首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The Law of the Sea requires that fish stocks are maintained at levels that can produce the maximum sustainable yield (MSY). However, for most fish stocks, no estimates of MSY are currently available. Here, we present a new method for estimating MSY from catch data, resilience of the respective species, and simple assumptions about relative stock sizes at the first and final year of the catch data time series. We compare our results with 146 MSY estimates derived from full stock assessments and find excellent agreement. We present principles for fisheries management of data‐poor stocks, based only on information about catches and MSY.  相似文献   

2.
A previous study documented a correlation between Atlantic Cod (Gadus morhua) recruitment in the Gulf of Maine and an annual index of the north component of May winds. This correlation was supported by modeling studies that indicated strong recruitment of Gulf of Maine Atlantic Cod results from high retention of spring‐spawned larvae in years when winds were predominately out of the north, which favor downwelling. We re‐evaluated this relationship using updated recruitment estimates and found that the correlation decreased between recruitment and wind. The original relationship was largely driven by two recruitment estimates, one of which (2005 year‐class) was highly uncertain because it was near the terminal year of the assessment. With additional data, the updated assessment estimated lower recruitment for the 2005 year‐class, which consequently lowered the correlation between recruitment and wind. We then investigated whether an environmentally‐explicit stock recruit function that incorporated an annual wind index was supported by either the original or updated assessment output. Although incorporation of the annual wind index produced a better fitting model, the uncertainty in the estimated parameters and the implied unexploited conditions were not appropriate for providing management advice. These results suggest the need for caution in the development of environmentally‐explicit stock recruitment relationships, in particular when basing relationships and hypotheses on recruitment estimates from the terminal years of stock assessment models. More broadly, this study highlights a number of sources of uncertainty that should be considered when analyzes are performed on the output of stock assessment models.  相似文献   

3.
Understanding the recruitment variability of the Atlantic herring North Sea stock remains a key objective of stock assessment and management. Although many efforts have been undertaken linking climatic and stock dynamic factors to herring recruitment, no major attempt has been made to estimate recruitment levels before the 20th century. Here, we present a novel annually resolved, absolutely dated herring recruitment reconstruction, derived from stable carbon isotope geochemistry (δ13C), from ocean quahog shells from the Fladen Ground (northern North Sea). Our age model is based on a growth increment chronology obtained from fourteen shells. Ten of these were micromilled at annual resolution for δ13C analysis. Our results indicate that the anthropogenically driven relative depletion of 13C, the oceanic Suess effect (oSE), became evident in the northern North Sea in the 1850s. We calculated a regression line between the oSE‐detrended δ13C results (δ13C?) and diatom abundance in the North Sea, the regression being mediated by the effect of phytoplankton on the δ13C of the ambient dissolved inorganic carbon. We used this regression to build an equation mediated by a nutritional link to reconstruct herring recruitment using δ13C?. The reconstruction suggests that there were five extended episodes of low‐recruitment levels before the 20th century. These results are supported by measured recruitment estimates and historical fish catch and export documentation. This work demonstrates that molluscan sclerochronological records can contribute to the investigation of ecological baselines and ecosystem functioning impacted by anthropogenic activity with implications for conservation and stock management.  相似文献   

4.
Many commercial fish stocks are beginning to recover under more sustainable exploitation regimes. In this study, we document the temporal and spatial changes in one remarkable example of stock recovery: northern European hake (Merluccius merluccius). Analysing data from several scientific surveys, we document a dramatic increase in estimates of biomass between 2004 and 2011 throughout the larger area now occupied by the stock. The largest increase occurred in the North Sea, where hake have been largely absent for over 50 years. Spatio‐temporally resolved commercial landings show that high densities occur in the North Sea only between April and September, suggesting a density‐dependent seasonal habitat expansion to suitable temperature and depth conditions. These changes have implications for the management of the stock which are discussed. Notably, if discards are banned as part of management revisions, the relatively low quota for hake in the North Sea will be a limiting factor (the so‐called ‘choke’ species) which may result in a premature closure of the entire demersal mixed fishery in the North Sea, jeopardizing many commercial fisheries in the region. This example of the unforeseen consequences of improved stewardship highlight the need for a more holistic, regional and responsive approach to managing our marine ecosystems.  相似文献   

5.
Maintaining fish stocks at optimal levels is a goal of fisheries management worldwide; yet, this goal remains somewhat elusive, even in countries with well‐established fishery data collection, assessment and management systems. Achieving this goal often requires knowledge of stock productivity, which can be challenging to obtain due to both data limitations and the complexities of marine populations. Thus, scientific information can lag behind fishery policy expectations in this regard. Steepness of the stock–recruitment relationship affects delineation of target biomass level reference points, a problem which is often circumvented by using a proxy fishing mortality rate (F) in place of the rate associated with maximum sustainable yield (FMSY). Because MSY is achieved in the long term only if an F proxy is happenstance with FMSY, characterizing productivity information probabilistically can support reference point delineation. For demersal stocks of equatorial and tropical regions, we demonstrate how the use of a prior probability distribution for steepness can help identify suitable F proxies. F proxies that reduce spawning biomass per recruit to a target percentage of the unfished quantity (i.e., SPR) of 40% to 50% SPR had the highest probabilities of achieving long‐term MSY. Rebuilding was addressed through closed‐loop simulation of broken‐stick harvest control rules. Similar biomass recovery times were demonstrated for these rules in comparison with more information‐intensive rebuilding plans. Our approach stresses science‐led advancement of policy through a lens of information limitations, which can make the assumptions behind rebuilding plans more transparent and align management expectations with biological outcomes.  相似文献   

6.
Forage fish occupy a central position in marine food‐webs worldwide by mediating the transfer of energy and organic matter from lower to higher trophic levels. The lesser sandeel (Ammodytes marinus) is one of the ecologically and economically most important forage fish species in the North‐east Atlantic, acting as a key prey for predatory fish and sea birds, as well as supporting a large commercial fishery. In this case study, we investigate the underlying factors affecting recruitment and how these in turn affect productivity of the North Sea sandeel using long‐term data and modelling. Our results demonstrate how sandeel productivity in the central North Sea (Dogger Bank) depends on a combination of external and internal regulatory factors, including fishing and climate effects, as well as density dependence and food availability of the preferred zooplankton prey (Calanus finmarchicus and Temora longicornis). Furthermore, our model scenarios suggest that while fishing largely contributed to the abrupt stock decline during the late 1990s and the following period of low biomass, a complete recovery of the stock to the highly productive levels of the early 1980s would only be possible through changes in the surrounding ecosystem, involving lower temperatures and improved feeding conditions. To that end, we stress the need for ecosystem‐based management accounting for multiple internal and external factors occurring within the broader context of the ecosystem in which forage fish species, such as sandeel, play an important and integral part.  相似文献   

7.
This study presents a Monte Carlo method (CMSY) for estimating fisheries reference points from catch, resilience and qualitative stock status information on data‐limited stocks. It also presents a Bayesian state‐space implementation of the Schaefer production model (BSM), fitted to catch and biomass or catch‐per‐unit‐of‐effort (CPUE) data. Special emphasis was given to derive informative priors for productivity, unexploited stock size, catchability and biomass from population dynamics theory. Both models gave good predictions of the maximum intrinsic rate of population increase r, unexploited stock size k and maximum sustainable yield MSY when validated against simulated data with known parameter values. CMSY provided, in addition, reasonable predictions of relative biomass and exploitation rate. Both models were evaluated against 128 real stocks, where estimates of biomass were available from full stock assessments. BSM estimates of r, k and MSY were used as benchmarks for the respective CMSY estimates and were not significantly different in 76% of the stocks. A similar test against 28 data‐limited stocks, where CPUE instead of biomass was available, showed that BSM and CMSY estimates of r, k and MSY were not significantly different in 89% of the stocks. Both CMSY and BSM combine the production model with a simple stock–recruitment model, accounting for reduced recruitment at severely depleted stock sizes.  相似文献   

8.
The survival of fish eggs and larvae, and therefore recruitment success, can be critically affected by transport in ocean currents. Combining a model of early‐life stage dispersal with statistical stock–recruitment models, we investigated the role of larval transport for recruitment variability across spatial scales for the population complex of North Sea cod (Gadus morhua). By using a coupled physical–biological model, we estimated the egg and larval transport over a 44‐year period. The oceanographic component of the model, capable of capturing the interannual variability of temperature and ocean current patterns, was coupled to the biological component, an individual‐based model (IBM) that simulated the cod eggs and larvae development and mortality. This study proposes a novel method to account for larval transport and success in stock–recruitment models: weighting the spawning stock biomass by retention rate and, in the case of multiple populations, their connectivity. Our method provides an estimate of the stock biomass contributing to recruitment and the effect of larval transport on recruitment variability. Our results indicate an effect, albeit small, in some populations at the local level. Including transport anomaly as an environmental covariate in traditional stock–recruitment models in turn captures recruitment variability at larger scales. Our study aims to quantify the role of larval transport for recruitment across spatial scales, and disentangle the roles of temperature and larval transport on effective connectivity between populations, thus informing about the potential impacts of climate change on the cod population structure in the North Sea.  相似文献   

9.
Climate change and anthropogenic disturbances may affect marine populations and ecosystems through multiple pathways. In this study we present a framework in which we integrate existing models and knowledge on basic regulatory processes to investigate the potential impact of future scenarios of fisheries exploitation and climate change on the temporal dynamics of the central Baltic herring stock. Alternative scenarios of increasing sea surface temperature and decreasing salinity of the Baltic Sea from a global climate model were combined with two alternative fishing scenarios, and their direct and ecosystem‐mediated effects (i.e., through predation by cod and competition with sprat) on the herring population were evaluated for the period 2010–2050. Gradual increase in temperature has a positive impact on the long‐term productivity of the herring stock, but it has the potential to enhance the recovery of the herring stock only in combination with sustainable fisheries management (i.e., Fmsy). Conversely, projections of herring spawning stock biomass (SSB) were generally low under elevated fishing mortality levels (Fhigh), comparable with those experienced by the stock during the 1990s. Under the combined effects of long‐term warming and high fishing mortality uncertainty in herring SSB projections was higher and increasing for the duration of the forecasts, suggesting a synergistic effect of fishery exploitation and climate forcing on fish populations dynamics. Our study shows that simulations of long‐term fish dynamics can be an informative tool to derive expectations of the potential long‐term impact of alternative future scenarios of exploitation and climate change.  相似文献   

10.
Different stock–recruitment models were fitted to North Atlantic albacore (Thunnus alalunga) recruitment and spawning stock biomass data. A classical density dependence hypothesis, a recent environmental‐dependence hypothesis and a combination of both were considered. For the latter case, four stock–environment–recruitment models were used: Ricker, Beverton‐Holt, Deriso's General Model (modified to take into account environmental effects) and conditioned Neural Networks. Cross‐validation analysis showed that the modified Deriso model had the best predictive capability. It detected an inverse effect of the North Atlantic Oscillation (NAO) on recruitment, a Ricker‐type behaviour with density dependent overcompensation when environmental conditions are unfavourable and a Beverton–Holt‐type behaviour towards an asymptotic recruitment carrying capacity with favourable environmental conditions. The Neural Network model also detected that under favourable environmental conditions high spawning stock biomass does not necessarily have a depensatory effect on recruitment. Moreover, they suggest that under extremely favourable environmental conditions, albacore recruitment could increase well above the asymptotic carrying capacity predicted by Beverton–Holt‐type models. However, the general decrease in spawning stock biomass in recent years and increasing NAO trends suggest that there is low probability of exceptionally large recruitment in the future and instead there is a danger of recruitment overfishing.  相似文献   

11.
Maximum sustainable yield (MSY) has generally been accepted as one of the target biological reference points. Albacore, Thunnus alalunga Bonnaterre, is a temperate tuna species widely distributed in marine waters. The International Commission for the Conservation of Atlantic Tunas (ICCAT) and the International Seafood Sustainability Foundation (ISSF) had reported the southern Atlantic albacore stock status with different MSY reference points. In addition, the European Commission's Advisory Committee on Fisheries and Aquaculture (ACFA), on 15 September 2006, proposed to amend the Common Fisheries Policy according to the MSY principle, but there is little information on the verifier of the MSY estimates of this albacore stock. This study verifies the MSY estimates of this albacore (T. alalunga) stock to support the management (i.e. setting of MSY) for the southern Atlantic albacore (T. alalunga) stock. The MSY estimates of the albacore stock were evaluated and verified by different models (i.e. Bayesian surplus production model [BSPM], continuous time delay‐difference model [CD‐DM] and Fox surplus production model [SPM]). The MSY estimates from BSPM and CD‐DM were lower than those from conventional estimates; the relative biomass ratio (B2011/BMSY) and relative fishing mortality ratio (F2011/FMSY) from BSPM and CD‐DM were higher than those from ICCAT, which showed that measures should be taken for the sustainable utilisation of this fish stock.  相似文献   

12.
Abstract The North Carolina (NC) southern flounder, Paralichthys lethostigma (Jordan and Gilbert), stock has experienced heavy exploitation during the past two decades. Recently, several management changes were initiated to lower harvest rates and restore stock biomass. Here, the age, growth and maturity of southern flounder harvested by a southeast NC estuarine gillnet fishery are characterised and compared with observations from previous studies and with statewide data on the stock to evaluate any regulatory effects and assess the potential for selective removal by the fishery. Despite regulatory changes, the estuarine gillnet fishery still harvested mainly age‐0 and age‐1 individuals that were mostly immature, meaning that the current fishing practices likely only allow a small portion of the harvestable stock the opportunity to reproduce. Relative to length‐at‐age patterns observed within the stock from statewide collections, fish captured by the gillnet fishery were above average length at each age; the legal size and the gear appeared to cause selective harvest of the fastest growers within each cohort. If the demographic characteristics of the catch observed in this study are broadly representative of gillnet fisheries in other estuarine nursery habitats throughout NC, the harvesting tactics in this sector of the fishery have the potential to cause population‐level effects and negatively affect long‐term fishery yield.  相似文献   

13.
The justification for incorporating environmental effects into fisheries stock assessment models has been investigated and debated for a long time. Recently, a state‐space age‐structured assessment model which includes the stochastic change in the environmental covariate over time and its effect on recruitment was developed for Southern New England‐Mid Atlantic yellowtail flounder (Limanda ferruginea). In this paper, we first investigated the correlations of environmental covariates with Southern New England‐Mid Atlantic yellowtail flounder recruitment deviations. The covariate that was most strongly correlated with the recruitment deviations was then incorporated into the state‐space model and alternative effects on the stock‐recruit relationship were estimated and compared. For the model that performed best as measured by Akaike information criterion, we also compared the estimates and predictions of various population attributes and biological reference points with those from an otherwise identical model without the environmental covariate in the stock‐recruit function. We found that the estimates of population parameters are similar for the two models but the predictions differed substantially. To evaluate which model provided more reliable predictions, we quantitatively compared the prediction skill of the two models by generating two series of retrospective predictions. Comparison of the retrospective prediction pattern suggested that from an average point of view, the environmentally explicit model can provide more accurate near‐term recruitment predictions especially the one year ahead recruitment prediction. However, the accuracy of the near‐term recruitment prediction from the environmentally explicit model was largely determined by the accuracy of the corresponding environment prediction the model provides.  相似文献   

14.
Ecosystem‐based fisheries management requires the development of physical and biological time series that index ocean productivity for stock assessment and recruitment forecasts for commercially important species. As recruitment in marine fish is related to ocean condition, we developed proxies for ocean conditions based on sea surface temperature (SST) and biometric measurements of chum salmon (Oncorhynchus keta) captured in the walleye pollock (Gadus chalcogrammus) fishery in the eastern Bering Sea in three periods (July 16–30, September 1–15 and September 16–30). The main purpose of this paper was to evaluate Pacific salmon (Oncorhynchus spp.) growth as a possible indicator of ocean conditions that, in turn, may affect age‐1 walleye pollock recruitment. Marine growth rates of Pacific salmon are the result of a complex interplay of physical, biological and population‐based factors that fish experience as they range through oceanic habitats. These growth rates can, therefore, be viewed as indicators of recent ocean productivity. Thus, our hypothesis was that estimated intra‐annual growth in body weight of immature and maturing age‐4 male and female chum salmon may be used as a biological indicator of variations in rearing conditions also experienced by age‐0 walleye pollock; consequently, they may be used to predict the recruitment to age‐1 in walleye pollock. Summer SSTs and chum salmon growth at the end of July and September explained the largest amount of variability in walleye pollock recruitment indicating that physical and biological indices of ocean productivity can index fish recruitment.  相似文献   

15.
Irish Sea fisheries have undergone considerable change in recent years following the decline of commercially important finfish stocks and their slow response to management's recovery plans. In 2015, the fishing industry called for a holistic exploration into the impact of environmental change and food web effects to identify the drivers underpinning stock dynamics. In this study, we identify correlations between large‐scale climatic indicators, temperature, primary and secondary productivity, and fish recruitment in the Irish Sea and incorporate them into an Ecopath with Ecosim food web model co‐created by scientists and fishers. Negative correlations were found between the North Atlantic Oscillation winter index (NAOw) and large zooplankton abundance and between the Atlantic Multidecadal Oscillation (AMO) and the recruitment of cod (Gadus morhua) and whiting (Merlangius merlangus). Using correlation analyses to direct the addition of environmental drivers to the Irish Sea ecosystem model improved the models fit against observed biomass and catch data and revealed the indirect impacts of environmental change as mitigated through trophic interactions. Model simulations suggest that historic environmental change suppressed the overall production of commercial finfish, limiting opportunities for the fishing industry, whilst also dampening the rate of stock recovery despite marked reductions in fishing effort. These results suggest that failure to account for ecosystem information may lead to misconceived expectations and flawed fisheries management; therefore, there is a need to operationalize ecosystem information through management procedures to support fisheries advice.  相似文献   

16.
We applied a physiological individual‐based model for the foraging and growth of cod (Gadus morhua) and haddock (Melanogrammus aeglefinus) larvae, using observed temperature and prey fields data from the Irish Sea, collected during the 2006 spawning season. We used the model to estimate larval growth and survival and explore the different productivities of the cod and haddock stocks encountered in the Irish Sea. The larvae of both species showed similar responses to changes in environmental conditions (temperature, wind, prey availability, daylight hours) and better survival was predicted in the western Irish Sea, covering the spawning ground for haddock and about half of that for cod. Larval growth was predicted to be mostly prey‐limited, but exploration of stock recruitment data suggests that other factors are important to ensure successful recruitment. We suggest that the presence of a cyclonic gyre in the western Irish Sea, influencing the retention and/or dispersal of larvae from their spawning grounds, and the increasing abundance of clupeids adding predatory pressure on the eggs and larvae; both may play a key role. These two processes deserve more attention if we want to understand the mechanisms behind the recruitment of cod and haddock in the Irish Sea. For the ecosystem‐based management approach, there is a need to achieve a greater understanding of the interactions between species on the scale a fish stock is managed, and to work toward integrated fisheries management in particular when considering the effects of advection from spawning grounds and prey–predator reversal on the recovery of depleted stocks.  相似文献   

17.
An individual-based modelling approach was developed to investigate the spatial and temporal patterns in the recruitment processes of North Sea haddock, Melanogrammus aeglefinus . The approach was based on the realization that the survivors to recruitment of an annual cohort are most probably not drawn at random from the initial population of eggs, but represent the fastest-growing individuals. Individual growth rates reflect the unique exposure of each larva to the environment along its drift trajectory. In this context, the environment refers to a wide range of factors affecting growth such as food, turbulence and temperature. A combination of a model of egg production by the adult stock, a particle-tracking scheme, and a model of larval growth and mortality rate was used to simulate the dispersal trajectories, and the survival of haddock larvae spawned at different times and locations on the continental shelf. The particle tracking was driven by flowfields from a climatological implementation of the Hamburg Shelf–Ocean Model (HAMSOM) for the North Sea and NE Atlantic. The system was able to resolve spatial and temporal patterns in the recruitment process and indicated that the surviving population of larvae was drawn from a restricted part of the spawning distribution. The results have the potential to guide the development of future conservation measures in fisheries management.  相似文献   

18.
Northern rock sole recruitment in the eastern Bering Sea has been hypothesized to (a) depend on wind‐driven surface currents linking spawning and nursery areas, (b) be density‐dependent, and (c) be negatively impacted by cold bottom temperatures over a large nursery area during the first summer of life. A suite of models was developed to test these hypotheses. Data included 32 years of recruitment and spawning biomass estimates derived from a stock assessment model and wind and temperature indices customized to the environmental exposure of age‐0 northern rock sole in the eastern Bering Sea. The predictive ability of the models was evaluated, and the models were used to forecast recruitment to age‐4 for recent year classes which are poorly retained by the standard multi‐species bottom trawl survey gear. Models which included wind and temperature indices performed better than a naïve forecast based on the running mean. The best‐performing model was a categorical model with wind and temperature thresholds, which explained 49% of the variation in recruitment. Ricker models performed more poorly than models without a spawning biomass term, providing no evidence that recruitment is related to stock size. The models forecast higher recruitment for the most recent year classes (2015–2018) than for prior year classes with observed poor recruitment (2006–2013). These environment‐based recruitment forecasts may improve recruitment estimates for the most recent year classes and facilitate study of the effects of future climate change on northern rock sole population dynamics.  相似文献   

19.
In Mediterranean European countries, 85% of the assessed stocks are currently overfished compared to a maximum sustainable yield reference value (MSY) while populations of many commercial species are characterized by truncated size‐ and age‐structures. Rebuilding the size‐ and age‐structure of exploited populations is a management objective that combines single species targets such as MSY with specific goals of the ecosystem approach to fisheries management (EAF), preserving community size‐structure and the ecological role of different species. Here, we show that under the current fishing regime, stock productivity and fleet profitability are generally impaired by a combination of high fishing mortality and inadequate selectivity patterns. For most of the stocks analysed, a simple reduction in the current fishing mortality (Fcur) towards an MSY reference value (FMSY), without any change in the fishing selectivity, will allow neither stock biomass nor fisheries yield and revenue to be maximized. On the contrary, management targets can be achieved only through a radical change in fisheries selectivity. Shifting the size of first capture towards the size at which fish cohorts achieve their maximum biomass, the so‐called optimal length, would produce on average between two and three times higher economic yields and much higher biomass at sea for the exploited stocks. Moreover, it would contribute to restore marine ecosystem structure and resilience to enhance ecosystem services such as reservoirs of biodiversity and functioning food webs.  相似文献   

20.
Understanding the impacts of recreational fishing on commercially fished stocks is becoming increasingly relevant for fisheries managers. However, data from recreational fisheries are not commonly included in stock assessments of commercially fished stocks. Simulation models of two assessment methods employed in Australia's Commonwealth fisheries were used to explore how recreational fishery data can be included, and the likely consequences for management. In a data‐poor management strategy for blue eye trevalla, Hyperoglyphe antarctica (Carmichael), temporal trends in recreational catch most affected management outcomes. In a data‐rich age‐structured stock assessment for striped marlin, Kajikia audax (Philippi), estimates of stock status were biased when recreational catches were large or when the recreational fishery targeted different size classes than the commercial fishery and these data were not integrated into the assessment. Including data from recreational fishing can change perceptions of stock status and impact recommendations for harvest strategies and management action. An understanding of recreational fishery dynamics should be prioritised for some species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号