首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
This study evaluated the prediction accuracy of grass dry‐matter intake (GDMI) and milk yield predicted by the model GrazeIn using a database representing 522 grazing herds. The GrazeIn input variables under consideration were fill value (FV), grass energy content [Unité Fourragère Lait (UFL)], grass protein value [true protein absorbable in the small intestine when rumen fermen energy is limiting microbial protein synthesis in the rumen (PDIE)], pre‐grazing herbage mass (PGHM), daily herbage allowance (DHA) and concentrate supplementation. GrazeIn was evaluated using the relative prediction error (RPE). The mean actual GDMI and milk yields of grazing herds in the database ranged from 9·9–22·0 kg DM per cow d?1 and 8·9–41·8 kg per cow d?1, respectively. The accuracy of predictions for the total database estimated by RPE was 12·2 and 12·8% for GDMI and milk yield, respectively. The mean bias (predicted minus actual) for GDMI was ?0·3 kg DM per cow d?1 and for milk yield was +0·9 kg per cow d?1. GrazeIn predicted GDMI with a level of error <13·4% RPE for spring, summer and autumn. GrazeIn predicted milk yield in autumn (RPE = 17·6%) with a larger error in comparison with spring (RPE = 10·4%) and summer (RPE = 11·0%). Future studies should focus on the adaptation of GrazeIn to correct and improve the prediction of milk yield in autumn.  相似文献   

2.
GrazeIn is a model for predicting herbage intake and milk production of grazing dairy cows. The objectives of this paper are to test its robustness according to a planned arrangement of grazing and feeding scenarios using a simulation procedure, and to investigate the precision of the predictions from an external validation procedure with independent data. Simulations show that the predicted effects of herbage allowance, herbage mass, herbage digestibility, concentrate supplementation, forage supplementation and daily time at pasture are consistent with current knowledge. The external validation of GrazeIn is investigated from a large dataset of twenty experiments representing 206 grazing herds, from five research centres within Western Europe. On average, mean actual and predicted values are 14·4 and 14·2 kg DM d?1 for herbage intake and 22·7 and 24·7 kg d?1 for milk production, respectively. The overall precision of the predictions, estimated by the mean prediction error, are 16% (i.e. 2·3 kg DM d?1) and 14% (i.e. 3·1 kg d?1) for herbage intake and milk production, respectively. It is concluded that the GrazeIn model is able to predict variations in herbage intake and milk production of grazing dairy cows in a realistic manner over a wide range of grazing management practices, rendering it suitable as a basis for decision support systems.  相似文献   

3.
A 2‐year whole‐farm study compared pasture‐based systems increasing milk production per ha by increasing either stocking rate (from 2·5 to 3·8 cows ha?1) or milk yield per cow (from 6000 to 9000 kg cow?1 lactation?1) or both. Four treatments (systems), comprising 30 cows each, were compared under the same management and grazing decision rules. The diet was based on grazed pasture, whereas pellets and conserved fodder were fed when deemed necessary. Milk production per ha increased by 0·49, 0·1 and 0·66 in the systems that increased either stocking rate, milk yield per cow or both respectively. Cows in the ‘high milk yield per cow’ systems had a significantly higher body condition score throughout the lactation, but reproductive performance was similar among all groups. Total pasture utilized (11 t DM ha?1 year?1) and pasture nutritive value were similar across all systems. This was associated with the grazing rules applied and the ability of accurately supplementing to meet deficits in available pasture. At the whole‐system level, there was a higher marginal efficiency of supplement use when increasing stocking rate than when increasing milk yield per cow or increasing both (0·18, 0·07 and 0·12 kg milk MJ?1 of metabolizable energy of supplements respectively).  相似文献   

4.
The objective of this experiment was to use diurnal and temporal changes in herbage composition to create two pasture diets with contrasting ratios of water‐soluble carbohydrate (WSC) and crude protein (CP) and compare milk production and nitrogen‐use efficiency (NUE) of dairy cows. A grazing experiment using thirty‐six mid‐lactation Friesian x Jersey cows was conducted in late spring in Canterbury, New Zealand. Cows were offered mixed perennial ryegrass and white clover pastures either in the morning after a short 19‐day regrowth interval (SR AM) or in the afternoon after a long 35‐day regrowth interval (LR PM). Pasture treatments resulted in lower pasture mass and greater herbage CP concentration (187 vs. 171 g kg?1 DM) in the SR AM compared with the LR PM but did not affect WSC (169 g kg?1 DM) or the ratio of WSC/CP (1·0 g g?1). Cows had similar apparent DM (17·5 kg DM cow?1 d?1) and N (501 g N cow?1 d?1) intake for both treatments. Compared with SR AM cows, LR PM cows had lower milk (18·5 vs. 21·2 kg cow?1 d?1), milk protein (0·69 vs. 0·81 kg cow?1 d?1) and milk solids (1·72 and 1·89 kg cow?1 d?1) yield. Urinary N concentration was increased in SR AM, but estimated N excretion and NUE for milk were similar for both treatments. Further studies are required to determine the effect of feeding times on diurnal variation in urine volume and N concentration under grazing to predict urination events with highest leaching risk.  相似文献   

5.
Eighty winter‐calving dairy cows of mixed parity were managed in four grassland‐based systems of milk production (F‐F, F‐C, C‐F and C‐C) over a full lactation (year 1) and during the winter period of the subsequent lactation (year 2). During the winter periods cows on systems F‐F and F‐C were offered silages of high feeding value, supplemented with 6·0 kg d?1 of concentrate [crude protein (CP), 307 g kg?1 dry matter (DM)] through an out‐of‐parlour feeding system, while cows on systems C‐F and C‐C were offered silages of medium feeding value, supplemented with c. 12·8 kg d?1 of concentrate (CP, 204 g kg?1 DM), in the form of a complete diet. After 25 February in year 1, cows on systems F‐F and C‐F were given access to grazing for periods of increasing duration, achieving full turnout on 17 April. Thereafter, until 21 October, these cows were offered a high daily allowance of herbage within a flexible grazing system (23·0 kg DM per cow, measured above a height of 4·0 cm), supplemented with 0·5 kg d?1 of a ‘high magnesium’ concentrate. Cows on systems F‐C and C‐C (year 1) commenced grazing on 1 April, achieving full turnout on 17 April. Thereafter, until 20 October, these cows were managed on a restricted allowance of herbage in a rotational paddock grazing system, with concentrates (average allocation, 3·9 kg d?1) being offered according to yield. In year 2, cows on systems F‐F and C‐F were given access to grazing for periods of increasing duration, from 11 March to 8 April, at which point the study was terminated. With systems F‐F, F‐C, C‐F and C‐C, mean feed inputs and milk outputs (per animal) during year 1 of the study were as follows: total concentrate DM intakes [881, 1272, 1729 and 2171 kg (s.e.m. 96·1)]; total silage DM intakes [1722, 1713, 1047 and 1154 kg (s.e.m. 70·7)], total grass DM intakes (3245, 2479, 3057 and 2481 kg) and total milk outputs [7541, 7527, 7459 and 7825 kg (s.e.m. 305·8)] respectively. Stocking rates associated with each of the four systems were 2·2, 2·5, 2·6 and 2·9 cows per hectare respectively. Performance of dairy cows on the systems during the winter of year 2 was similar to that recorded during year 1. The results of this study indicate that similar levels of milk output, DM intakes, tissue changes and plasma metabolite profiles can be achieved from grassland‐based systems involving very different combinations of grass silage, grazed grass and concentrate feeds.  相似文献   

6.
A full lactation study compared the performance of autumn‐calving dairy cows of high genetic merit under two contrasting systems of milk production: high forage (HF) and high concentrate (HC). During the winter, animals on system HF were offered a silage with a high feeding value characteristics, supplemented with 5·5 kg of concentrate [crude protein content of 280 g kg?1 dry matter (DM)] through an out‐of‐parlour feeding system. From 14 March, these animals were given increasing access to grazing, achieving 24‐h turnout on 15 April. Thereafter, until day 305 of lactation, these animals were offered a large daily herbage allowance (23·0 kg grass DM cow?1, measured above a height of 4·0 cm), supplemented with 0·5 kg d?1 of a ‘high‐magnesium’ concentrate. During the winter, animals on system HC were offered a silage of medium feeding value, mixed with ≈14·0 kg of concentrate d?1 (crude protein content of 202 g kg?1 DM) in the form of a complete diet. These animals commenced grazing on 9 April, achieving 24‐h turnout on 18 April. From 18 April until 9 June, daily herbage allowances and concentrate feed levels were 17·0 kg DM and 5·0 kg respectively; thereafter, and until day 305 of lactation, these daily allowances were reduced to 15·0 kg of herbage DM and 4·0 kg of concentrate. Animal performance during the first 305 days of lactation for systems HF and HC, respectively, were as follows: total concentrate DM inputs, 842 and 2456 kg; total silage DM intakes, 2205 and 1527 kg; total grass DM intakes, 3019 and 2044 kg; total feed DM intake, 6061 and 6032 kg and total milk output, 7854 and 8640 kg. Total milk output per cow with system HF was 786 kg lower than for system HC, despite similar total DM intakes, suggesting a greater total nutrient requirement with the former to support a given milk production. However, the study confirms that relatively similar levels of animal performance can be achieved from systems based on very different sources of nutrient supply.  相似文献   

7.
Milk fatty acids (FA) were compared in mid‐lactation dairy cows in four feeding systems combining grazing management and supplementation. The four treatments were factorial combinations of compressed herbage grazed to 3·7 or 4·6 cm post‐grazing height, with or without concentrate feeding (3·6 kg cow?1 d?1). Milk yield and composition were measured for four groups of eight Friesian × Jersey dairy cows over 3 weeks in mid‐lactation for cows that had grazed treatments for 64 d from early spring. Milk yield was higher in cows fed concentrate plus herbage (23·9 kg d?1 cow?1) than cows fed herbage only (20·3 kg d?1 cow?1). Milk fat percentage was higher in cows fed herbage only (5·5%) than that fed herbage plus concentrate (5·1%). Milk protein percentage was higher in cows fed herbage plus concentrate (4·0%) than that fed herbage only (3·7%). The concentrations of conjugated linoleic acids c9, t11, C18:0, C18:1 t11 and C18:2 t9, c12 FA were lower where concentrate was fed. The concentrations of C18:1 t10, C18:1 t5, t8 and C18:2 c9, c12 FA were higher where concentrate was fed. The concentrations of C18:1 c6, C18:1 c9, C18:1 t9 and C18:3 c6,9,15 were unaffected by concentrate feeding. Post‐grazing herbage height had no significant effect on milk yield or concentration of milk FA. Provided dairy cows are harvesting leafy material of similar nutrient and FA concentration, post‐grazing herbage height does not appear to alter milk FA and the supply of high energy concentrates is more influential on milk FA profiles.  相似文献   

8.
The objective of this study was to examine the effects of predicted milk yields sustained by grazed grass (‘Milk‐from‐Grass’: LOW, MED or HIGH) and Parity (primiparous or multiparous) on the performance and concentrate requirements of grazed Holstein‐Friesian dairy cows offered concentrates on a ‘feed‐to‐yield’ basis during the grazing season. The mean Milk‐from‐Grass values assigned to cows in the LOW, MED and HIGH treatment groups (sixteen multiparous and eight primiparous cows per group) during the experiment (24 May to 2 October; 131 d) were 12·7, 15·4 and 18·1 kg cow?1 d?1, respectively. Concentrate allocations were adjusted every two weeks (approximately) based on individual cows’ milk yields, and concentrate was offered at a rate of 0·45 kg for each kg of milk produced above the assigned Milk‐from‐Grass value at that time. Increasing Milk‐from‐Grass from LOW to MED to HIGH decreased both the mean daily concentrate allocations (4·90, 3·17 and 1·79 kg cow?1 d?1, respectively) and milk yields (23·8, 21·8 and 19·0 kg cow?1 d?1) of the cows. Cows in the LOW treatment group had lower mean and final (i.e. at the end of the study) BCS and LW than those in the MED or HIGH groups. The effects of Milk‐from‐Grass were similar for both primiparous and multiparous cows.  相似文献   

9.
Grass silage made in May from S24 perennial ryegrass was offered ad libitum to twelve Ayrshire cows in a 12-week feeding experiment. The silage had a DM concentration of 217 g kg -1, contained 147 g crude protein per kg DM and had a D-value of 64·6. In addition each cow consumed 1 kg hay per d plus concentrate supplements of dried sugar-beet pulp with (A) soya bean meal, (B)‘Pruteen’, a single-cell protein (C) groundnut cake. The three concentrate supplements each contained 250 g crude protein per kg DM and were offered at the rate of 2·9 kg per 10 kg milk. The daily intakes of silage DM were 8·38, 7·94 and 7·49 kg on treatments A, B and C, respectively, with the extreme values being significantly different. The mean daily yields of milk on treatments A and B were both 16·2 kg per cow, and were significantly higher than the yield of 15·2 kg per cow on treatment C. The fat and lactose contents of the milk on the three treatments were not significantly different, but the CP content on treatment C was significantly lower than that on the other treatments. It is concluded that soya bean meal and‘Pruteen’were superior to groundnut cake as a protein supplement in a silage-based ration.  相似文献   

10.
The effect of offering a total mixed ration of silage and concentrate (proportionately 0·44 silage) system [indoor feeding system (IF)] was compared with grazing at a high daily herbage allowance with a low level of concentrate supplementation [early grazing system (EG)] in early spring on the performance of spring‐calving dairy cows in Ireland. Sixty‐four spring‐calving Holstein–Friesian dairy cows (mean calving date, 2 February) were allocated to one of two systems between 16 February and 4 April 2004. An equal number of primiparous and multiparous cows were assigned to each system. The dairy cows on the IF system were housed for a 7‐week period and offered a diet of 10·9 kg DM cow?1 d?1 (s.d. 2·3) of concentrate, the remainder of the diet was 8·6 kg DM cow?1 d?1 (s.d. 1·9) of grass silage. The dairy cows on the EG system were offered a mean daily herbage allowance of 15·1 kg DM cow?1 d?1 (s.d. 3·7) and were supplemented with 3·0 kg DM cow?1 d?1 (s.d. 1·0) of concentrate. There was no difference in milk yield between the two systems but the cows in the EG system had a higher milk protein concentration (2·9 g kg?1) and a higher milk protein yield than in the IF system. Milk fat concentration was higher for cows in the IF than EG system (3·0 g kg?1). There was no difference in total daily dry‐matter intake between the systems, measured in week 6 of the study. Mean live weight of the cows in the IF system was greater than in the EG system. The results of the study suggest that a slightly greater performance can be achieved by a system offering a high daily herbage allowance to spring‐calving dairy cows in early lactation compared with a system offering a total mixed ration containing a high proportion of concentrate with grass silage.  相似文献   

11.
The objective of this study was to investigate the effects of an early (February; F) or delayed (April; A) primary spring grazing date and two stocking rates, high (H) and medium (M), on the grazing management, dry matter (DM) intake of grass herbage and milk production of spring‐calving dairy cows grazing a perennial ryegrass sward in the subsequent summer. Sixty‐four Holstein‐Friesian dairy cows (mean of 58 d in milk) were assigned to one of four grazing treatments (n = 16) which were imposed from 12 April to 3 July 2004. Cows on the early spring‐grazing treatment were grazed at 5·5 cows ha?1 (treatment FH) and 4·5 cows ha?1 (treatment FM) while cows on the late‐grazing treatment were grazed at 6·4 cows ha?1 (treatment AH) and 5·5 cows ha?1 (treatment AM). The organic matter digestibility and crude protein concentration of the grass herbage were higher on the early‐grazing treatment than on the late‐grazing treatment. The cows on the FM treatment had significantly (P < 0·001) higher milk (24·5 kg), solids‐corrected milk (22·5 kg), fat (P < 0·01, 918 g) and protein (831 g) yields than the other three treatments. Cows on the FM treatment had a higher (P < 0·001) DM intake of grass herbage by 2·3 kg DM per cow per day than cows on the AH treatment, which had a DM intake significantly lower than all other treatments (15·2 kg DM per cow per day). The results of the present study showed that grazing in early spring has a positive effect on herbage quality in subsequent grazing rotations. The study also concluded that early spring‐grazed swards stocked at a medium stocking rate (4·5 cows ha?1; FM) resulted in the highest DM intake of grass herbage and milk production.  相似文献   

12.
This study examined productivity, nitrogen (N) flows and N balances in grassland‐based systems of dairy production in Ireland. There were four stocking densities of dairy cows on grass/white clover pastures and four inputs of N as fertilizers, concentrates and biological fixation over 2 years; 2001 and 2002. Annual stocking densities were 1·75, 2·10, 2·50 and 2·50 cows ha?1. Associated N inputs were 205, 230, 300 and 400 kg ha?1 respectively. There were eighteen cows per system. Cows calved within a 12‐week interval in spring with a mean calving date of 28 February and lactation extended until mid‐December in each year. There were no differences in annual milk yield (6337 kg cow?1; s.e.m. 106·1), live weight or body condition score. Pre‐grazing N concentrations in herbage increased (P < 0·001) with increasing N input, whereas there were no differences in N concentrations in silage reflecting optimum N inputs for silage production. Grazed herbage accounted for 0·64, silage 0·26 and concentrates 0·10 of annual dry matter consumed by the cows. Annual intakes of N ranged from 144 to 158 kg cow?1 and were mostly influenced by N concentration in grazed herbage. Annual output of N in milk and liveweight change was 38 kg cow?1 and was not different between systems. Annual N surpluses increased with increasing N inputs from 137 to 307 kg ha?1, whereas the proportion of N inputs recovered in products declined from 0·34 to 0·24. More efficient N use was associated with lower N inputs and in particular lower N concentrations in grazed herbage.  相似文献   

13.
In two changeover design experiments, fifteen early- and sixteen late-lactation cows were used to investigate the effects of offering food beet with ad libitum grass silage and concentrates with different CP content on milk yield and quality. In Experiment 1 (early lactation) cows were offered no fodder beet (0) or 4 kg DM d?1 (4) in conjunction with one of three concentrates containing 159, 191 or 244g CP kg?1 DM (L.M.H.). Treatments were therefore 1L/0, 1L/4, 1M/0, 1M/4, 1H/0 and 1H/4. In Experiment 2 (late lactation) cows were offered the same level of fodder beet in conjunction with two concentrates containing 129 and 229 (L,H) g CP kg?1 DM. Treatments were therefore 2L/0, 2L/4, 2H/0 and 2H/4. In both experiments feeding fodder beet reduced silage DM intakes (P < 0·001) and increased total DM intake (P < 0·05 to P < 0·001). The substitution rate (r) ranged from 0·46 to 0·59kg of silage DM (kg?1 fodder beet DM). In Experiment 1, fodder beet tended to increase milk yield, composition and yield of constituents, but the effect was statistically significant for milk protein content only (P < 0·01). In Experiment 2, milk yields for 2L/0, 2L/4, 2H/0 and 2H/4 were 11·3, 12·1, 11·7 and 12·5 kg d?1 respectively (s.e.d. 0·43, non-significant), fat contents were 44·4, 47·3, 44·3 and 46·8g fat kg?1 respectively (s.e.d. 0·73, P < 0·001), protein contents were 34·3, 35·6, 35·3 and 36·2 g protein kg?1 respectively (s.e.d. 0·28, P < 0·001), fat yields were 494, 574, 512 and 579 g fat d?1 respectively (s.e.d. 20, P < 0·001) and protein yields were 385, 426, 407 and 442 g protein d?1 (s.e.d. 13, P < 0·01) respectively. Increasing CP in the concentrate significantly increased milk yield in Experiment 1 (23·9, 22·5, 23·5, 23·8, 26·2, 26·5kg d?1 for 1L/0, 1L/4, 1M/0, 1M/4, 1H/0 and 1H/4 respectively, P < 0·05). Higher CP in concentrate also resulted in significantly increased milk protein yield in early-lactation (P < 0·001) and milk protein content in late-lactation (P < 0·01) cows. There was a significant interaction between fodder beet and concentrate CP content for milk protein yield (P < 0·001) in Experiment 1.  相似文献   

14.
In change‐over trials, mid‐lactation dairy cows were fed concentrate‐supplemented, isonitrogenous and isofibrous perennial ryegrass–legume silage diets that satisfied energy requirements but were suboptimal with respect to metabolizable protein supply. Legumes were either birdsfoot trefoil with low levels of condensed tannins (typical for hemiboreal conditions), or white clover. Averaged over two experimental years, birdsfoot trefoil–based silage resulted in lower digestibility (P < 0·001) of dry matter (50 g kg?1), organic matter (52 g kg?1), neutral detergent fibre (120 g kg?1) and nitrogen (24 g kg?1) and lower rumen total volatile fatty acid concentration (7 mm ; P = 0·009). Milk protein yield was 36 g d?1 higher with birdsfoot trefoil silage (P = 0·002), while raw milk yield tended to be 0·8 kg d?1 higher (P = 0·06). Rumen ammonia concentration was similar between diets, but milk urea concentration (< 0·001), urinary urea excretion (P = 0·002) and faecal‐N proportion (P = 0·001) were higher with birdsfoot trefoil silage. The results suggest that grass–birdsfoot trefoil silage produced in hemiboreal areas exhibits a protein‐sparing effect in dairy rations, despite a low condensed tannin content that is further diluted by companion grasses and ration concentrate proportion.  相似文献   

15.
Two experiments were conducted to examine the ‘long‐term’ effect of feed space allowance and period of access to feed on dairy cow performance. In Experiment 1, three horizontal feed space allowances (20, 40 and 60 cm cow?1) were examined over a 127‐d period (14 cows per treatment). In Experiment 2, 48 dairy cows were used in a continuous design (10‐week duration) 2 × 2 factorial design experiment comprising two horizontal feed space allowances (15 and 40 cm cow?1), and two periods of access to feed (unrestricted and restricted). With the former, uneaten feed was removed at 08·00 h, while feeding took place at 09·00 h. With the latter, uneaten feed was removed at 06·00 h, while feeding was delayed until 12·00 h. Mean total dry‐matter (DM) intakes were 19·0, 18·7 and 19·3 kg cow?1 d?1 with the 20, 40 and 60 cm cow?1 treatments in Experiment 1, and 18·1 and 18·2 kg cow?1 d?1 with the ‘restricted feeding time’ treatments, and 17·8 and 18·1 kg d?1 with the ‘unrestricted feeding time’ treatments (15 and 40 cm respectively) in Experiment 2. None of milk yield, milk composition, or end‐of‐study live weight or condition score were significantly affected by treatment in either experiment (P > 0·05), while fat + protein yield was reduced with the 15‐cm treatment in Experiment 2 (P < 0·05). When access to feed was restricted by space or time constraints, cows modified their time budgets and increased their rates of intake.  相似文献   

16.
Thirty-six British Friesian heifers were divided into two groups during weeks 3-26 of lactation and received ad libitum either good (G) or average (A) quality grass silage. The in vitro digestible organic matter in the DM was 680 and 600 g kg-1 for silages G and A, respectively. In addition, the heifers in each group were offered concentrate at either a low (4.3 kg DM d-1), medium (64 kg DM d-1) or high (8.4 kg DM d-1) level. The concentrate contained 180 g (kg DM)-1 of crude protein and had a calculated metabolizable energy concentration of 12.9 MJ (kg DM)-1. Increasing concentrate level significantly increased milk yield (P < 0.01), milk protein concentration (P < 0.05), and yield of both milk protein depressed milk fat concentration (P < 0.001) and silage intake (P < 0.001). Although the overall effect of silage quality on milk yield was not significant, the milk yields for silage G at each concentrate level were higher, significantly so for low level, than the corresponding values for silage A. An improvement in silage quality did not affect milk fat concentration but significantly increased the concentration of milk protein (P < 005) and yields of both milk fat (P < 005) and protein (P < 0001). The response of silage DM intake to improved silage quality was 0 06 kg DM per 10 g rise in vitro DOMD value. Each additional kg concentrate DM depressed intake of silages G and A by 0-63 and 0-27 kg DM, respectively. Substitution rate was also significantly related to stage of lactation. With both silages, the digestibility coefficients determined in vivo for acid detergent fibre (ADF) decreased significantly (P < 0.001) when concentrate level was increased from low to high. Differences for DM, OM and total N digestibility coefficients between treatments were not established as significant at the 5% level. Estimates of mean efficiency of utilization of ME for lactation, made on a weekly basis, were 049 and 052 for the heifers given silages G and A. respectively, and 048, 052 and 052 for those given the low, medium and high levels of concentrate. Energy balances were calculated on a mean weekly basis.  相似文献   

17.
Low rates of herbage dry matter (DM) intake impose limits on total daily DM intake in grazing dairy cows. The objective of this study was to increase total daily DM intake and milk production by restricting daily time available for grazing (TAG) and replacing it with time available for eating a maize silage/soyabean meal (TAMS) diet indoors. The treatments (TAG + TAMS) were 20 + 0, 19 + 1, 10 + 10 and 5 + 15 h. Measurements were made of milk production, intake and feeding behaviour. The interactions of TAG + TAMS treatments with sward height (SH) and concentrate level (CL) were also examined. Two experiments, each lasting 42 days, were carried out in spring ( Experiment 1 ) and autumn ( Experiment 2 ) using forty‐eight and twenty‐four Holstein‐Friesian cows respectively. Treatments were arranged in a factorial design with TAG + TAMS treatments, SH ( Experiment 1 only) and CL as the independent variables and a TAG + TAMS of 20 h. Reducing TAG and increasing TAMS significantly reduced estimated herbage DM intake and significantly increased maize silage/soyabean meal intake in both experiments, but there were no significant main effects of TAG + TAMS treatments on milk yield (mean, 27·4 and 25·5 kg d?1 for Experiments 1 and 2 respectively), and yield of milk constituents. Increasing SH ( Experiment 1 ) and CL ( Experiments 1 and 2 ) significantly increased milk yield. In Experiment 1 , there was a significant interaction between TAG + TAMS treatments and SH with the taller sward height of 8–10 cm and the 20 + 0 treatment having the highest milk yield (29·7 kg d?1) and the 5 + 15 treatment the lowest (27·2 kg d?1), whereas at the lower sward height of 4–6 cm, milk yield was lowest on the 20 + 0 treatment (25·5 kg d?1) with the other three treatments being higher (mean, 26·9 kg d?1). Replacing TAG with TAMS significantly increased liveweight gain in Experiment 1 but not in Experiment 2 . Estimated rates of intake of herbage were lower in the autumn experiment ( Experiment 2 , 9·6 g DM min ?1) than in the spring experiment ( Experiment 1 , 29·4 g DM min ?1) but rates of intake of maize silage were higher in the autumn (112·4 g DM min?1) than in the spring (72·5 g DM min?1). In conclusion, in spring the response to replacing TAG with TAMS was dependent on sward conditions with the highest milk fat plus protein yield being on the 20 + 0 treatment at the high sward height and on the 19 + 1 treatment at the low sward height. The high liveweight gain of the 5 + 15 treatment could be an important means of restoring body condition in grazing lactating cows. In autumn, intakes of herbage were low in spite of its high estimated nutritive value with all treatments having a similar level of performance.  相似文献   

18.
Two experiments were conducted to examine the effect of two winter feeding systems on the performance of dairy cows in early lactation. Experiments 1 (144 d duration) and 2 (146 d duration) involved sixty‐four (primiparous) and eighty‐six (primiparous and multiparous) Holstein Friesian dairy cows respectively. Rations offered comprised grass silage, maize silage [0·26–0·29 of forage dry matter (DM)] and concentrates (10–12 kg d?1). With the complete diet (treatment CD), the forage and concentrate components were mixed using a complete diet mixer wagon, and offered daily in the form of a ‘complete diet’. With the easy feed (treatment EF), the dairy cows were offered the forage component of the ration twice weekly in whole blocks, in quantities sufficient for the following 3‐ or 4‐d period, while the concentrate component of the diet was offered via electronic out‐of‐parlour feeding stations. Total DM intakes were similar, namely 17·6 and 17·0 kg d?1 (Experiment 1) and 18·7 and 18·5 kg d?1 (Experiment 2), for treatments CD and EF respectively. Feeding system had no significant effect on milk yield, milk fat or milk protein content, or on end of study indices of body tissue reserves in either experiment (P > 0·05). Similarly, feeding system had no significant effect on the digestibility of the ration measured in Experiment 2 (P > 0·05). Feeding times associated with each component of the two feeding systems were measured, and these were then used to calculate total feeding time for a 97‐cow dairy herd. Calculated feeding times for this herd were 209·3 and 156·0 min week?1 for treatments CD and EF respectively.  相似文献   

19.
Agronomic data on most broad‐leaved species of grasslands are scarce. The aim of this study was to obtain novel information on herbage DM yield and forage quality for several forb species, and on species differences and seasonal patterns across harvests and in successive years. Four non‐leguminous forbs [salad burnet (Sanguisorba minor), caraway (Carum carvi), chicory (Cichorium intybus) and ribwort plantain (Plantago lanceolata)] and three leguminous forbs [yellow sweet clover (Melilotus officinalis), lucerne (Medicago sativa) and birdsfoot trefoil (Lotus corniculatus)] and a perennial ryegrass–white clover mixture were investigated in a small‐plot cutting trial in Denmark during 2009 and 2010. Plots were harvested four times per year. On average, annual herbage yield was highest for lucerne (15·4 t DM) and grass–white clover (12·5 t DM ha?1), and lowest for salad burnet (4·6 t DM ha?1) and yellow sweet clover (3·9 t DM ha?1). Ribwort plantain and lucerne had the highest concentrations of acid detergent fibre (339 and 321 g kg?1 DM respectively) and lignin (78 and 67 g kg?1 DM respectively); contents in other species were similar to grass–white clover (275 and 49 g kg?1 DM respectively). No common feature was found within the functional groups of non‐leguminous forbs and leguminous forbs, other than higher crude protein contents (198–206 g kg?1 DM) in the legumes. DM yield and fibre content were lowest in October. Digestibility declined with higher temperature and increasing fibre content. Results are discussed in terms of the potential of forbs to contribute to forage resources in farming practice.  相似文献   

20.
Two experiments are described in which two levels of winter feeding and three levels of herbage allowance during the grazing season were imposed upon March/April calving British Friesian dairy cows. The winter treatments resulted in differences in live weight and milk yield at turnout of 35 and 53 kg and 3·4 and 3·2 kg d-1 for the two trials. Subsequently, when grazed at generous herbage allowances, the cows were able to compensate for much of this difference but when herbage was restricted the milk yield differences were accentuated. Groups of cows from each winter treatment were offered 25, 50 or 75 (Experiment 1) and 30, 50 or 70 (Experiment 2) g herbage DM per kg LW daily during the grazing season. Daily herbage intakes on the three allowances in each trial were 14·1, 13·3, 10·7 and 12·5, 12·1, 11·5 kg OM and milk yields were 16·0, 15·3, 12·5 and 15·2, 14·3, 11·8 kg SCM respectively. Both intake and milk production were depressed once the cows were forced to consume more than 50% of herbage on offer or to graze the sward down to a mean height of less than 8–10 cm. Grazing behaviour observations indicated that under rotational managements the cows did not compensate for restrictions in available herbage by grazing longer. Highest levels of milk production per unit area were observed in both trials when production per cow was depressed by 20–25%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号