maize eluted in a single narrow peak, whereas those from nonwaxy starches showed a multimodal distribution. Similar trends were also observed for the chain length distribution patterns, for which the longest detectable chains (degree of polymerization [DP] 31) in waxy maize were significantly lower than those of nonwaxy maize starches (DP 55–59). This indicated the potential amylose involvement in the SNP structure of normal and high‐amylose starches. Further evidence of amylose involvement was ascribed to the resistance of SNP toward amylolysis (Hylon VII > Hylon V > normal > waxy). The amylase‐resistant residues of SNP from high‐amylose maize starches were composed of both low Mw linear and branched chains. 相似文献
13.
High‐amylose corn starch was cooked in an excess‐steam jet cooker in the presence of 5% oleic or palmitic acid, based on amylose. The cooked product was rapidly cooled in an ice bath and then freeze‐dried or drum‐dried. Amylose was removed from solution by forming helical inclusion complexes with the fatty acid, and the inclusion complexes formed submicron spherical particles upon cooling. The dried material was reconstituted to form a paste that exhibited gel‐like properties upon standing, but that flowed readily when shear was applied. The rheological properties of these pastes were measured to determine the effects on the flow properties of 1) the solids concentration in the reconstituted paste, 2) the method of sample drying and reconstitution, and 3) the fatty acid used. The materials were very spreadable, and at the highest concentrations their flow properties were similar to a commercial shortening. The pasting properties of the dried solids were also examined. 相似文献
14.
Rice starches of long grain and waxy cultivars were annealed (ANN) in excess water at 50°C for 4 hr. They were also modified under heat-moisture treatment (HMT) conditions at 110°C with various moisture contents (20, 30, and 40%) for 8 hr. The modified products were analyzed by rapid-viscosity analysis (RVA), differential scanning calorimetry (DSC), and X-ray diffraction (XRD). Generally, these hydrothermal treatments altered the pasting and gelling properties of rice starch, resulting in lower viscosity peak heights, lower setbacks, and greater swelling consistency. The modified starch showed increased gelatinization temperatures and narrower gelatinization temperature ranges on ANN or broader ones on HMT. The effects were more pronounced for HMT than for ANN. Also, the typical A-type XRD pattern for rice starch remained unchanged after ANN or HMT at low moisture contents, and the amorphous content increased after HMT at 40% moisture content. 相似文献
15.
Native and processed high‐amylose maize starch (HAMS) is an important source of resistant starch (RS). The objectives of this work were to use an in vitro procedure to estimate the RS content of native granules from a series of ae‐containing HAMS genotypes, and to examine the nature of the α‐amylase resistant starch (ARS). By the method of Englyst et al (1992), RS for ae V, ae VII, ae su2, and ae du were estimated to be 66.0, 69.5, 69.5, and 40.6%, respectively. By transmission electron microscopy, most of the residual granules from ae V, ae VII, and ae su2 showed little evidence of digestion. Partially digested granules had a radial digestion pattern in the interior and an enzyme‐resistant layer near the surface. Size and chain‐length profile of constituents of ARS were similar to those of the native HAMS (unlike type 3 RS), consistent with complete hydrolysis in susceptible granule regions. Between crossed polarizers, many iodine‐stained native and residual HAMS granules had blue centers and pink exteriors, which may be due to a difference in orientation of the amylose‐iodine complexes in the exterior. Four granule color types were observed for ae du, differing in enzyme resistance. The high‐enzyme resistance of native HAMS granules may result from altered granule organization, which appears to vary among and within granules from ae‐containing genotypes. 相似文献
16.
17.
The structure and physicochemical properties of waxy, common, and high‐amylose corn starch phosphates prepared by oven heating were studied. Starch phosphates prepared by either slurry or dry‐mixing treatment before oven heating were also compared. The slurry treatment more efficiently incorporated phosphorus into starch relative to the dry‐mixing treatment under the reaction conditions studied. In general, the phosphorylated starch prepared by the slurry treatment exhibited a lower gelatinization temperature, a higher peak viscosity, a lesser degree of retrogradation, and improved freeze‐thaw stability compared with those prepared by the dry‐mixing treatment. Phosphorylation occurred probably in both amylose and amylopectin, and the amount and location of incorporated phosphate groups varied with starch types likely due to their different amylose and amylopectin contents. Waxy starch was more prone to phosphorylation, followed by common and high‐amylose starches, respectively. 相似文献
18.
Naofumi Morita Tomoko Maeda Megumi Miyazaki Makoto Yamamori Hideho Miura Ichiro Ohtsuka 《Cereal Chemistry》2002,79(4):491-495
The dough properties and baking qualities of a novel high‐amylose wheat flour (HAWF) and a waxy wheat flour (WWF) (both Triticum aestivum L.) were investigated by comparing them with common wheat flours. HAWF and WWF had more dietary fiber than Chinese Spring flour (CSF), a nonwaxy wheat flour. Also, HAWF contained larger amounts of lipids and proteins than WWF and CSF. There were significant differences in the amylose and amylopectin contents among all samples tested. Farinograph data showed water absorptions of HAWF and WWF were significantly higher than that of CSF, and both flours showed poorer flour qualities than CSF. The dough of WWF was weaker and less stable than that of CSF, whereas HAWF produced a harder and more viscous dough than CSF. Differential scanning calorimetry data showed that starch in HAWF dough gelatinized at a lower temperature in the baking process than the starches in doughs of WWF and CSF. The starch in a WWF suspension had a larger enthalpy of gelatinization than those in HAWF and CSF suspensions. Amylograph data showed that the WWF starch gelatinized faster and had a higher viscosity than that in CSF. The loaves made from WWF and CSF were significantly larger than the loaves made from HAWF. However, the appearance of bread baked with WWF and HAWF was inferior to the appearance of bread baked with CSF. Bread made with WWF became softer than the bread made with CSF after storage, and reheating was more effective in refreshing WWF bread than CSF bread. Moreover, clear differences in dough and bread samples were revealed by scanning electron microscopy. These differences might have some effect on dough and baking qualities. 相似文献
19.
Zhaoqin Wang Haibo Huang Elvira Gonzalez de Mejia Qian Li Vijay Singh 《Cereal Chemistry》2016,93(4):344-351
In the dry‐grind ethanol process, distillers dried grains with solubles (DDGS) is the main coproduct, which is primarily used as an ingredient in ruminant animal diets. Increasing the value of DDGS will improve the profitability of the dry‐grind ethanol process. One way to increase DDGS value is to use pigmented maize as the feedstock for ethanol production. Pigmented maize is rich in anthocyanin content, and the anthocyanin imparts red, blue, and purple color to the grain. It is reported that anthocyanin would be absorbed by yeast cell walls during the fermentation process. The effects of anthocyanin on fermentation characteristics in the dry‐grind process are not known. In this study, the effects of anthocyanin in conventional (conventional starch hydrolyzing enzymes) and modified (granular starch hydrolyzing enzymes [GSHE]) dry‐grind processes were evaluated. The modified process using GSHE replaced high‐temperature liquefaction. The ethanol conversion efficiencies of pigmented maize were comparable to that of yellow dent corn in both conventional (78.4 ± 0.5% for blue maize, 74.3 ± 0.4% for red maize, 81.2 ± 1.0% for purple maize, and 75.1 ± 0.2% for yellow dent corn) and modified dry‐grind processes using GSHE (83.8 ± 0.8% for blue maize, 81.1 ± 0.3% for red maize, 93.5 ± 0.8% for purple maize, and 85.6 ± 0.1% for yellow dent corn). Total anthocyanin content in DDGS from the modified process was 1.4, 1.9, and 2.4 times of that from the conventional process for purple, red, and blue maize samples, respectively. These results indicated that pigmented maize rich in anthocyanin did not negatively affect the fermentation characteristics of the dry‐grind process and that there was a potential to use pigmented maize in the dry‐grind process, especially when using GSHE. 相似文献
20.
Yasushi Yoshimoto Jyunko Tashiro Tadahiro Takenouchi Yasuhito Takeda 《Cereal Chemistry》2000,77(3):279-285
The molecular structure and some physicochemical properties of starches from two high‐amylose cultivars of barley, high‐amylose Glacier A (HAG‐A) and N (HAG‐N), were examined and compared with those of a normal cultivar, Normal Glacier (NG). The true amylose contents of HAG‐A, HAG‐N, and NG were 41.0, 33.4, and 23.0%, respectively. Iodine affinities before and after defatting of starch, and thermograms of differential scanning calorimetry, indicated that HAG‐A and HAG‐N starches had a higher proportion of amylose‐lipid complex than did NG starch. The amylopectins from HAG‐A and HAG‐N were similar to NG amylopectin in average chain length (18–19), β‐amylolysis limit (β‐AL 56–57%), number‐average degrees of polymerization (DPn 6,000–7,500) and chain length distribution. Very long chains (1–2%) were found in amylopectins from all cultivars. HAG‐A amylopectin had a larger amount of phosphorus (214 ppm) than the others. The amyloses from HAG‐A and HAG‐N resembled NG amylose in DPn (950–1,080) and β‐AL (70–74%). However, HAG‐A and HAG‐N had a larger number of chains per molecule (NC 2.4–2.7) than NG amylose (1.8) and contained the branched amylose with a higher NC (9.5–10.6) than that of NG amylose (5.8), although molar fractions of the branched amylose (15–20%) were similar. 相似文献