首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Studies were conducted to compare continuous vs pulsatile i.v. infusion of GnRH on serum gonadotropin concentrations and ovulation in seasonally anestrous mares and in cycling mares. Anestrous mares (Exp. 1) received no treatment (control; n = 3), 2, or 20 micrograms of GnRH/h continuous infusion (CI) (n = 4 and n = 6, respectively), or 20 micrograms of GnRH/h pulsatile infusion (PI) (n = 5). After initiation of GnRH infusion, serum LH levels increased earlier, and to a greater extent, in the PI group than in other groups (P less than .05). In contrast, serum FSH concentrations did not differ among groups. The number of days to development of the first 35-mm follicle was not different among GnRH treatment groups; however, mares receiving PI ovulated on d 9.4 of treatment, 2.8 d earlier than those receiving 20 micrograms of GnRH/h CI (P less than .05). Mares given 2 micrograms of GnRH/h CI failed to ovulate spontaneously after 16 d of treatment, but each one ovulated within 2 to 4 d after injection of 2,000 IU of hCG on d 16. Control mares did not ovulate or show any significant follicular development throughout the experiment. Cycling mares (Exp. 2) received no treatment (control; n = 6), 20 micrograms of GnRH/h CI, or 20 micrograms of GnRH/h PI (n = 4) beginning on d 16 of an estrous cycle (d 0 = day of ovulation). Serum LH concentrations in all groups increased after initiation of treatment; however, on the day of ovulation LH concentrations were lower in the CI group than in the PI or control groups (P less than .05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Estrogen from a growing follicle stimulates the preovulatory surge of luteinizing hormone (LH) while progesterone (P) is known to suppress LH. The possibility exists that administration of P, in the presence of an ovulatory follicle, would sufficiently suppress LH and, therefore, delay ovulation. The objective of this research was to elucidate the potential for oral administration of altrenogest (17-Allyl-17β-hydroxyestra-4,9,11-trien-3-one) to postpone ovulation of a preovulatory follicle (35 mm) for approximately two days. Fourteen light-horse mares, ranging in age from two to 19 years, were randomly assigned to one of three treatments (A-.044 mg/kg BW altrenogest for two days; B-.088 mg/kg BW altrenogest for two days; and C- no altrenogest). Mares began treatment when a 35-mm or greater follicle was observed via real-time transrectal ultrasonography. Both number of days until ovulation and follicular maintenance differed between treated and control mares. Number of days until ovulation was increased (P<.05) for mares in treatment A when compared with the control mares. Follicular diameter maintenance, a measurement of follicular diameter throughout treatment, also increased (P<.05) for mares in treatment A when compared with the control mares. Mean LH concentration was not different between mares treated with altrenogest at either treatment dose when compared with the control mares. Pregnancy rates and embryonic vesicle size change were also measured to determine potential effects of altrenogest administration. No differences (P>.05) were found in either characteristic.Short-term administration of altrenogest increased the number of days to ovulation. Further study is warranted to prove conclusively that altrenogest increases follicular maintenance, alters the preovulatory LH surge, and has no detrimental effects upon reproductive efficiency.  相似文献   

3.
The GnRH antagonist antarelix (Teverelix™) was administered to mares (0.01 mg/kg, i.v., twice a day) during the periovulatory period. In Experiment 1, 20 mares were divided into a treated (A3d−) and a control (Control−) group. A3d− mares received antarelix for 3 days from the day when the dominant follicle (F1) reached 32 mm (D0). In Experiment 2, 10 mares were divided into a treated (A6d+) and a control (Control+) group. A6d+ mares received antarelix for 6 days from D0 and hCG was injected in all animals (1600 IU, i.v.) on D1. Pregnancies were determined 13 days after ovulation. In both experiments, antarelix interrupted or totally abolished the LH surge. In Experiment 1, 5/10 of the A3d− mares (with maximum LH concentrations of 11.6 ng/ml at the beginning of treatment) ovulated at the same time as the Control− mares; the other five mares (with LH concentrations under 5.4 ng/ml) ovulated 13.4±0.6 days later. In Experiment 2, all the A6d+ mares ovulated at the same time as the Control+ mares. In treated mares which ovulated during the treatment, progesterone concentrations and fertility did not differ from control mares. These results demonstrate that in mares: (1) a small elevation of endogenous LH can induce ovulation, (2) ovulation can be postponed approximately 13 days after a 3-day antarelix treatment if initiated just before the preovulatory LH surge, (3) ovulation can be induced by hCG on depressed levels of endogenous LH, (4) the inhibition of the post ovulatory LH surge has no effect either on the corpus luteum or on fertility.  相似文献   

4.
Natural GnRH and its analog have potential for hastening ovulation in mares. A study was conducted to evaluate the efficacy of a GnRH agonist given either as an injectable or s.c. implant for induction of ovulation in mares. Forty-five seasonally anestrous mares (March) were assigned to one of three groups (n = 15/group): 1) untreated controls; 2) i.m. injection of the GnRH agonist buserelin at 12-h intervals (40 micrograms/injection for 28 d or until ovulation) and 3) GnRH agonist administered as a s.c. implant (approximately 100 micrograms/24 h for 28 d). Six mares per group were bled on d 0, 7, 14 and 21 after injection or insertion of implant. Samples were taken at -1, -.5 and 0 h and at .5, 1, 1.5, 2, 4, 6 and 8 h after GnRH. Additional daily samples were drawn for 28 d after injection or until ovulation. Samples were assayed for concentration of LH and FSH. Progesterone concentrations were determined in samples collected on d 4, 6 and 10 after ovulation. Number and size of follicles and detection of ovulation were determined by ultrasonography. Number of mares induced to ovulate within 30 d was 0 of 15, 7 of 15 and 9 of 15 for groups 1, 2 and 3, respectively. During treatment, follicle sizes were smaller for mares in group 3 (implant). The LH response to GnRH agonist (area under curve) was similar among groups at d 0 but was greater (P less than .05) for mares in group 3 on d 7 and 14 and groups 2 and 3 on d 21 than for controls. A similar pattern was detected for peak concentrations of LH after GnRH on d 0, 7, 14 and 21. Daily concentrations of LH remained low in untreated control mares compared with GnRH-treated mares throughout the sampling period. Concentrations of LH for mares in group 3 that ovulated were elevated greatly above those for group 2 mares, whereas concentrations of FSH were similar in both treatment groups prior to ovulation.  相似文献   

5.
Sixteen estrous cycles from 10 cyclic mares were randomly assigned to a control or sulpiride group (n = 8 each). All mares received 1,500 IU of human chorionic gonadotropin (hCG) (hour 0) during estrus with a follicular diameter ≥32 mm. Mares were scanned every 12 hours until ovulation. In the treatment group, beginning at hour 0, each mare received 1.5 mg/kg of sulpiride every 12 hours intra-muscularly until ovulation or formation of a luteinized unruptured follicle (LUF). Concentrations of luteinizing hormone (LH) and prolactin (PRL) were measured by radioimmunoassay. In each group, there were 10 preovulatory follicles for the eight cycles. The ovulation rate (9/10, 90%) was similar in the control and sulpiride groups. Two mares formed an LUF, which was first detected at hours 48 and 72 for the sulpiride and control mares, respectively. The interval from hCG to ovulation was 49.5 ± 11.1 and 43.5 ± 5.8 hours, for the control and sulpiride groups, respectively (P > .5). LH followed the typical preovulatory surge pattern, with no difference between groups (P > .5). Sulpiride administration increased PRL concentration in treated mares at 24 (P < .1), 36, and 48 hours (P < .05) after treatment. In conclusion, sulpiride administration every 12 hours increased PRL concentration in treated mares after 24 hours of the beginning of treatment. However, at this time window and concentration, PRL did not have any effect on ovulation. The control mare that developed an LUF had a PRL concentration similar to other ovulatory control mares (always ≤10 ng/mL).  相似文献   

6.
High concentrations of estrogens in the peripheral circulation during late gestation inhibit synthesis of LH and markedly reduce pituitary content of LH at the end of pregnancy in most domestic species. Because blood concentrations of estrogen peak shortly before mid-gestation in the mare and then gradually decrease until parturition, we hypothesized that pituitary content of LH may increase during late gestation. To test this hypothesis 10 horse mares were challenged with a maximally stimulatory dose (2 micrograms/kg) of GnRH on d 240 and 320 of gestation and d 3 after parturition. A separate group of four mares were treated with GnRH on d 2 or 3 estrus. Blood samples were collected at -2, -1, 0, .25, .5, .75, 1, 1.5, 2, 2.5, 3, 3.5, 4, 5, 6, 7 and 8 h relative to injection of GnRH and serum was analyzed for concentration of LH and FSH. Basal serum concentration and total quantity of LH released after GnRH stimulation (assessed by determining the area under the response curve) were not different on d 240 and 320 of gestation or on d 3 after parturition (12.5 +/- 3.5, 5.7 +/- 1.5 and 29.1 +/- 12.1 ng.min/ml, respectively) and were less (P less than .05) than on d 3 of estrus (311.0 +/- 54.0 ng.min/ml). There was little difference in the basal serum concentration of FSH at any of the time points examined. In contrast, GnRH-induced release of FSH continually decreased (P less than .05) from d 240 of gestation (559.8 +/- 88.9 ng.min/ml) to d 3 of estrus (51.8 +/- 6.2 ng.min/ml).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Thirty-one mares were used in an experiment to evaluate the effectiveness of three sustained-release injectable formulations of altrenogest and one formulation of medroxyprogesterone acetate (MPA) for long-term suppression of estrus and ovulation. Luteolysis was induced by injection of prostaglandin-F (Lutalyse) on day 0 (6th day after the previous ovulation) and was immediately followed by treatment with 1) no injection (controls; n = 7), 2) 1.5 mL of an altrenogest solution in sustained-release vehicle (LA 150, 1.5 mL; 225 mg altrenogest; n = 6), 3) 3 mL (450 mg altrenogest) of the same solution (n = 6), 4) 500 mg altrenogest in lactide-glycolide microparticles suspended in 7-mL vehicle (MP 500; n = 6), or 5) 1.0 g MPA as a 5-mL suspension. Mares were checked for estrus daily, and their ovaries scanned every other day until a 25-mm or greater follicle was detected, after which they were scanned daily. Control mares returned to estrus an average of 3.9 days after Lutalyse administration; all the single-injection altrenogest formulations increased (P < .05) the days to return to estrus, with the greatest increase occurring in mares receiving MP 500. Return to estrus was not affected by MPA treatment. Time of ovulation was determined by serial ultrasound scans and confirmed by daily plasma luteinizing hormone (LH) and progesterone concentrations. Control mares ovulated an average of 8.8 days after Lutalyse administration. Treatment with 1.5 or 3 mL of LA 150 increased (P < .05) the mean days to ovulation to 16.5 and 21.2 days, respectively; MP 500 increased (P < .05) the days to ovulation to 33.5 days. Administration of MPA did not affect (P > .1) days to ovulation relative to control mares. The MP 500 treatment provided long-term suppression of estrus and ovulation and could prove useful for that purpose. Treatment with the LA 150 solutions provided shorter-term suppression, and a relatively tight grouping of the individual mares around the mean days to ovulation; these one-shot formulations could be useful for synchronizing ovulation in cyclic mares and inducing normal estrous cyclicity in vernal transitional mares exhibiting erratic, anovulatory estrous periods.  相似文献   

8.
We hypothesized that the LH response to GnRH would be greater as the interval from foaling increases, whereas the FSH response would decrease, and that corpus luteum function after the first ovulation would be similar to that after the second ovulation. At parturition, mares were assigned to receive GnRH (2 micrograms/kg) intravenously on 1) d 3 postpartum (n = 6); 2) d 6 postpartum (n = 6); 3) d 1 of first postpartum estrus (foal estrus) and again on d 1 of second postpartum estrus (n = 8). Blood was collected through an indwelling cannula at -2, -1 and 0 h relative to GnRH stimulation (basal concentrations) and at .25, .5, .75, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5 and 4.0 h post-GnRH. Samples were assayed for concentrations of LH and FSH. Basal concentrations of LH were lower (P less than .05) for mares given GnRH on d 3 postpartum than for mares on d 1 of foal estrus. A rise in concentrations of LH was noted within 30 min in all groups, but the response to GnRH on d 1 of the first estrus was less (P less than .05) than on d 1 of second postpartum estrus. As the interval from parturition increased, the amount of LH secreted in response to GnRH increased. The maximum response to GnRH was greater (P less than .05) during d 1 of the first estrus than on d 3 or 6 postpartum and was greater on d 1 of cycle 2 than on d 1 of cycle 1.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Two experiments studied the effects of pretreatment with estradiol benzoate before treatment with a dopamine antagonist on prolactin secretion and reproductive traits in mares during (1) the seasonal anovulatory period and (2) the normal breeding season. Experiment 1 was performed in winter with 17 mares selected for low follicular activity. Nine mares received estradiol benzoate injections every other day for a total of 10 injections; 8 mares received similar injections of vehicle. Ten days after onset of injections, all mares were placed on daily injections of sulpiride (250 mg) for 35 days or until ovulation. Plasma prolactin concentrations were higher (P < .001) in mares receiving estradiol than in controls for all assessments from days 12 through 36. Plasma luteinizing hormone (LH) concentrations were also increased (P < .05) by estradiol treatment from days 14 to 23. Mean day of first ovulation was 73.6 for control mares and 29.0 for estradiol-treated mares (P = .016). Estradiol treatment greatly enhanced prolactin secretion in response to sulpiride and increased LH secretion in seasonally anovulatory mares, which together hastened the date of first ovulation by an average of 45 days. Experiment 2 was designed to assess the efficacy of a long-acting, single-injection microparticle preparation of another dopamine antagonist, domperidone, for increasing prolactin secretion in cyclic mares in the summer. The experimental design and procedures used in experiment 1 were repeated, except that a single 3-g domperidone-microparticle injection was administered on day 11 rather than 45 days of sulpiride injections. Day 0 was the first day of estrus for each mare. Prolactin concentrations were higher (P < .05) in mares receiving estradiol than in control mares from days 12 through 25 and after a thyrotropin-releasing hormone injection on d 21. Estrous cycle traits (time to ovulation and time of luteal regression) were not affected (P > .1) by treatment. Estradiol enhanced the prolactin response to a single injection of 3 g domperidone in cyclic mares in the summer in a manner similar to the estradiol enhancement of prolactin secretion in response to daily sulpiride injections in anovulatory mares in winter. Thus, the single injection of domperidone could possibly replace the daily sulpiride injections used in experiment 1 to induce ovulation in seasonally anovulatory mares; this needs to be tested in future experiments.  相似文献   

10.
Equine clinicians rely on ovulation induction agents to provide a timed ovulation in mares for optimal breeding management. Numerous studies have been performed on the efficacy of human chorionic gonadotropin (hCG) to induce ovulation in the mare, but limited clinical data are available for the new deslorelin acetate product SucroMate. This study was designed to evaluate the efficacy of SucroMate (deslorelin) in comparison with hCG to induce ovulation. American Quarter horse mares (n = 256) presented to Colorado State University for breeding management were used in this study. Mares received either deslorelin or hCG when a follicle ≥35 mm was detected by transrectal ultrasound in the presence of uterine edema. Ultrasonographic examinations were subsequently performed once daily until ovulation was detected. Deslorelin was administered to 138 mares during168 estrous cycles, and hCG was given to 118 mares during 136 estrous cycles. Mares administered deslorelin had a similar (P < .05) higher ovulation rate (89.9%) within 48 hours following drug administration than mares administered hCG (82.8%). There are no effects of season or age on ovulation rates in either treatment group. Twenty-one mares administered deslorelin and 11 mares administered hCG were monitored by transrectal ultrasound every 6 hours to detect ovulation as part of a frozen semen management program. Average intervals from deslorelin or hCG administration to ovulation were 41.4 ± 9.4 and 44.4 ± 16.5 hours, respectively. Results of this study indicate that SucroMate is effective at inducing a timed ovulation in the mare.  相似文献   

11.
Considerable variation exists in the serum levels of gonadotropins in boars; this results in differential testicular function. Boars (Chinese Meishan, European White composite, and crosses of the two breeds) selected for high and low circulating FSH concentrations were used to define possible differences in pituitary sensitivity to GnRH and GnRH antagonist and gonadal and adrenal responses. After a 2-h pretreatment sampling period, boars were injected with GnRH or GnRH antagonist and repetitively sampled via jugular cannula for changes in serum concentrations of FSH, LH, testosterone, and cortisol. In response to varying doses of GnRH or GnRH antagonist, FSH, LH, or testosterone changes were not different in high- or low-FSH boars. Declines in LH after GnRH stimulation were consistently faster in boars selected for high FSH. Chinese Meishan boars had considerably higher cortisol concentrations than White composite boars (132.2 +/- 28.5 vs 67.4 +/- 26.8 ng/mL, respectively; P < .01). When select high- and low-gonadotropin Meishan:White composite crossbreds were sampled, cortisol levels were elevated but comparable between the two groups (126.5 +/- 13.7 vs 131.4 +/- 13.4 ng/mL, respectively). After GnRH antagonist lowered LH concentrations, administration of hCG resulted in increased testosterone and cortisol concentrations. Although testosterone concentrations remained high for 30 h, cortisol concentrations returned to normal levels within 10 h after hCG injection. The mechanism by which boars selected for high gonadotropins achieve increased levels of LH and FSH may not be due to differences in pituitary sensitivity to GnRH but to differences in clearance from the circulation.  相似文献   

12.
The present experiment characterized the pituitary responsiveness to exogenous GnRH in the first 10 d after ovulation following commercially available deslorelin acetate implantation at the normal dosage for hastening ovulation in mares. Twelve mature, cyclic mares were assessed daily for estrus and three times weekly for ovarian activity starting May 1. Mares achieving a follicle at least 25 mm in diameter or showing signs of estrus were checked daily thereafter for ovarian characteristics. When a follicle >30 mm was detected, mares were administered either a single deslorelin acetate implant or a sham injection and then assessed daily for ovulation. On d 1, 4, 7, and 10 following ovulation, each mare was challenged i.v. with 50 microg GnRH, and blood samples were collected to characterize the LH and FSH responses. The size of the largest follicle on the day of treatment did not differ (P = 0.89) between groups. The number of days from treatment to ovulation was shorter (P < 0.001) by 2.0 d for the treated mares indicating a hastening of ovulation. The size of the largest follicle present on the days of GnRH challenge was larger in the treated mares on d 1 (P = 0.007) but smaller on d 10 (P = 0.02). In addition, the interovulatory interval was longer (P = 0.036) in the treated mares relative to controls by 4.4 d. Concentrations of FSH in plasma of the treated mares were lower (P < 0.05) than control concentrations from d 3 to 12; LH concentrations in the treated mares were lower (P < 0.05) relative to controls on d 0 to 5, d 7, and again on d 20 to 23. Progesterone values were the same (P = 0.99) for both groups from 2 d before ovulation though d 23. There was an interaction of treatment, day, and time of sampling (P < 0.001) for LH and FSH concentrations after injection of GnRH. Both the LH and FSH responses were suppressed (P < 0.009) in the treated mares relative to controls on d 1, 4, and 7; by d 10, the responses of the two groups were equivalent. In conclusion, deslorelin administration in this manner increased the interovulatory interval, consistently suppressed plasma LH and FSH concentrations, and resulted in a complete lack of responsiveness of LH and FSH to GnRH stimulation at the dose used during the first 7 d after the induced ovulation. Together, these results are consistent with a temporary down-regulation of the pituitary gland in response to deslorelin administered in this manner.  相似文献   

13.
Superovulation would potentially increase the efficiency and decrease the cost of embryo transfer by increasing embryo collection rates. Other potential clinical applications include improving pregnancy rates from frozen semen, treatment of subfertility in stallions and mares, and induction of ovulation in transitional mares. The objective of this study was to evaluate the efficacy of purified equine follicle stimulating hormone (eFSH; Bioniche Animal Health USA, Inc., Athens, GA) in inducing superovulation in cycling mares. In the first experiment, 49 normal, cycling mares were used in a study at Colorado State University. Mares were assigned to 1 of 3 groups: group 1, controls (n = 29) and groups 2 and 3, eFSH-treated (n = 10/group). Treated mares were administered 25 mg of eFSH twice daily beginning 5 or 6 days after ovulation (group 2). Mares received 250 (of cloprostenol on the second day of eFSH treatment. Administration of eFSH continued until the majority of follicles reached a diameter of 35 mm, at which time a deslorelin implant was administered. Group 3 mares (n = 10) received 12 mg of eFSH twice daily starting on day 5 or 6. The treatment regimen was identical to that of group 2. Mares in all 3 groups were bred with semen from 1 of 4 stallions. Pregnancy status was determined at 14 to 16 days after ovulation.In experiment 2, 16 light-horse mares were used during the physiologic breeding season in Brazil. On the first cycle, mares served as controls, and on the second cycle, mares were administered 12 mg of eFSH twice daily until a majority of follicles were 35 mm in diameter, at which time human chorionic gonadotropin (hCG) was administered. Mares were inseminated on both cycles, and embryo collection attempts were performed 7 or 8 days after ovulation.Mares treated with 25 mg of eFSH developed a greater number of follicles (35 mm) and ovulated a greater number of follicles than control mares. However, the number of pregnancies obtained per mare was not different between control mares and those receiving 25 mg of eFSH twice daily. Mares treated with 12 mg of eFSH and administered either hCG or deslorelin also developed more follicles than untreated controls. Mares receiving eFSH followed by hCG ovulated a greater number of follicles than control mares, whereas the number of ovulations from mares receiving eFSH followed by deslorelin was similar to that of control mares. Pregnancy rate for mares induced to ovulate with hCG was higher than that of control mares, whereas the pregnancy rate for eFSH-treated mares induced to ovulate with deslorelin did not differ from that of the controls. Overall, 80% of mares administered eFSH had multiple ovulations compared with 10.3% of the control mares.In experiment 2, the number of large follicles was greater in the eFSH-treated cycle than the previous untreated cycle. In addition, the number of ovulations during the cycle in which mares were treated with eFSH was greater (3.6) than for the control cycle (1.0). The average number of embryos recovered per mare for the eFSH cycle (1.9 ± 0.3) was greater than the embryo recovery rate for the control cycle (0.5 ± 0.3).In summary, the highest ovulation and the highest pregnancy and embryo recovery rates were obtained after administration of 12 mg of eFSH twice daily followed by 2500 IU of hCG. Superovulation with eFSH increased pregnancy rate and embryo recovery rate and, thus, the efficiency of the embryo transfer program.

Introduction

Induction of multiple ovulations or superovulation has been an elusive goal in the mare. Superovulation would potentially increase the efficiency and decrease the cost of embryo transfer by increasing embryo collection rates.[1 and 2] Superovulation also has been suggested as a critical requirement for other types of assisted reproductive technology in the horse, including oocyte transfer and gamete intrafallopian transfer. [2 and 3] Unfortunately, techniques used successfully to superovulate ruminants, such as administration of porcine follicle stimulating hormone and equine chorionic gonadotropin have little effect in the mare. [4 and 5]The most consistent therapy used to induce multiple ovulations in mares has been administration of purified equine pituitary gonadotropins. Equine pituitary extract (EPE) is a purified gonadotropin preparation containing approximately 6% to 10% LH and 2% to 4% FSH.[6] EPE has been used for many years to induce multiple ovulations in mares [7, 8 and 9] and increase the embryo recovery rate from embryo transfer donor mares. [10] Recently, a highly purified equine FSH product has become available commercially.The objectives of this study were to evaluate the efficacy of purified eFSH in inducing superovulation in cycling mares and to determine the relationship between ovulation rate and pregnancy rate or embryo collection rate in superovulated mares.

Materials and methods

Experiment 1

Forty-nine normally cycling mares, ranging in age from 3 to 12 years, were used in a study at Colorado State University. Group 1 (control) mares (n = 29) were examined daily when in estrus by transrectal ultrasonography. Mares were administered an implant containing 2.1 mg deslorelin (Ovuplant, Ft. Dodge Animal Health, Ft. Dodge, IA) subcutaneously in the vulva when a follicle 35 mm in diameter was detected. Mares were bred with frozen semen (800 million spermatozoa; minimum of 30% progressive motility) from 1 of 4 stallions 33 and 48 hours after deslorelin administration. The deslorelin implants were removed after detection of ovulation.[11] Pregnancy status was determined at 14 and 16 days after ovulation.Group 2 mares (n = 10) were administered 25 mg of eFSH (Bioniche Animal Health USA, Inc., Athens, GA) intramuscularly twice daily beginning 5 or 6 days after ovulation was detected. Mares received 250 g cloprostenol (Estrumate, Schering-Plough Animal Health, Omaha, NE) intramuscularly on the second day of eFSH treatment. Administration of eFSH continued until a majority of follicles reached a diameter of 35 mm, at which time a deslorelin implant was administered. Mares were subsequently bred with the same frozen semen used for control mares, and pregnancy examinations were performed as described above.Group 3 mares (n = 10) received 12 mg of eFSH twice daily starting 5 or 6 days after ovulation and were administered 250 μg cloprostenol on the second day of treatment. Mares were randomly selected to receive either a deslorelin implant (n = 5) or 2500 IU of human chorionic gonadotropin (hCG) intravenously (n = 5) to induce ovulation when a majority of follicles reached a diameter of 35 mm. Mares were bred with frozen semen and examined for pregnancy as described above.

Experiment 2

Sixteen cycling light-horse mares were used during the physiologic breeding season in Brazil. Reproductive activity was monitored by transrectal palpation and ultrasonography every 3 days during diestrus and daily during estrus. On the first cycle, mares were administered 2500 IU hCG intravenously once a follicle 35 mm was detected. Mares were subsequently inseminated with pooled fresh semen from 2 stallions (1 billion motile sperm) daily until ovulation was detected. An embryo collection procedure was performed 7 days after ovulation. Mares were subsequently administered cloprostenol, and eFSH treatment was initiated. Mares received 12 mg eFSH twice daily until a majority of follicles were 35 mm in diameter, at which time hCG was administered. Mares were inseminated and embryo collection attempts were performed as described previously.

Statistical analysis

In experiment 1, 1-way analysis of variance with F protected LSD was used to analyze quantitative data. Pregnancies per ovulation were analyzed by x2 analysis. In experiment 2, number of large follicles, ovulation rate, and embryo recovery rate were compared by Student,'s t-test. Data are presented as the mean S.E.M. Differences were considered to be statistically significant at p < .05, unless otherwise indicated.

Results

In experiment 1, mares treated with 25 mg eFSH twice daily developed a greater number of follicles 35 mm in diameter (p = .001) and ovulated a greater number of follicles (p = .003) than control mares (Table 1). However, the number of pregnancies obtained per mare was not significantly different between the control group and the group receiving 25 mg eFSH (p = .9518). Mares treated with 12 mg eFSH and administered either hCG or deslorelin to induce ovulation also developed more follicles 35 mm (p = .0016 and .0003, respectively) than untreated controls. Mares receiving eFSH followed by hCG ovulated a greater number of follicles (p = .003) than control mares, whereas the number of ovulations for mares receiving eFSH followed by deslorelin was similar to that of control mares (p = .3463). Pregnancy rate for mares induced to ovulate with hCG was higher (p = .0119) than that of control mares, whereas the pregnancy rate for eFSH-treated mares induced to ovulate with deslorelin did not differ from that of controls (p = .692). Pregnancy rate per ovulation was not significantly different between control mares (54.5%) and mares treated with eFSH followed by hCG (52.9%). The lowest pregnancy rate per ovulation was for mares stimulated with 25 mg eFSH and induced to ovulate with deslorelin. The mean number of days mares were treated with 25 mg or 12 mg of eFSH was 7.8 ± 0.4 and 7.5 ± 0.5 days, respectively. Overall, 80.0% of mares administered eFSH had multiple ovulations compared with 10.3% of control mares.  相似文献   

14.
Estradiol and progesterone concentrations were evaluated from diestrous embryo transfer recipient mares (5 to 14 days post-ovulation) which were treated with an exogenous hormone regimen. Upon detection of the donor mare's ovulation (0 hours), 10 mg PGF was given to the recipient mare; at 12, 24 and 36 hours 20 mg estradiol cypionate; at 48 hours, 500 mg progesterone in oil and then 22 mg altrenogest at 60, 72 and 96 hours. Altrenogest (22 mg/day) was continued until end of the trial (detection of a fetal heart beat). Embryos were transferred non-surgically 6 or 7 days after the start of treatment.Plasma samples were evaluated over three periods; period 1-between recipient mare ovulation and prior to PGF period 2-between PGF and embryo transfer and period 3-post-transfer. During periods 2 and 3, estradiol was higher (P<.05) for mares which were 10 to 14 days post-ovulation (late diestrous) as compared to mares which were 5 to 9 days post ovulation (mid-diestrous) when treatment began. Progesterone concentrations were higher (P<.05) for the mid-diestrous mares in the same periods. The pregnancy rate was higher for the late diestrous mares than the mid-diestrous mares (58% (7/12) vs 10% (1/10)). However, no difference (P>.05) was detected in estradiol or progesterone in the late diestrous mares which were pregnant or open. During period 2, estradiol was higher (P<.05) in the pregnant than open mares. Whereas, during period 3, progesterone was higher (P<.05) in the open mares.These data suggest that estradiol is important for the establishment of pregnancy in the mare. Furthermore, hormone treatment developed in this study appears to have some potential in synchronization of diestrus mares to be used as embryo recipients.  相似文献   

15.
A recent report suggested administration of altrenogest during the follicular phase could postpone ovulation. Based on these results, two questions were generated. We first hypothesized that by initiating a altrenogest treatment earlier in the estrous cycle, a greater and/or more consistent delay in ovulation would result. Second, we hypothesized that exposure to elevated progestin concentrations might alter viability of the ovulatory follicle and oocyte. The focus of the first experiment was to determine if initiation of altrenogest treatment at different stages of the estrous cycle would yield a more predictable time to ovulation, whereas the second experiment was designed to determine whether mares receiving altrenogest during estrus had compromised fertility. In the first experiment thirty mares of mixed light breed, ranging in age from 5-15 years, were randomly assigned to one of three groups. The two treated groups received altrenogest (0.088 mg/kg of body weight) for two days once a follicle of 30 or 35 mm in diameter was detected. Control mares were not treated. Mares treated with altrenogest whether initiated at the detection of a 30 or 35 mm follicle demonstrated similar (P>.05) day to ovulation interval when adjusted to 35 mm (5.4 and 5.6 days, respectively). Both treated groups demonstrated a delayed interval (P<.05) when compared to control (3.9 days). Thirty-six mares of similar breed and age, were randomly assigned to two groups for use in the second experiment. All mares were monitored daily via transrectal ultrasonography from the time a 35 mm or greater follicle was detected until ovulation. Treated mares received daily doses of altrenogest (0.088 mg/kg of body weight) for two days once a follicle of 35 mm or greater was detected. Control mares received no treatment. Fertility data were collected from mares inseminated every other day with 500 million motile spermatozoa from one of two stallions with proven fertility. Pregnancy data were collected via transrectal ultrasonography at days 12, 14 and 16 post-ovulation. Ovulation data were collected from 27 control cycles and 26 treated cycles. Contrary to previous reports and Experiment 1, no difference (P=0.35) was noted between groups with respect to days to ovulation. Control mares averaged 4.14 days and treated mares averaged 4.7 days to ovulation from initial detection of a 35 mm follicle. Fertility data were also similar (P=0.8) between control and treated mares (66.6% and 61.5% per cycle, respectively). Interestingly, a greater number (P=0.017) of treated cycles (5/26) resulted in follicular regression than did control cycles (0/27). While these data suggest that this dosage of altrenogest may not postpone ovulation, it did appear related to increased incidence of follicular regression. Fertility was unaffected, however, in those mares that ovulated. Further studies are needed in which initiation at different stages of estrus and different doses of altrenogest are used.  相似文献   

16.
Five lighthorse mares were actively immunized against gonadotropin releasing hormone (GnRH) conjugated to bovine serum albumin (BSA) to study the involvement of GnRH in luteinizing hormone (LH) and follicle stimulating hormone (FSH) secretion following ovariectomy (OVX) and after administration of testosterone propionate (TP). Five mares immunized against BSA served as controls. Immunizations were started on November 1, and OVX was performed in June (d 1). All mares were treated with TP from d 50 to 59 after OVX. On the day of OVX, concentrations of LH were lower (P less than .05) in GnRH-immunized mares than in BSA-immunized mares and were generally nondetectable; FSH concentrations were reduced (P less than .05) by 50% in GnRH-immunized mares relative to BSA-immunized mares. In contrast to BSA-immunized mares, plasma concentrations of LH or FSH did not increase after OVX in GnRH-immunized mares. The LH response to GnRH analog (less than .1% cross-reactive with GnRH antibodies) on d 50 was reduced (P less than .05) by 97% in GnRH-immunized mares relative to BSA-immunized mares, whereas the FSH response was similar for both groups. Treatment with TP for 10 d reduced (P less than .01) the LH response and increased (P less than .01) the FSH response to GnRH analog in BSA-immunized mares, but it had no effect (P greater than .1) on the response of either gonadotropin in GnRH-immunized mares.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Breeding records of 48 Thoroughbred and Standardbred mares treated with native GnRH (500μg im, bid) during February—April, 1999 or 2000, on 7 farms in central Kentucky were retrospectively examined. Treated mares were classified as being in anestrus or early transition (n=42; if no signs of estrus occurred within 31/2 weeks and the largest follicle remained ≤25 mm in diameter or the first larger follicle(s) of the season regressed without ovulating), or were classified as being in late transition (n=6; if follicular growth achieved 30-40 mm diameter but ovulation had not yet occurred during the breeding season). Thirty-eight mares (38/48; 79%) ovulated in 13.7 ± 7.4 days. Interval to ovulation was negatively associated with size of follicles at onset of native GnRH therapy (P < 0.01). Per cycle pregnancy rate was 53% (19/36 mares bred). Ovulation inducing drugs were administered to 32 of the native GnRH treated mares (2500 units hCG intravenously, n = 20; deslorelin implant [Ovuplant™] subcutaneously, n=12), while 6 mares were not administered any additional drugs to induce ovulation. Per cycle pregnancy rate did not differ among mares treated only with native GnRH (2/5 mares bred; 40% PR), mares treated with native GnRH plus hCG (12/19 mares bred; 63% PR), or mares treated with native GnRH plus Ovuplant™ (5/12 mares bred; 42% PR) (P > 0.10). Additional treatment with either hCG or Ovuplant™ did not alter mean follicle size at ovulation or interovulatory interval (P > 0.10). The proportion of interovulatory intervals > 25 days was not different between mares receiving no additional treatment to induce ovulation (0/4; 0%) compared to mares receiving hCG to induce ovulation (3/8; 38%) (P > 0.10), but the proportion of interovulatory intervals > 25 days was greater for mares receiving Ovuplant™ to induce ovulation (5/7; 71%) compared to mares receiving no additional treatment to induce ovulation (P < 0.05). The proportion of mares with extended interovulatory intervals (i.e., > 25 days) did not differ between mares with follicles < 15 mm diameter (4/8, 50%) and those with follicles > 15 mm diameter (3/11, 27%) at onset of native GnRH treatment (P > 0.10). While concurrent untreated controls were not used in this study, the 79% response rate to twice daily administration of native GnRH is in agreement with other reports using pulsatile or constant infusion as methods of administration, confirming therapy can hasten follicular development and first ovulation of the breeding season. As with previous reports, follicle size at onset of treatment is an important determinant of interval from onset of native GnRH therapy to ovulation. Use of hCG or Ovuplant™ did not enhance ovulatory response in native GnRH treated mares. Use of Ovuplant™ during native GnRH therapy may increase the incidence of post-treatment anestrus in mares not becoming pregnant.  相似文献   

18.
Four groups of mares, representing anestrus (AN; n = 8), early transition (ET; n = 7), late transition (LT; n = 8) and estrus (EST; n = 12) were used to examine release of luteinizing hormone (LH) and follicle stimulating hormone (FSH) after a bolus injection of gonadotropin releasing hormone (GnRH) during the transition from anestrus into the breeding season. Estrous mares received GnRH on d 2 or 3 of estrus in the cycle immediately preceding slaughter. Anestrous, ET and LT mares received GnRH exactly 1 wk prior to slaughter. A single injection of GnRH (Sigma LHRH, L-0507, 2.0 micrograms/kg body weight in .9% saline, iv) was given to each mare. Blood samples were collected at -2, h, -1 h, directly prior to GnRH, then 15, 30, 45, 60, 90, 120, 150, 180, 210, 240, 300, 360, 420 and 480 min post-injection. Maximum release of LH and FSH was observed within 30 min after injection of GnRH. Except for the LH response in EST mares, concentrations of both hormones had returned to pre-injection baseline levels within 8 h. Group means for area under the curve (AUC) of concentrations of LH in serum, and the maximum amount (MAX) of LH quantified in serum, post-GnRH, increased (P less than .05) progressively from AN to the breeding season. The AUC and MAX responses for FSH showed a reverse pattern, decreasing (P less than .05) from AN to the breeding season.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Prostaglandins (PGs) are essential to trigger the cascade of events that degrade the extracellular matrix of follicles leading to follicular rupture and ovulation. In mares, systemic administration of flunixin meglumine (FM), a PG synthetase inhibitor, blocks ovulation by inducing luteinized unruptured follicles (LUF). In the rat, the administration of PGF(2α) (PGF) and PGE restored ovulation in indomethacin treated animals. The mares were treated with FM 0, 12, 24 and 36 h after human chorionic gonadotrophin (hCG) administration to induce experimentally LUF (n = 15) or were left untreated (controls, n = 5). In addition, 250 μg of cloprostenol were administered intravenously to the mares 33, 35 and 36 h (CLO 33, n = 5) or 48, 49 and 50 h (CLO 48, n = 5) after hCG. One group was treated with FM but not with cloprostenol (FM-control, n = 5). The ovulation rate, follicular diameter and progesterone concentration were compared amongst groups. The ovulation rate at 48 h was higher (p < 0.05) in the controls (100%) than in the FM-control (0%), CLO 33 (0%) or CLO 48 (20%) mares. All but one FM treated mares developed LUF by 48 h after hCG administration. Two LUF collapsed between 48 and 60 h and 72 and 84 h in one mare from FM-control and from the CLO 33 group each, respectively. Progesterone concentration was significantly higher (p < 0.05) in the control mares than in any of the FM treated mares 5, 9 and 13 days after hCG. In conclusion, FM administered during the periovulatory period blocked ovulation in the mares. In contrast, the administration of cloprostenol, a PGF analogue, in the previously FM treated mares failed to restore ovulation.  相似文献   

20.
Twenty ovariectomized pony mares were used to determine if dihydrotestosterone propionate (DHTP) administration, with or without estradiol benzoate (EB) pretreatment, would have the same effects on follicle stimulating hormone (FSH) and luteinizing hormone (LH) secretion as testosterone propionate (TP) administration. All mares were given an initial injection of gonadotropin releasing hormone (GnRH) to characterize their LH and FSH response, and then two groups of mares (n = 4/group) were administered EB (22 micrograms/kg of body weight), two groups were administered vehicle (safflower oil) and a fifth group was administered TP (175 micrograms/kg of body weight) daily for 10 days. Following a second injection of GnRH, one group of EB-treated mares and one group of oil-treated mares were administered DHTP (175 micrograms/kg of body weight) daily for 10 days; the other EB- and oil-treated mares were administered oil and the TP-treated mares were continued on the same dose of TP for 10 days. A final injection of GnRH was then given. Treatment with EB increased (P less than .01) concentrations of LH in daily blood samples and increased (P less than .05) the LH response to exogenous GnRH. Administration of TP or DHTP reduced (P less than .05) both daily LH concentrations and the LH response to exogenous GnRH. Concentrations of FSH in daily blood samples were reduced (P less than .05) and the FSH response to exogenous GnRH was increased (P less than .05) by administration of EB alone, DHTP alone or TP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号