首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Objective To evaluate changes in intraocular pressure and pupil size in glaucomatous dogs after instillation of 0.004% travoprost once in the morning, or once in the evening, or twice daily in 5‐day multiple dose studies. Materials and methods Applanation tonometry (IOP) and pupil size (PS) measurements were obtained at 8 a.m., 10 a.m., 12 noon, 2 p.m. and 4 p.m. in eight glaucoma dogs. Methylcellulose (0.5% as placebo) was instilled in the control eye, and 0.004% travoprost was instilled in the opposite drug eye. Methylcellulose (0.5%) and 0.004% travoprost were instilled on the 2nd through to the 5th day with instillations in the morning (8.30 a.m.), or evening (8 p.m.), or twice daily (8.30 a.m. and 8 p.m.). Results The mean ± SEM diurnal changes from baseline IOP in the control and placebo eyes in all three studies ranged from 1.2 ± 0.3 mmHg to 3.2 ± 0.9 mmHg. The mean ± SEM diurnal changes from the baseline IOP after 0.004% travoprost at 8 a.m. once daily for the next 4 days were 19.0 ± 2.7 mmHg, 24.7 ± 2.7 mmHg, 24.9 ± 3.1 mmHg, and 24.7 ± 3.1 mmHg, respectively, and were significantly different from the control eye. After travoprost was instilled at 8 p.m., the mean ± SEM baseline changes from the baseline IOP in the drug eyes were 23.5 ± 2.2 mmHg, 24.2 ± 2.2 mmHg, 24.5 ± 2.3 mmHg, and 24.2 ± 2.3 mmHg, respectively. When 0.004% travoprost was instilled twice daily, the mean ± SEM baseline IOP changes were 27.7 ± 2.1 mmHg, 28.1 ± 2.1 mmHg, 28.4 ± 2.2 mmHg, and 28.5 ± 2.2 mmHg, respectively, and were significantly different from the control eyes. Miosis of varying duration was frequent during the three studies. Conclusion Travoprost instilled once daily (a.m. or p.m.) as well as twice daily produces significant decreases in IOP and PS in the glaucomatous Beagle.  相似文献   

2.
Objective To evaluate the changes in intraocular pressure and pupil size in glaucomatous dogs after instillation of 0.005% latanoprost (Xalatan, Pharmacia and Upjohn, Kalamazoo, MI, USA) once in the morning, or once in the evening, or twice daily in five‐day multiple‐dose studies. Animals studied Eight Beagles with the moderate stage of inherited primary open‐angle glaucoma. Procedures Applanation tonometry (IOP) and pupil size (PS) measurements were obtained at 8 am, 10 am, 12 noon, 2 pm, and 4 pm in eight glaucoma dogs. Methylcellulose (0.5% as placebo) was instilled in the control eye, and 0.005% latanoprost was instilled in the opposite drug eye. Control and drug eyes were selected using a random table. For these three studies, 0.5% methylcellulose and 0.005% latanoprost were instilled the second through the fifth days with instillations in the morning (8.30 am), or evening (8 pm), or twice daily (8.30 am and 8 pm). Statistical comparisons between drug groups included control, placebo, and treated (0.005% latanoprost) eyes for three multiple‐dose studies. Results In the 8‐am latanoprost study, the mean ± SEM diurnal declines in IOP for the placebo and drug eyes for the first day were 6.5 ± 3.6 mmHg and 8.4 ± 4.0 mmHg, respectively. The mean ± SEM diurnal changes in IOP after 0.005% latanoprost at 8 am once daily for the next four days were 23.3 ± 5.0 mmHg, 25.4 ± 2.1 mmHg, 25.7 ± 1.7 mmHg, and 26.1 ± 1.7 mmHg, respectively, and were significantly different from the control eye. A significant miosis also occurred starting 2 h postdrug instillation, and the resultant mean ± SD pupil size was 1.0 ± 0.1 mm. In the first day of the second latanoprost study, the mean ± SEM diurnal changes in the placebo and drug eye IOPs were 11.6 ± 3.8 mmHg, and 12.0 ± 4.4 mmHg, respectively. For the following four days with latanoprost instilled at 8 pm, the mean ± SEM diurnal changes in IOP in the drug eyes were 24.9 ± 2.1 mmHg, 22.4 ± 1.8 mmHg, 21.6 ± 1.9 mmHg, and 26.6 ± 2.2 mmHg, respectively. Compared to the fellow placebo eyes, the diurnal changes in IOP were significantly different. Significant changes in pupil size were similar to the IOP changes, with miosis throughout the day and return to baseline pupil size the following morning before drug instillation. In the last study, the mean ± SEM diurnal changes in IOP for the placebo and drug eyes for the first day were 6.6 ± 2.1 mmHg and 9.4 ± 2.8 mmHg, respectively. For the four subsequent days with latanoprost instilled twice daily, the mean ± SEM diurnal IOP changes were 19.6 ± 1.5 mmHg, 19.1 ± 1.4 mmHg, 19.9 ± 1.7 mmHg, and 20.3 ± 0.7 mmHg, respectively, and were significantly different from the placebo eyes. The mean changes in PS were 3.1 ± 0.7 mm. Conclusion 0.005% latanoprost instilled once daily (am or pm) as well as twice daily produces significant decreases in IOP and PS in the glaucomatous Beagle. The evening instillation of 0.005% latanoprost produced less daily fluctuations in IOP than when the drug was instilled in the morning. 0.005% latanoprost instilled twice daily produced the greatest decline in IOP with the least daily fluctuations, but longer duration miosis.  相似文献   

3.
ObjectiveTo determine the effects of intramuscular (IM) administration of medetomidine and xylazine on intraocular pressure (IOP) and pupil size in normal dogs.Study designProspective, randomized, experimental, crossover trial.AnimalsFive healthy, purpose-bred Beagle dogs.MethodsEach dog was administered 11 IM injections of, respectively: physiological saline; medetomidine at doses of 5, 10, 20, 40 and 80 μg kg−1, and xylazine at doses of 0.5, 1.0, 2.0, 4.0 and 8.0 mg kg−1. Injections were administered at least 1 week apart. IOP and pupil size were measured at baseline (before treatment) and at 0.25, 0.50, 0.75, 1, 2, 3, 4, 5, 6, 7, 8 and 24 hours post-injection.ResultsA significant decrease in IOP was observed at 6 hours after 80 μg kg−1 medetomidine compared with values at 0.25 and 0.50 hours, although there were no significant changes in IOP from baseline. In dogs treated with 8.0 mg kg−1 xylazine, significant reductions in IOP were observed at 4 and 5 hours compared with that at 0.25 hours after administration. In dogs treated with 5, 10, 20 and 40 μg kg−1 medetomidine and 0.5, 1.0 and 2.0 mg kg−1 xylazine, there were no significant changes in IOP. Pupil size did not change significantly after any of the medetomidine or xylazine treatments compared with the baseline value.Conclusions and clinical relevanceLow or moderate doses of medetomidine or xylazine did not induce significant changes in IOP or pupil size. In contrast, high doses of medetomidine or xylazine induced significant changes up to 8 hours after treatment, but values remained within the normal canine physiological range. The results of this study suggest a lack of significant change in IOP and pupil size in healthy dogs administered low or moderate doses of xylazine or medetomidine.  相似文献   

4.
OBJECTIVE: To determine the effect of single and multiple-dose 0.5% timolol maleate on intraocular pressure (IOP) and pupil size between 8 AM and 8 PM. Animals Nine female horses with normotensive eyes. Procedure IOP, horizontal and vertical pupil size were measured on a single day, between 8 AM and 8 PM at hours 0, 0.5, 1, 2, 4, 6, 8, 10, and 12. A single dose of 0.5% timolol maleate was applied to both eyes immediately after the first measurement at 8 AM. IOP and pupil size were measured at 8 AM and 4 PM in a 5-day experiment of twice-daily application of 0.5% timolol maleate. RESULTS: A significant decrease in IOP from 24.9 +/- 4.2 mmHg prior to application of timolol maleate to 20.7 +/- 3.1 mmHg (4.2 mmHg = 17%) was observed 8 h after single-dose application. A significant decrease in horizontal pupil size (2.0 mm = 11%) was present 6 h after single-dose application. In the multiple-dose experiment, a significant decrease in IOP was present on days 4 and 5 as compared to IOP measured prior to application of timolol maleate. A significant decrease in horizontal and vertical pupil size was present throughout the 5-day study as compared to the values obtained prior to treatment. CONCLUSIONS: 0.5% timolol maleate significantly decreased IOP and pupil size in normo-tensive eyes of this group of female horses in both single and multiple twice daily applications.  相似文献   

5.
6.
7.
OBJECTIVE: To determine whether the combination multiple-dose dorzolamide-timolol administered topically has any greater effects on the reduction of intraocular pressure, pupil size, and heart rate in dogs with glaucoma than do either timolol or dorzolamide alone. PROCEDURE: Applanation tonometry, pupil size, and heart rate measurements were made at 7 a.m., 1 p.m., and 7 p.m. daily of 12 laboratory Beagles with inherited primary open-angle glaucoma during each active phase of this study. Timolol 0.5% was administered first twice daily for 4 consecutive days. Dorzolamide 2.0% was administered next three times daily for 4 consecutive days. The fixed combination of the two (timolol 0.5% and dorzolamide 2.0%) was administered twice daily for 4 consecutive days during the final week of the study. Between administration of each drug, a withdrawal period of at least 10 days was instituted. Statistical comparisons between the effects of the three drugs were performed. RESULTS: Intraocular pressure (IOP) was decreased with the administration of all three drugs: timolol alone, dorzolamide alone, and the combination of the two decreased IOP after 1 day of treatment 2.83 +/- 0.70 mmHg, 6.47 +/- 0.32 mmHg, and 6.56 +/- 0.37 mmHg, respectively. After 4 days of treatment, the IOP decreased even further: timolol alone, dorzolamide alone, and the combination of the two decreased IOP 3.75 +/- 0.88 mmHg, 7.50 +/- 0.29 mmHg, and 8.42 +/- 0.58 mmHg, respectively. Heart rate was significantly decreased with timolol (-11.9 +/- 2.0 bpm) and the combination preparation (-8.6 + 2.4 bpm), but not with dorzolamide (-3.7 +/- 1.8 bpm) alone. Pupil size was significantly decreased with timolol (-1.42 + 0.40 mm) and the combination preparation (-1.3 + 0.33 mm), but not with dorzolamide (0.97 +/- 0.36 mm) alone. CONCLUSIONS: The combination dorzolamide-timolol appears to be more effective at reducing intraocular pressure in glaucomatous dogs than is either timolol or dorzolamide alone.  相似文献   

8.
PURPOSE: The purpose of this study was to determine if intravenous hypertonic hydroxyethyl starch (7.5%/6%) (HES) could decrease the intraocular pressure (IOP) in healthy normotensive dogs, and compare its effect with that of mannitol (20%) (experimental study). In addition, the potential IOP-lowering effect of hypertonic HES was evaluated in six dogs with primary glaucoma (clinical study). MATERIAL AND METHODS: Experimental study: eight male ophthalmoscopically and clinically healthy Beagles were included in this study. The IOP of each dog was measured by applanation tonometry in both eyes to obtain control values at 10:00, 10:15, 10:30, 10:45, 11:00 a.m., and then every hour until 6:00 p.m. prior to the first treatment (control period). Each dog received, with at least 2-week intervals and in a random order, an intravenous (IV) infusion of 4 mL/kg hypertonic HES (1.2 g/kg NaCl; 0.96 g/kg HES) and 4 mL/kg mannitol 20% (1 g/kg) over a period of 15 min starting at 10:00 a.m. IOP was measured oculus uterque (OU) at the same time intervals as in the control study. The differences in IOP between the treatment groups and the baseline IOP (before the start of infusion), between oculus sinister (OS) and oculus dexter (OD) and between the same time points of all groups were determined with a Student's t-test for paired samples (P = 0.05). Clinical study: six dogs with primary glaucoma (representing seven eyes) received an IV infusion of 4 mL/kg hypertonic HES over a period of 15 min. IOP was measured before and 15 and 30 min after starting the infusion. RESULTS: Experimental study: no significant difference between IOP of both eyes was found. A significant decrease in IOP from baseline value was recorded at 15, 30, 45, and 60 min after the start of mannitol infusion (mean amplitude in IOP decrease 3.21 mmHg; P < 0.05) and at 15 and 30 min in dogs treated with HES (mean amplitude in IOP decrease 2.43 mmHg; P < 0.05). At 120 and 180 min there was a significantly higher IOP (P < 0.05) in HES treatment group compared to the values of the control group. Clinical study: in 5/7 eyes diagnosed with primary glaucoma a maximum decrease in IOP of an average of 24% from the baseline value (IOP before start of the infusion) was observed (range of decrease 2-21 mmHg). In three of these five cases the maximum decrease was reached at 15 min and in two cases at 30 min. In one case an increase in IOP of 35% (+ 18 mmHg) was seen after 15 min and 26% (+ 13 mmHg) after 30 min. Case 4 showed an increase in IOP of 5% (+ 3 mmHg) after 15 min and a decrease of 6% (- 4 mmHg) after 30 min. CONCLUSIONS: Intravenous hypertonic HES is comparable to intravenous mannitol 20% in lowering the intraocular pressure in healthy normotensive dogs. But this effect lasted half an hour longer after mannitol. In 6/7 eyes with primary glaucoma, hypertonic HES decreased IOP.  相似文献   

9.
Objective To determine the effects of 10% ketamine hydrochloride and 0.5% diazepam on intraocular pressure (IOP) and horizontal pupil diameter (HPD) in the canine eye. Procedures Ten healthy dogs for each treatment group were used in this study. In the first group, 20 mg/kg ketamine hydrochloride was injected intravenously; in the second, 0.5 mg/kg diazepam was similarly injected; and in the third, a control group, 0.9% saline was used. In all groups, IOP and HPD were measured every 5 min for 35 min in the first group, and 60 min in the second and third group. Results A maximum increase in IOP was obtained 5 min after ketamine injection, with IOP of 23.2 ± 5.8 mmHg (a 45.0% increase compared to baseline) in the right eye and 22.9 ± 5.9 mmHg (a 43.5% increase) in the left eye (both significant at P < 0.01). A significant IOP increase was observed throughout the research period of 35 min. Statistically significant increases in HPD (P < 0.05) were observed only at 5 and 25 min after ketamine injection. A significant increase in IOP was obtained 10 min after diazepam injection, showing a maximum IOP 20 ± 5.0 mmHg in the right eye (9.3% increase) and 19.9 ± 5.1 mmHg (8.7% increase) in the left eye (both significant at P < 0.05). HPD decreased during the study period, reaching the lowest level 30 min post‐treatment. Conclusions This study showed a substantial increase in IOP after ketamine injection and a less substantial, but still significant increase after diazepam injection. These findings should be taken into consideration when using these drugs in dogs with fragile corneas, or in dogs predisposed or affected by glaucoma.  相似文献   

10.
The objective of this study was to evaluate the changes in intraocular pressure (IOP) in glaucomatous dogs after instillations of 0.2% brimonidine once, twice and three times daily in single day studies, and after twice and three times daily for 4 days in multiple dose studies. We studied eight Beagles with inherited primary open angle glaucoma. Applanation tonometry (IOP), pupil size (PS) and heart rate (HR) measurements were obtained at 8 am, 10 am, 1 pm, 3 pm and 5 pm. The studies were divided into: eight glaucoma dogs and five of the eight dogs that demonstrated greater response to 0.2% brimonidine. Single-dose drug studies are divided into placebo (0.5% methylcellulose), 0.2% brimonidine administered once daily (8 am); twice daily (8 am and noon); and three times daily (8 am, noon and 5 pm). The 5-day multiple-dose studies included: day 1, no drug; and 4 days, 0.2% brimonidine instillations either twice daily (8 am and 2 pm) or three times daily (8 am, 2 pm and 9 pm). Statistical comparisons between drug groups included control (nondrug) and treated (placebo/0.2% brimonidine) eyes for both single- and multiple-dose studies. The mean +/- SEM diurnal decrease in IOP in the eight glaucomatous Beagles for the control and placebo eyes were 3.4 +/- 4.7 and 5.4 +/- 2.8 mmHg, respectively. The mean +/- SEM diurnal decrease in IOP after 0.2% brimonidine once, twice and three times daily was 6.4 +/- 3.5, 8.0 +/- 6.1 and 9.8 +/- 8.1 mmHg, respectively; this trend was not significant statistically. Significant miosis occurred starting 2 h postinstillations, and the resultant mean +/- SD pupil size was 2.7 +/- 0.3 mm. A significant decrease in heart rate also occurred (12%). In the five most responsive dogs the changes in PS and HR during these studies were similar to the larger group, but significant decreases in IOP occurred at most measurement times. In the multiple-dose study with 0.2% brimonidine twice daily the mean +/- SEM decrease in IOP for day 1 to day 4 was 5.0 +/- 1.3, 5.7 +/- 1.3, 1.4 +/- 3.3 and 4.9 +/- 1.3 mmHg, respectively. When 0.2% brimonidine was instilled three times daily the mean +/- SEM diurnal IOP decrease was from day 1 to day 4 and was 0.75 +/- 1.3, 2.4 +/- 1.5, 1.2 +/- 2.7 and 1.4 +/- 1.8 mmHg, respectively. The mean change in pupil diameter was 1.3 +/- 0.5 mm. Decrease in HR averaged 22%. In the same single-dose studies with the five most responsive dogs, PS and HR were similar, but the decreases in IOP were significant at more measurement intervals. We conclude that 0.2% brimonidine produces a decrease in IOP in dogs, a statistically significant miosis, and a reduced heart rate (12-22%). However, because of the limited drug-induced ocular hypotension, brimonidine should be combined with other drugs when used for the glaucomas in the dog.  相似文献   

11.
OBJECTIVE: To determine the effect of various mydriatics (1% atropine, 1% cyclopentolate, 0.5% tropicamide, 10% phenylephrine) on intraocular pressure (IOP) and pupil size (PS) in normal cats. ANIMALS STUDIED: The mydriatics were tested in 10 adult ophthalmoscopically normal European Domestic Short-haired cats. Procedure Single-dose drug studies were divided into placebo (vehicle of phenylephrine), 10% phenylephrine, 0.5% tropicamide, 1% cyclopentolate and 1% atropine. After measurement of IOP and pupil size (PS) at 8 a.m. on the first day, one drop of the tested drug was applied to one randomly selected eye. The IOP and PS were measured for a minimum of 36 h until the pupil returned to pretest size. RESULTS: Ten per cent phenylephrine had no significant effect on IOP, and the effect on the pupil size was minimal (相似文献   

12.
OBJECTIVE: To determine the effect of oral hydrocortisone on intraocular pressure (IOP) in ocular normotensive dogs. ANIMALS STUDIED: Seventeen ocular normotensive dogs. Procedures Dogs were randomly assigned to treatment (n = 9) and control (n = 8) groups. Dogs in the treatment group received hydrocortisone, 3.3 mg/kg PO every 8 h, and dogs in the control group received gelatin capsule placebo PO every 8 h for 5 weeks. Applanation tonometry was performed on both eyes of all dogs prior to treatment and then once weekly for 5 weeks during hydrocortisone treatment. RESULTS: No significant effect of treatment was noted for right (P = 0.1013) or left (P = 0.1157) eyes during the treatment period, nor was there significant interaction of treatment by week for the right (P = 0.9456) or left (P = 0.3577) eyes. A significant rise in IOP over the treatment period was noted in both right (P < 0.0001) and left (P = 0.0006) eyes of both groups, but was unrelated to treatment. CONCLUSION: Orally administered hydrocortisone does not significantly increase IOP in nonglaucomatous dogs when administered over a 5-week period.  相似文献   

13.
14.
15.

Objective

To compare intraocular pressure (IOP) and pupillary diameter (PD) following intravenous (IV) administration of dexmedetomidine and acepromazine in dogs.

Study design

Prospective, randomized experimental trial.

Animals

A group of 16 healthy adult dogs aged (mean ± standard deviation) 4.9 ± 3.3 years and weighing 15.7 ± 9.6 kg, without pre-existing ophthalmic disease.

Methods

IV dexmedetomidine hydrochloride (0.002 mg kg–1; DEX) or acepromazine maleate (0.015 mg kg–1; ACE) was administered randomly to 16 dogs (eight per group). The IOP and PD, measured using applanation tonometry and Schirmer's strips mm scale, respectively, and the heart rate (HR), systolic (SAP), mean (MAP) and diastolic (DAP) arterial pressures and respiratory rate (fR) were recorded at baseline, at time of injection, and then 5, 10, 15, 20 and 25 minutes after injection. A single ophthalmologist, unaware of treatment, performed all measurements under consistent light conditions. Values were compared with baseline and among treatments using a multivariate mixed-effects model (p ≤ 0.05).

Results

The IOP was significantly lower in the DEX group compared with the ACE group at 10 (p < 0.01) and 15 minutes (p < 0.01) after drug injection. PD was significantly smaller compared to baseline for the entire duration of the study (p < 0.01) in both groups. Dogs in the DEX group had significant lower HR (p < 0.01) and fR (p < 0.01), higher SAP (p < 0.01) and DAP (p < 0.01) at all time points, and higher MAP (p < 0.01) during the first 15 minutes following drug injection in comparison with the ACE group.

Conclusions and clinical relevance

Our results suggest that premedication with IV dexmedetomidine temporarily decreases IOP when compared with IV acepromazine. Both drugs cause miosis.  相似文献   

16.
Objective To determine the distribution of intraocular pressure, as measured by applanation tonometry, in dogs with cataracts, and compare these tonometric results to the different stages of cataract formation (incipient, immature, mature, and hypermature). Animals studied Retrospection study of canine clinical patients (86 dogs). Procedures All records of dogs presented from 1991 to 1996 to the university veterinary medical teaching hospital for diagnosis of cataracts and evaluation for cataract surgery were reviewed. The tonometric measurements from the initial ophthalmic examination were selected in cataractous and nonglaucomatous eyes either receiving no topical or no systemic medications. The stage of cataracts was based on the degree of opacification, tapetal reflection, clinical vision, and visibility of the ocular fundus by indirect ophthalmoscopy. The distribution of tonometric results were grouped by the cataract maturity, and compared by anova and Tukey’s general linear tests. Results Intraocular pressure with incipient cataracts ranged from 9 to 17 mmHg (mean 12.7 ± 1.2 mmHg). Intraocular pressure with immature cataracts ranged from 3 to 27 mmHg (mean 13.6 ± 0.6 mmHg). For the mature cataracts, IOP ranged from 5 to 22 mmHg (mean 11.9 ± 0.7 mmHg). For the hypermature cataract group, IOP ranged from 4 to 23 mmHg (mean 10.8 ± 0.6 mmHg). Comparison of the tonometric results among the different stages of cataract formation indicated a significant difference (P = 0.0086) between only the immature and hypermature groups. Conclusions Intraocular pressure in lens‐induced uveitis (LIU) is lowered but the relationship to the stage of cataract maturity is less clear. Significant tonometric differences were present between the immature and hypermature cataract groups, but these differences are too small to be clinically useful. Decreased intraocular pressure of dogs with all stages of cataract formation suggests concurrent LIU during all stages of cataract formation, especially with the mature and hypermature stages. The average tonometric measurements in dogs with these cataracts were about two standard deviations below the mean IOP reported in normal dogs.  相似文献   

17.
18.
19.
OBJECTIVE: To determine the effect of topical 1% ophthalmic atropine sulfate on intraocular pressure (IOP) in ocular normotensive horses. Animals Studied Eleven clinically healthy horses. Procedures IOP was measured bilaterally twice daily, at 8 AM and 4 PM, for 5 days. No medication was applied for the first 2 days of the study. Thereafter, one eye of each horse was treated with 0.1 mL of topical 1% atropine sulfate ointment twice daily (7 AM and 7 PM) for 3 days. The contralateral eye served as a control. In eight of the horses, an additional IOP reading was taken 3 days following cessation of the atropine treatment. RESULTS: There was no significant difference in the IOP of control vs. treatment eyes in the pretreatment period, days 1 and 2 (P = 0.97 and 0.55, respectively). During the treatment period, treated eyes of 10 of the horses had significantly lower IOP than control eyes (P = 0.03). The mean IOP reduction in treated eyes, relative to untreated eyes, was 11.2%. One horse had a significant rise in IOP in the treated eye compared to the remaining study animals. The IOP of control eyes did not vary significantly over the observation period (P = 0.27). There was no significant variation in IOP between the 8 AM and 4 PM measurement (P = 0.9). CONCLUSIONS: Topical 1% atropine sulfate causes a small, but significant decline in IOP in most ocular normotensive horses. Because topical atropine may elevate IOP in some horses, it should be used with caution in the treatment of glaucoma in this species.  相似文献   

20.
OBJECTIVE: The objective of the study was to determine the effects of systemic 0.5% tropicamide on intraocular pressure (IOP), pupillary diameter (PD), blood pressure, and heart rate (HR) in normal felines with normotensive eyes. PROCEDURES: Intraocular pressure, PD, systolic blood pressure (SBP), diastolic blood pressure (DBP), mean blood pressure (MBP), and HR were measured in 18 clinically healthy cats. Each of the previously mentioned parameters was measured every 30 min during the trial period. At T(60), each cat was treated with one to two drops of 0.5% tropicamide ophthalmic solution placed on the dorsal aspect of the tongue. Changes in SBP, DBP, MBP, and HR were evaluated using one-way repeated measures analysis of variance, with time as the repeated factor. IOP and PD were evaluated using two-way repeated measures analysis of variance, with time and side (OD vs. OS) as the repeated factors. P values less than or equal to 0.05 were considered statistically significant. RESULTS: After lingual tropicamide administration, the mean PD at T(60) was 3.53 mm OD and 3.53 mm OS. The mean PD at T(90) was 6.36 mm OD and 6.31 mm OS. The mean PD at T(120) was 8.25 mm OD and 8.19 mm OS. This change in PD from T(60), T(90), and T(120) was statistically significant, demonstrating a linear increase in PD over time after tropicamide application on the tongue (P<0.0001). There was no statistically significant difference in PD when comparing the right to the left pupils (P=0.10). The mean IOP at T(60) was 14 mmHg OD and 12.94 mmHg OS. The mean IOP at T(90) was 14.5 mmHg OD and 14.23 mmHg OS. The mean IOP at T(120) was 14.94 mmHg OD and 14.89 mmHg OS. This change in IOP from T(60), T(90), and T(120) was statistically significant, demonstrating a linear increase in IOP over time after tropicamide application on the tongue (P=0.034). There was no statistically significant difference in IOP when comparing the right eye to the left eye (P=0.28). There were no statistically significant differences in SBP, DBP, MBP, and HR values over time for the duration of the study. CONCLUSIONS: We conclude that although lingual application of tropicamide appears to result in systemic absorption, causing significant pupillary dilation and elevations in IOP, systemic effects on SBP, DBP, MBP, and HR were not observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号