首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We examined the effects of three foliar potassium concentrations (high, intermediate and low) on the morphology, ultrastructure and polyamine concentrations of current-year and 1- and 2-year-old needles of 30-year-old Scots pine (Pinus sylvestris L.) trees. Foliar K concentration had only a slight effect on needle morphology. The sclerenchyma cell walls were thinner, the xylem area was larger, and the resin ducts were smaller in needles with a low K concentration than in needles with a high or intermediate K concentration. In addition, the bundle sheath cells were collapsed in needles having a low K concentration. The secondary growth of phloem tissue and the mesophyll area were greater in needles with a high or intermediate K concentration than in needles with a low K concentration, possibly indicating greater production of photoassimilates in these trees. At the ultrastructural level, mesophyll cells with enlarged central vacuoles and small vacuoles containing electron-dense material were common in needles having a low K concentration. Enlargement of the central vacuole coincided with an exponential increase in putrescine concentration in needles with a low K concentration, suggesting that the central vacuole may function as a storage site for putrescine.  相似文献   

2.
Kolari KK  Sarjala T 《Tree physiology》1995,15(11):747-752
From March to October, acid phosphatase activity and phosphorus (P) concentration were measured in four needle age classes of the upper and lower crowns of fertilized and unfertilized Scots pine (Pinus sylvestris L.) trees. Negative correlations between acid phosphatase activity and P concentration were observed in current-year needles and in needles in the upper part of the crown, whereas there was a positive correlation between enzyme activity and P concentration in older needles and in needles in the lower part of the crown. In May and October, needles of all ages showed increased acid phosphatase activity. The most sensitive response of acid phosphatase activity to phosphate supply and phosphorus status of the whole tree was seen in current-year needles on the first whorl where a 300% increase in acid phosphatase activity was observed in response to a decrease in foliar P concentration of 1.7-1.8 mg P g(DW) (-1).  相似文献   

3.
4.
The effects of chlorine water on mesophyll cells of Scots pine (Pinus sylvestris) were studied with light and electron microscopy. The treatment caused necrotic flecks formed by collapsed cells. Less injured cells showed increase in number of plastoglobuli, swelling of the thylakoids and vacuolization of the cytoplasm.  相似文献   

5.
Short-term exposure to high concentrations of SO2 caused a temporary decrease in the photosynthetic rate, while both short-term and long-term exposure to low concentrations of SO2 increased photo-synthesis after the exposure. Low SO2 concentrations did not cause any change in peroxidase activity. Thus peroxidase activity does not seem a suitable method in monitoring latent injury caused by low SO2 concentrations.  相似文献   

6.
A gradient survey was carried out in order to compare peroxidase activity in Scots pine (Pinus sylvestris) needles in relation to distance from the industrial centre of Monchegorsk, on the Kola Peninsula in north-western Russia. Apoplastic and total peroxidase activity and sulphur (S), nickel (Ni) and copper (Cu) content in the needles of mature trees were measured on seven plots located between 10 and 110 km from the pollution source. Peroxidase activities in both current- and previous-year needles increased towards the smelters and showed a positive correlation with needle S, Cu and Ni concentrations. Total peroxidase activities showed a more obvious relationship to the pollution gradient in winter than in autumn. The element contents in the current year needles averaged 1649 ppm (S), 128 ppm (Ni) and 118 ppm (Cu) close to the smelters, 1212 ppm (S), 37 ppm (Ni) and 67 ppm (Cu) at a distance of 40 km and 831 ppm (S), 7 ppm (Ni) and 1 ppm (Cu) at the most distant sampling plot.This study showed that both the apoplastic and total peroxidase activities responded to heavy metal and sulphur pollution up to 40 km from the smelters in winter, which indicated an increased oxidative stress in this area. The harsh climate conditions and the high pollution levels may have had additive effects. However, as peroxidases are considered a general indicator of stress, it is not possible to evaluate the extent to which single pollutants contribute to this enzyme activity.  相似文献   

7.
Seasonal changes in amino acids, protein and total nitrogen in needles of 30-year-old, fertilized Scots pine (Pinus sylvestris L.) trees growing in Northern Sweden were investigated over two years in field experiments. The studied plots had been fertilized annually for 17 years with (i) a high level of N, (ii) a medium level of N, or (iii) a medium level of N, P and K. Trees growing on unfertilized plots served as controls. In control trees, glutamine, glutamic acid, gamma-aminobutyric acid, aspartic acid and proline represented 50-70% of the total free amino acids determined. Arginine was present only in low concentrations in control trees throughout the year, but it was usually the most abundant amino acid in fertilized trees. Glutamine concentrations were high during the spring and summer in both years of study, whereas proline concentrations were high in the spring but otherwise low throughout the year. In the first year of study, glutamic acid concentrations were high during the spring and summer, whereas gamma-aminobutyric acid was present in high concentrations during the winter months. This pattern was less pronounced in the second year of investigation. The concentrations of most amino acids, except glutamic acid, increased in response to fertilization. Nitrogen fertilization increased the foliar concentration of arginine from < 1 micromol g(dw) (-1) in control trees to a maximum of 110 micromol g(dw) (-1). Trees fertilized with nitrogen, phosphorus and potassium had significantly lower arginine concentrations than trees fertilized with the same amount of nitrogen only. Protein concentrations were similar in all fertilized trees but higher than those in control trees. For all treatments, protein concentrations were high in winter and at a minimum in early spring. In summer, the protein concentration remained almost constant except for a temporary decrease which coincided with the expansion of new shoots. Apart from arginine, the amino acid composition of proteins was similar in all treatments.  相似文献   

8.
–  • Previous studies on competitive interactions among silver birch, Scots pine, and Siberian larch have not addressed the direct importance of the species identity of nearby competitors.  相似文献   

9.
The peroxidase activity (EC 1.11.1.7) in homogenates from Scots pine needles (Pinus sylvestries L.) were studied in relation to needle age and sampling locations around two different sources of industrial air pollution. Increased enzyme activity was associated with both increased needle age and proximity to the emission sources. Fluorine contamination in one of the cases was not correlated with enhanced enzyme activity. Enzyme activity levels were considered in relation to variations between trees and between different parts of the same trees.  相似文献   

10.
Whole-tree harvesting (WTH), where logging residues are removed in addition to stems, is widely practised in Fennoscandian boreal forests. WTH increases the export of nutrients from forest ecosystems. The extent of nutrient removals may depend on tree species, harvesting method, and the intensity of harvesting. We developed generalized nutrient equations for Scots pine (Pinus sylvestris L.), Norway spruce (Picea abies Karsten), and birch (Betula pendula Roth and Betula pubescens Ehrh.) stands to be able to calculate the amounts of nitrogen, phosphorus, potassium, and calcium in stems and above-ground biomass (stem and crown) as a function of stand volume. The equations were based on Fennoscandian literature data from 34 pine, 26 spruce, and 5 birch stands, and they explained, depending on the tree species and nutrient, 61–99% and 56–87% of the variation in the nutrient amounts of stems and above-ground biomass, respectively. The calculations based on the equations showed that nutrient removals caused by stem-only harvesting (SOH) and WTH per harvested stem m3 were smaller in pine than in spruce and birch stands. If the same volume of stem is harvested, nutrient removals are, in general, nearly equal at thinnings and final cuttings in SOH, but larger in thinnings than final cuttings in WTH. If the principal aim is to minimize the nutrient removals per harvested stem m3, the harvesting should be done at mature pine stands. The effect of biomass removal on overall site nutrient status depends on site-specific factors such as atmospheric deposition, weathering of minerals, and the size of the nutrient pools in the soil.  相似文献   

11.
Pollution often causes visible symptoms of foliar injury. The injury is sometimes associated with an increase in the accessibility of toxic elements to plants as a result of acidification of the soil. We investigated the distribution of elements (N, P, K, Ca, Mg, Mn, S, Fe, B, Cu, Zn, Al, F, Pb, Cd, Cr, Ni and Co) in healthy current-year needles of Scots pine (Pinus sylvestris L.) growing at an unpolluted control site and at a site polluted mainly by SO(2), HF and Al(3+) from a fertilizer factory established in 1917. Needles from both sites were sampled before the appearance of visible injury and cut into five sections of equal length (tip, base and three middle parts). The mean concentrations of major nutrients were 20-30% lower in needles at the polluted site than in needles at the control site, whereas the concentrations of aluminum and fluorine were higher in needles at the polluted site. An increase in concentration from needle base to tip was detected for N, Fe, B, and Al at both sites and for Mn only at the polluted site. Fluoride accumulated in the tips of needles only at the polluted site, which could explain the necroses of needle tips at this site. The distribution of elements along the length of the needles was influenced by pollution, element mobility and the distal accumulation of toxic elements.  相似文献   

12.
Scots pine (Pinus sylvestris L.) seedlings of a provenance from northern Sweden were cultivated hydroponically for 7 weeks in a climate chamber. The nutrient solution contained either 2.5 (low-N) or 50 (high-N) mg N l(-1) with other essential elements added in a fixed optimal proportion to the nitrogen. After 5 and 7 weeks, the seedlings were analyzed for growth, total nitrogen and other essential nutrients, protein and free amino acids. Low-N seedlings grew more slowly and had higher root/shoot ratios than high-N seedlings. With respect to total nitrogen, the effect of the lower nutrient supply was mainly on the nitrogen content of the whole plant and the allocation of nitrogen among tissues, not on tissue nitrogen concentration. This was also the case for potassium, phosphorus, calcium and magnesium. The proportions by weight among these macronutrients in the whole seedlings were similar in both nutrient regimes. The proportion and concentration of sulfur were significantly lower in low-N seedlings than in high-N seedlings, because of a lower net uptake of sulfur than of other macronutrients. The shoot, needles and stem of low-N seedlings had higher concentrations of free amino acids and lower concentrations of protein than the shoot, needles and stem of high-N seedlings. Arginine dominated the pool of free amino acids in the low-N seedlings, whereas glutamine predominated in the high-N seedlings. We conclude that Scots pine seedlings accumulated soluble nitrogen as arginine when net protein synthesis was limited by factors other than nitrogen availability. Nutritional imbalance, as revealed by growth characteristics and a suboptimal proportion and concentration of sulfur in the seedlings, probably affected synthesis of S-amino acids, resulting in the diversion of assimilated nitrogen to arginine instead of protein.  相似文献   

13.
The relationship between competition and tree growth was studied in four stands of Pinus sylvestris L. occurring in a continental Mediterranean mountain area (in the Guadarrama range, Spain), i.e., an uneven-aged stand, a stand with oak (Quercus pyrenaica Willd.) understorey, a plantation, and a mature even-aged stand. Competition was measured by a simple size-ratio distance-independent index and was negatively associated with tree diameter. This negative association was stronger in the uneven-aged, plantation and mature even-aged stands than in the stand with oak understorey. Competition was also negatively associated with current diameter increment. This relationship was moderately strong in the mature even-aged stand and weak in the uneven-aged stand and the plantation. In the uneven-aged and the mature even-aged stands, a weakly significant relationship was found between diameter growth and tree size, whereas these parameters were not associated in the stand with oak understorey. The competition index provided a better prediction of growth rate than the alternative use of diameter. Both diameter and basal area growth were greater in the uneven-aged than in the even-aged stands.  相似文献   

14.
In drained, forested peatlands, ditch network maintenance (DNM) is often considered necessary for tree growth, but it also constitutes additional management costs. Commercial thinnings, in turn, in addition to their silvicultural benefits, are generally applied to enhance the financial performance of stand management but results from peatland stands are scarce. In this study, our aim was to find financially feasible management practices for Scots pine-dominated stands on drained peatland sites in Finland. Using mainly inventory data sets, we compiled altogether 29 typical model-stands for four climatic areas, four site types, and two stand conditions according to need for silvicultural care. We used MOTTI stand simulator to predict the development of the model-stands according to different management regimes consisting of various combinations of 0–2 DNM and 0–2 thinnings with different timings and thinning intensities. We then calculated and compared the financial feasibility of the regimes using net present value (NPV; discount rate 3%) analysis. The separate effect of DNM on the profitability was marginal, but the positive effect of thinnings was clear. The harvesting removals varied within a wide range, depending on the timing and intensity of thinnings, but on average, the NPV doubled due to the thinnings. In the stands of initially good silvicultural condition, regimes including only one thinning and a DNM operation generally displayed a good financial result. In the stands of initially poor silvicultural condition due to neglected early care, regimes with two thinnings produced the best NPV regardless of the often low-yielding first thinning.  相似文献   

15.
Aboveground xylem hydraulic conductance was determined in Scots pine (Pinus sylvestris L.) trees and stands from 7 to about 60 years of age. At the stand scale, leaf area index and net primary productivity (NPP, above- plus belowground) increased and reached a plateau at about 25-30 and 15-20 years, respectively; both parameters declined in mature stands. Stand hydraulic conductance followed a similar trend to NPP, with a maximum at about 15-20 years and a pronounced reduction in old stands. At the tree scale, annual biomass growth per unit of leaf area (growth efficiency) declined with tree age, whereas aboveground sapwood volume per unit leaf area, which is linearly related to maintenance respiration costs, steadily increased. Radiation interception per unit leaf area increased significantly with reduced leaf area index of mature stands, despite increased foliage clumping in the canopies of mature trees. Needle nutrient concentration did not change in the chronosequence. Tree hydraulic conductance per unit leaf area was strongly and positively correlated with growth efficiency. We discuss our findings in the context of growth reductions in mature and old trees, and suggest that increased hydraulic resistance and maintenance respiration costs may be the main causes of reduced carbon gain in mature and old trees.  相似文献   

16.
Time series of carbon fluxes in individual Scots pine (Pinus sylvestris L.) trees were constructed based on biomass measurements and information about component-specific turnover and respiration rates. Foliage, branch, stem sapwood, heartwood and bark components of aboveground biomass were measured in 117 trees sampled from 17 stands varying in age, density and site fertility. A subsample of 32 trees was measured for belowground biomass excluding fine roots. Biomass of fine roots was estimated from the results of an earlier study. Statistical models were constructed to predict dry mass (DW) of components from tree height and basal area, and time derivatives of these models were used to estimate biomass increments from height growth and basal area growth. Biomass growth (G) was estimated by adding estimated biomass turnover rates to increments, and gross photosynthetic production (P) was estimated by adding estimated component respiration rates to growth. The method, which predicts the time course of G, P and biomass increment in individual trees as functions of height growth and basal area growth, was applied to eight example trees representing different dominance positions and site fertilities. Estimated G and P of the example trees varied with competition, site fertility and tree height, reaching maximum values of 22 and 43 kg(DW) year(-1), respectively. The site types did not show marked differences in productivity of trees of the same height, although height growth was greater on the fertile site. The G:P ratio decreased with tree height from 65 to 45%. Growth allocation to needles and branches increased with increasing dominance, whereas growth allocation to the stem decreased. Growth allocation to branches decreased and growth allocation to coarse roots increased with increasing tree size. Trees at the poor site allocated 49% more to fine roots than trees at the fertile site. The belowground parts accounted for 25 to 55% of annual G, increasing with tree size and decreasing with site fertility. Annual G and P per unit needle mass varied over the ranges 1.9-2.4 and 3.5-4.0 kg(DW) kg(-1), respectively. The relationship between P and needle mass in the example trees was linear and relatively independent of competition, site fertility and age.  相似文献   

17.
We previously traced 10B-enriched boric acid from shoots to roots to demonstrate the translocation of boron (B) in Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) Karst.) seedlings. To gain a more detailed understanding of B translocation, we sought: (1) to demonstrate B retranslocation directly, by showing that foliar-applied 10B is located in the new growth after dormancy; and (2) to assess whether shoot-applied B affects growth in the long term. We applied 10B-enriched boric acid to needles of Scots pine and Norway spruce seedlings. After a dormancy period and 9 weeks of growth, small but significant increases in the 10B isotope were found in the new stem and needles of both species. In Scots pine, the total B concentration of the new stem was also increased. Both species contained polyols, particularly pinitol and inositol. Boron-polyol complexes may provide a mechanism for mobilizing B in these species. To determine the long-term effects of applied B, seedlings were grown for two growing seasons after the application of 10B to shoots. In Norway spruce, the proportion of 10B in the root systems and current needles of the harvest year was slightly higher than in the controls, and in Scots pine root systems, marginally so. The B treatment had no effect on growth of Norway spruce seedlings. In Scots pine seedlings, the B treatment caused a 33% increase in total dry mass and significantly increased the number of side branches.  相似文献   

18.
Effects of elevated CO2 concentration ([CO2]) on carbon assimilation and needle biochemistry of fertilized and unfertilized 25-30-year-old Scots pine (Pinus sylvestris L.) trees were studied in a branch bag experiment set up in a naturally regenerated stand. In each tree, one branch was enclosed in a bag supplied with ambient [CO2] (360 micromol mol(-1)), a second branch was enclosed in a bag supplied with elevated [CO2] (680 micromol(-1)) and a control branch was left unbagged. The CO2 treatments were applied from April 15 to September 15, starting in 1993 for unfertilized trees and in 1994 for fertilized trees, which were treated with N in June 1994. Net photosynthesis, amount and activity of Rubisco, N, starch, C:N ratio and SLA of needles were measured during the growing season of 1995. Light-saturated net photosynthetic rates of 1-year-old and current-year shoots measured at ambient [CO2] were not affected by growth [CO2] or N fertilization. Elevated [CO2] reduced the amount and activity of Rubisco, and the relative proportion of Rubisco to soluble proteins and N in needles of unfertilized trees. Elevated [CO2] also reduced the chlorophyll concentration (fresh weight basis) of needles of unfertilized trees. Soluble protein concentration of needles was not affected by growth [CO2]. Elevated [CO2] decreased the Rubisco:chlorophyll ratio in unfertilized and fertilized trees. Starch concentration was significantly increased at elevated [CO2] only in 1-year-old needles of fertilized trees. Elevated [CO2] reduced needle N concentration on a dry weight or structural basis (dry weight minus starch) in unfertilized trees, resulting in an increase in needle C:N ratio. Fertilization had no effect on soluble protein, chlorophyll, Rubisco or N concentration of needles. The decrease in the relative proportions of Rubisco and N concentration in needles of unfertilized trees at elevated [CO2] indicates reallocation of N resources away from Rubisco to nonphotosynthetic processes in other plant parts. Acclimation occurred in a single branch exposed to high [CO2], despite the large sink of the tree. The responses of 1-year-old and current-year needles to elevation of growth [CO2] were similar.  相似文献   

19.
We studied the effects of root zone temperature (RZT) and nutrient availability on free sterols and phospholipids in the plasma membrane (PM) and on PM-ATPase activity in roots of 1-year-old Scots pine (Pinus sylvestris L.) seedlings during growth initiation in the spring. Seedlings were grown for 6 weeks in hydroponic cultures with low (0.5 mM N; LN) or high (3 mM N; HN) nutrient availability. The root zone was subjected to slow warming (SW) and fast warming (FW) treatments while maintaining similar air temperatures in both treatments. Decreases in the amount of phospholipids and in the phospholipid/free sterol ratio, an increase in the degree of saturation of phospholipid fatty acids and changes in free sterol composition were observed during root growth initiation. Changes in lipid composition of the PM associated with the cold deacclimation process were detected at RZTs above 9 degrees C. Nutrient availability affected the lipid composition of the PM only when RZT was increased slowly. When RZT increased from 4 to 6 degrees C in the SW treatment, the degree of saturation of phospholipid fatty acids decreased, especially in HN seedlings. The sitosterol/stigmasterol ratio remained higher in HN seedlings than in LN seedlings. After an RZT of 9 degrees C had been reached in the SW treatment, HN caused increases in the saturation of phospholipid fatty acids and root PM-ATPase activity, and a decrease in the phospholipid/free sterol ratio. Possible effects of changes in PM lipid composition on root growth and PM-ATPase activity are discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号