首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Coral reefs support numerous ornamental fisheries, but there are concerns about stock sustainability due to the volume of animals caught. Such impacts are difficult to quantify and manage because fishery data are often lacking. Here, we suggest a framework that integrates several data‐poor assessment and management methods in order to provide management guidance for fisheries that differ widely in the kinds and amounts of data available. First, a resource manager could assess the status of the ecosystem (using quantitative metrics where data are available and semi‐quantitative risk assessment where they are not) and determine whether overall fishing mortality should be reduced. Next, productivity susceptibility analysis can be used to estimate vulnerability to fishing using basic information on life history and the nature of the fishery. Information on the relative degree of exploitation (e.g. export data or ratios of fish density inside and outside no‐take marine reserves) is then combined with the vulnerability ranks to prioritize species for precautionary management and further analysis. For example, species that are both highly exploited and vulnerable are good candidates for precautionary reductions in allowable capture. Species that appear to be less vulnerable could be managed on a stock‐specific basis to prevent over‐exploitation of some species resulting from the use of aggregate catch limits. The framework could be applied to coral reef ornamental fisheries which typically lack landings, catch‐per‐unit‐effort and age‐size data to generate management guidance to reduce overfishing risk. We illustrate the application of this framework to an ornamental fishery in Indonesia.  相似文献   

2.
Coral reef fisheries are of great importance both economically and for food security, but many reefs are showing evidence of overfishing, with significant ecosystem‐level consequences for reef condition. In response, ecological indicators have been developed to assess the state of reef fisheries and their broader ecosystem‐level impacts. To date, use of fisheries indicators for coral reefs has been rather piecemeal, with no overarching understanding of their performance with respect to highlighting fishing effects. Here, we provide a review of multispecies fishery‐independent indicators used to evaluate fishing impacts on coral reefs. We investigate the consistency with which indicators highlight fishing effects on coral reefs. We then address questions of statistical power and uncertainty, type of fishing gradient, scale of analysis, the influence of other variables and the need for more work to set reference points for empirical, fisheries‐independent indicators on coral reefs. Our review provides knowledge that will help underpin the assessment of the ecological effects of fishing, offering essential support for the development and implementation of coral reef fisheries management plans.  相似文献   

3.
Abstract Length, life history and ecological characteristics of landed fish communities were studied over a 10‐year period to test theories of fishing disturbance during a time of increased gear and closure management in heavily utilised fisheries. It was predicted that with greater management restrictions: (1) the earliest and fastest responses in the fishery will be seen in those species with faster turnovers, or relatively lower vulnerabilities to fishing; (2) the fishery would transition to a landed catch with higher mean trophic levels, and greater mean body lengths. In addition, the removal of a non‐selective, small‐mesh seine nets should benefit the catch of gears that previously had the greatest species selectivity overlap with the seine net. Many predictions were supported, although maximum lengths and lengths at maturity responded more rapidly than anticipated. The response to eliminating the non‐selective seine net was a more rapid increase in sizes caught by gears with a larger overlap in size (hook and lines) than species selectivity (gill nets). The simultaneous comparison of management systems over time indicates that open‐access fishing grounds can benefit from restrictions imposed in adjacent fishing grounds. The study indicated that multi‐species coral reef fisheries management objectives of maximising yields, as well as maintaining the fish community’s life‐history diversity, require management trade‐offs that balance local socio‐economic and biodiversity needs.  相似文献   

4.
Data collected through a stratified catch and effort survey were used to assess the impact of the 1998 mass coral bleaching event on socio-economic and biological indicators for the coastal reef fisheries of the Seychelles. There was a significant reduction in the abundance index and monthly yields per square kilometre for representatives of the family Siganidae following 1998. However, this was not associated with the bleaching event and conformed with the declining trend prior to the impact. Abundance indices and yields per square kilometre did not change significantly for the primary target families of the handline fisheries (Lutjanidae, Serranidae, Lethrinidae and Carangidae). Declining trends in abundance indices and yields for Octopodidae reversed after 1998, although the phenomena could not be independently linked to coral bleaching. Whilst critical resource based management issues are identified for the demersal handline fishery, the results suggest that there were no negative short-term bio-economic impacts on Seychelles coastal reef fisheries associated with mass coral mortality.  相似文献   

5.
Wasted fishery resources: discarded by-catch in the USA   总被引:1,自引:0,他引:1  
Fishery by‐catch, especially discarded by‐catch, is a serious problem in the world's oceans. Not only are the stocks of discarded species affected, but entire trophic webs and habitats may be disrupted at the ecosystem level. This paper reviews discarding in the marine fisheries of the USA; however, the type, diversity and regulatory mechanisms of the fisheries are similar to developed fisheries and management programmes throughout the world. We have compiled current estimates of discarded by‐catch for each major marine fishery in the USA using estimates from existing literature, both published and unpublished. We did not re‐estimate discards or discard rates from raw data, nor did we include data on protected species (turtles, mammals and birds) and so this study covers discarded by‐catch of finfish and fishable invertebrates. For some fisheries, additional calculations were required to transform number data into weight data, and typically length and weight composition data were used. Specific data for each fishery are referenced in Harrington et al. (Wasted Resources: Bycatch and discards in US Fisheries, Oceana, Washington, DC, 2005). Overall, our compiled estimates are that 1.06 million tonnes of fish were discarded and 3.7 million tonnes of fish were landed in USA marine fisheries in 2002. This amounts to a nationwide discard to landings ratio of 0.28, amongst the highest in the world. Regionally, the southeast had the largest discard to landings ratio (0.59), followed closely by the highly migratory species fisheries (0.52) and the northeast fisheries (0.49). The Alaskan and west coast fisheries had the lowest ratios (0.12 and 0.15 respectively). Shrimp fisheries in the southeast were the major contributors to the high discard rate in that region, with discard ratios of 4.56 (Gulf of Mexico) and 2.95 (South Atlantic). By‐catch and discarding is a major component of the impact of fisheries on marine ecosystems. There have been substantial efforts to reduce by‐catch in some fisheries, but broadly based programmes covering all fisheries are needed within the USA and around the world. In response to international agreements to improve fishery management, by‐catch and discard reduction must become a regular part of fishery management planning.  相似文献   

6.
A holistic basis for achieving ecosystem‐based management is needed to counter the continuing degradation of coral reefs. The high variation in recovery rates of fish, corresponding to fisheries yields, and the ecological complexity of coral reefs have challenged efforts to estimate fisheries sustainability. Yet, estimating stable yields can be determined when biomass, recovery, changes in per area yields and ecological change are evaluated together. Long‐term rates of change in yields and fishable biomass‐yield ratios have been the key missing variables for most coral reef assessments. Calibrating a fishery yield model using independently collected fishable biomass and recovery data produced large confidence intervals driven by high variability in biomass recovery rates that precluded accurate or universal yields for coral reefs. To test the model's predictions, I present changes in Kenyan reef fisheries for >20 years. Here, exceeding yields above 6 tonnes km?2 year?1 when fishable biomass was ~20 tonnes/km2 (~20% of unfished biomass) resulted in a >2.4% annual decline. Therefore, rates of decline fit the mean settings well and model predictions may therefore be used as a benchmark in reefs with mean recovery rates (i.e. r = 0.20–0.25). The mean model settings indicate a maximum sustained yield (MSY) of ~6 tonnes km?2 year?1 when fishable biomass was ~50 tonnes/km2. Variable reported recovery rates indicate that high sustainable yields will depend greatly on maintaining these rates, which can be reduced if productivity declines and management of stocks and functional diversity are ineffective. A number of ecological state‐yield trade‐off occurs as abrupt ecological changes prior to biomass levels that produce MSY.  相似文献   

7.
Fisheries enhancement initiatives are a potentially useful tool for managers to supplement traditional approaches. Habitat‐based enhancements often deploy artificial reefs with the aim to increase the available structure to augment local production, yet current assessment approaches make it difficult to assess whether these reefs achieve pre‐deployment goals. This makes it hard for managers to determine whether artificial reefs could improve their fishery outputs, potentially leading to missed opportunities and reduced production. We reviewed 270 research articles to determine whether existing monitoring studies identify whether artificial reefs meet their pre‐deployment goals, thereby providing some evidence of their suitability for certain fisheries. We found only 62% of these studies clearly articulated the original goals of the reef. Goals were qualitative, and most studies were conducted over insufficient time frames to allow for ecological communities to stabilize and mature. It is therefore difficult to determine the success or failure of many artificial reefs in addressing the management issues for which they were deployed. In the light of these findings, we think the setting of explicit quantitative goals (which may be biological, social or economic), and monitoring the performance of reefs against these goals, could stimulate the broader application of artificial reefs in fisheries management strategies. Such an approach has been successfully adopted in aquaculture‐based fisheries enhancement, and we explain how current evaluation methods such as harvest strategies can be easily adapted to quantitatively monitor artificial reef performance.  相似文献   

8.
Gear-based management for coral reef fisheries is often overlooked in the scientific literature. Empirical studies have demonstrated the conservation benefits of gear-restricted areas (i.e. prohibiting fishing gears), which can support greater biomass than unrestricted areas and protect species that play key functional roles. However, population dynamics of functional feeding groups of reef fishes under specific gear-restriction regimes remains uncertain. Here, we constructed a multi-species, length-based fisheries model to observe relative biomass and catch of reef fishes under various gear-restriction management scenarios. We used fishery-dependent and fishery-independent data to determine the catchability of functional groups and selectivity of size classes for hook-and-line, net and spear fishing, which are widely used gear types on coral reefs globally. Our model revealed trade-offs involved with gear-restriction management such that no single management strategy was able to maximize biomass or catch of all functional groups simultaneously. Also, we found that spear fishing (i.e. prohibiting hook-and-line and net fishing) maintained the highest total biomass summed across functional groups, whilst hook-and-line fishing (i.e. prohibiting net and spear fishing) and a ban on spears maintained the lowest biomass. However, hook-and-line fishing generated the highest catch-per-unit-effort. Our model results were primarily driven by differential growth rates, maximum per capita production of recruits, and catchability of functional groups targeted by each fishing gear. We demonstrate that gear restrictions can be a critical management tool for maintaining biomass and catch of certain functional groups but will likely require additional management to protect all key functional feeding groups of coral reef fishes.  相似文献   

9.
Reef fishes are significant socially, nutritionally and economically, yet biologically they are vulnerable to both over‐exploitation and degradation of their habitat. Their importance in the tropics for living conditions, human health, food security and economic development is enormous, with millions of people and hundreds of thousands of communities directly dependent, and many more indirectly so. Reef fish fisheries are also critical safety valves in times of economic or social hardship or disturbance, and are more efficient, less wasteful and support far more livelihoods per tonne produced than industrial scale fisheries. Yet, relative to other fisheries globally, those associated with coral reefs are under‐managed, under‐funded, under‐monitored, and as a consequence, poorly understood or little regarded by national governments. Even among non‐governmental organizations, which are increasingly active in tropical marine issues, there is typically little focus on reef‐associated resources, the interest being more on biodiversity per se or protection of coral reef habitat. This essay explores the background and history to this situation, examines fishery trends over the last 30 years, and charts a possible way forward given the current realities of funding, capacity, development patterns and scientific understanding of coral reef ecosystems. The luxury live reef food‐fish trade is used throughout as a case study because it exemplifies many of the problems and challenges of attaining sustainable use of coral reef‐associated resources. The thesis developed is that sustaining reef fish fisheries and conserving biodiversity can be complementary, rather than contradictory, in terms of yield from reef systems. I identify changes in perspectives needed to move forward, suggest that we must be cautious of ‘fashionable’ solutions or apparent ‘quick fixes’, and argue that fundamental decisions must be made concerning the short and long‐term values of coral reef‐associated resources, particularly fish, for food and cash and regarding alternative sources of protein. Not to address the problems will inevitably lead to growing poverty, hardship and social unrest in many areas.  相似文献   

10.
Currently, as many as 30 million coral reef fish belonging to 1,000 species are collected annually to supply private and public aquaria around the world. In addition, over 100 species of invertebrate are used, involving hundreds of thousands or even millions of individuals. The majority of these specimens come from coral reefs and associated habitats, with about 45 countries supplying the ornamental market. Considering the many pressures currently faced by reefs it is vital that ornamental fisheries are investigated and monitored, and management strategies formulated to ensure they are sustainable. This requires research, monitoring, training, use of non-damaging collecting methods and adoption of conservation strategies for controlling catch, such as reserves, quotas and closed seasons. There are also a number of possibilities for enhancing the fishery, such as mariculture and construction of artificial reefs. This paper concentrates on some of the conservation measures that can be taken and discusses their application and effectiveness. Such measures include limiting collecting effort, establishment of species-based or overall quotas, restrictions on rare and/or endemic species, temporary closures and establishment of fisherybreak reserves.  相似文献   

11.
The western and central Pacific Ocean (WCPO) tuna fishery is one of the world's largest in terms of both catch volume and value, providing over half of global tuna catch with a landed value of US $5.84 billion in 2017. Fishing is conducted by both large‐ and small‐scale fleets, with fisheries subsidies disproportionately benefiting the former. The primary objective of this study was to determine the optimal distribution of effort between two large‐scale fisheries (LSF) and two small‐scale fisheries (SSF) in the WCPO under three scenarios: to maximize industry benefits, minimize subsidization or maximize food supply. The objective was approached using a bioeconomic game‐theoretic model. Results indicate opposite distributions of effort to maximize industry benefits (all fishing conducted by LSF) or to minimize subsidization (all fishing by SSF), with more balanced effort distributions to maximize food supply. Total value of capacity‐enhancing subsidies in optimal scenarios ranged from $1.4 billion when industry benefits were maximized to $0.2 billion when subsidization was minimized. Investigation of suboptimal scenarios reveals the flexibility of these results, with wide ranges in outputted state variables for a given goal. Difficulty was encountered in modelling the SSF sector due to data deficiencies, a well‐recognized issue in managing SSF. Investments towards “data equity” to help ensure that management decision‐making can properly account for the SSF sector would be useful. This study has implications for the objectives we set in fisheries management, and the potential trade‐offs, often value‐driven in nature, that we must make explicit in that management.  相似文献   

12.
Declining fisheries catches are a global trend, with management failing to keep pace with growth in fishing effort and technological advances. The economic value of Honduras’ catches was estimated within the industrial and artisanal sectors. Catches were found to be 2.9 times greater than the official statistics between 1950 and 2015. The merging of industrial and artisanal catch data masked the decline in industrial catches and hid the strong growth of artisanal fisheries. In 1996, annual artisanal fisheries landed catches surpassed the industrial fishery sector, and in 2000, the annual net value of artisanal fisheries eclipsed the value of the industrial fisheries. These data highlight the importance of artisanal fisheries in Honduras and challenge the long‐held belief that the industrial sector contributes more to the national economy. The global paucity of fisheries data highlights the need for comprehensive strategies to collect more detailed and accurate fisheries data.  相似文献   

13.
Strategic long‐term sampling programmes that deliver recreational catch, effort and species demographic data are required for the effective assessment and management of recreational fisheries and harvested organisms. This study used a spatially and temporally stratified observer programme to examine variation in the rates, quantities and lengths of retained and discarded catches of key species in a recreational charter fishery. Geographic region, but not season, significantly influenced catch rates of key demersal species, being driven by temporally persistent latitudinal clines in environmental conditions influencing species distributions. There was considerable trip‐to‐trip variation in catch rates that were attributed to localised differences in fishing operations, locations, environmental conditions and client preferences. Broad trends in retained and discarded catch rates were nevertheless, similar across different fishing effort standardisations (per‐trip, per‐hour, per‐client, per‐client/fished hour), demonstrating that the coarsest unit of effort could be used in fishery assessments. Discard rates of organisms were variable and driven by a combination of mandated legal lengths, individual client and operator preferences for particular species and sizes of organisms, and not due to attainment of catch quotas or high‐grading. This study has identified important fishery attributes that require consideration in assessing charter fisheries and stocks of recreational fish species.  相似文献   

14.
Understanding and managing fishery selectivity to target species and desirable size are instrumental to fisheries management. China, as the world's largest producer of marine capture fisheries, has been widely perceived to possess unselective domestic fisheries. To date, this perception remains largely anecdotal and conjectural, hindering the development of evidence-based and effective management solutions. Here, we conducted a literature review to examine the magnitude and scale of unselective fisheries in China. By collating and analysing 140 fishery-level and 807 species-level records from 66 peer-reviewed publications from 2010 to 2021, we found that primary target species were absent in 59% of fisheries, while unidentifiable low-value and juvenile mixed catch were universal. Key commercial taxa were subject to nationwide multi-gear and multispecies fisheries, each involving an average of 3.33 types of gear and accounting for less than 25% of catch individually. The ‘permissible gears’ defined by the national gear regulatory catalogue were selective over target species and caught negligible by-products, though they were used less frequently, representing only 24% of catch records. While unselective fishing can provide seafood supplies for China's large population and potentially facilitate balanced harvest, management actions are needed to control the fishing pressure on primary target species and by-product species. Amid the ongoing fisheries management reform in China, we proposed management recommendations tailored to China's needs and social contexts, including accounting for the trade-off between socio-economic and ecological goals, contemplating impacts of unselective fishing when implementing TAC programmes, and strengthening fisheries monitoring to inform management at multiple scales.  相似文献   

15.
Catches are commonly misreported in many fisheries worldwide, resulting in inaccurate data that hinder our ability to assess population status and manage fisheries sustainably. Under‐reported catch is generally perceived to lead to overfishing, and hence, catch reconstructions are increasingly used to account for sectors that may be unreliably reported, including illegal harvest, recreational and subsistence fisheries, and discards. However, improved monitoring and/or catch reconstructions only aid in the first step of a fisheries management plan: collecting data to make inferences on stock status. Misreported catch impacts estimates of population parameters, which in turn influences management decisions, but the pattern and degree of these impacts are not necessarily intuitive. We conducted a simulation study to test the effect of different patterns of catch misreporting on estimated fishery status and recommended catches. If, for example, 50% of all fishery catches are consistently unreported, estimates of population size and sustainable yield will be 50% lower, but estimates of current exploitation rate and fishery status will be unbiased. As a result, constant under‐ or over‐reporting of catches results in recommended catches that are sustainable. However, when there are trends in catch reporting over time, the estimates of important parameters are inaccurate, generally leading to underutilization when reporting rates improve, and overfishing when reporting rates degrade. Thus, while quantifying total catch is necessary for understanding the impact of fisheries on businesses, communities and ecosystems, detecting trends in reporting rates is more important for estimating fishery status and setting sustainable catches into the future.  相似文献   

16.
Abstract Lake Victoria is one of the African Great Lakes, and an important source of affordable protein food in the form of fish. It provides employment, income, and export earnings to the riparian communities. Despite this importance there are major concerns about the status and exploitation of the fisheries. This study assesses if current extraction rates/yield of Nile perch, Lates niloticus (L.), from Lake Victoria are sustainable for the foreseeable future. The paper reviews trends in catch and effort in the Nile perch fishery and models the expected scenarios using ECOPATH. The fishery exhibits, classic indicators of intensive fishing, erring towards overexploitation, including: (i) decline in total estimated catch of Nile perch in recent years from the peaks in the 1990s. This is coupled with a shift in contribution of catches from higher trophic level species (Nile perch) to lower trophic level (dagaa) species. (ii) Three major trends in the fishing effort are evident: (a) almost doubling of the number of fishers and fishing boats between 1990 and 2000, and the even greater expansion between 2000 and 2002; (b) a large scale increase in the number of gears operational in the lake; and (c) the propensity for use of ‘illegal’ gears. (iii) Catch‐per‐unit‐effort has declined from about 80 to 45 kg per boat day. (iv) Predictive modelling (ECOSIM) of the future of the Nile perch fisheries under a scenario of increased fishing effort suggests that the fisheries are unsustainable and will decline in the long term. It appears that the Nile perch stocks in the three riparian countries are under intense fishing pressure, and unless concerted action is taken, the potential for degradation of the resources is prevalent. In view of the importance of these fisheries, it is recommended that a precautionary approach to further intens‐ification of the fisheries is adopted until such time empirical evidence shows that the fisheries are capable of further expansion and intensification. The main options for management are devolvement of responsibilities for the fisheries to the communities, enforcement of existing regulations, improved monitoring and data collection processes, reducing post‐harvest losses and increasing the value of the products to the export market.  相似文献   

17.
18.
通过文献研究,对日本资源管理型渔业体系下的典型作业方式管理措施进行梳理,以期对我国典型作业方式准入制度的构建和完善提供参考。对围网、底拖网、刺网和流网、定置网及鱿钓等5种日本渔业主要作业方式的管理措施体系进行了分类和介绍,认为日本的渔业管理通过不同层级的权限许可,根据海洋渔业资源的自然属性差异采取区域化的管理模式,并以恢复渔业资源为目标,逐步推进从总可捕量管理制度向捕捞努力量控制制度的转变。  相似文献   

19.
Fisheries provide nutrition and livelihoods for coastal populations, but many fisheries are fully or over‐exploited and we lack an approach for analysing which factors affect management tool performance. We conducted a literature review of 390 studies to assess how fisheries characteristics affected management tool performance across both small‐scale and large‐scale fisheries. We defined success as increased or maintained abundance or biomass, reductions in fishing mortality or improvements in population status. Because the literature only covered a narrow set of biological factors, we also conducted an expert elicitation to create a typology of broader fishery characteristics, enabling conditions and design considerations that affect performance. The literature suggested that the most commonly used management tool in a region was often the most successful, although the scale of success varied. Management tools were more often deemed successful when used in combination, particularly pairings of tools that controlled fishing mortality or effort with spatial management. Examples of successful combinations were the use of catch limits with quotas and limited entry, and marine protected areas with effort restrictions. The most common factors associated with inadequate biological performance were ‘structural’ issues, including poor design or implementation. The expert‐derived typologies revealed strong local leadership, high community involvement and governance capacity as common factors of success across management tool categories (i.e. input, output and technical measures), but the degree of importance varied. Our results are designed to inform selection of appropriate management tools based on empirical data and experience to increase the likelihood of successful fisheries management.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号