首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Laboratory columns (80 cm long, 10 cm diameter) of peat were constructed from samples collected from a subarctic fen, a temperate bog and a temperate swamp. Temperature and water table position were manipulated to establish their influence on emissions of CO2 and CH4 from the columns. A factorial design experiment revealed significant (P < 0.05) differences in emission of these gases related to peat type, temperature and water table position, as well as an interaction between temperature and water table. Emissions of CO2 and CH4 at 23°C were an average of 2.4 and 6.6 times larger, respectively, than those at 10°C. Compared to emissions when the columns were saturated, water table at a depth of 40 cm increased CO2 fluxes by an average of 4.3 times and decreased CH4 emissions by an average of 5.0 times. There were significant temporal variations in gas emissions during the 6-week experiment, presumably related to variations in microbial populations and substrate availability. Using columns with static water table depths of 0, 10, 20, 40 and 60 cm, CO2 emissions showed a positive, linear relation with depth, whereas CH4 emissions revealed a negative, logarithmic relation with depth. Lowering and then raising the water table from the peat surface to a depth of 50 cm revealed weak evidence of hysteresis in CO2 emissions between the falling and rising water table limbs. Hysteresis (falling > rising limb) was very pronounced for CH4 emissions, attributed to a release of CH4 stored in porewater and a lag in the development of anaerobic conditions and methanogenesis on the rising limb. Decreases in atmospheric pressure were correlated with abnormally large emissions of CO2 and CH4 on the falling limb. Peat slurries incubated in flasks revealed few differences between the three peat types in the rates of CO2 production under aerobic and anaerobic conditions. There were, however, major differences between peat types in the rates of CH4 consumption under aerobic incubation conditions and CH4 production under anaerobic conditions (bog > fen > swamp), which explain the differences in response of the peat types in the column experiment.  相似文献   

2.
Forty percentage of UK peatlands have been drained for agricultural use, which has caused serious peat wastage and associated greenhouse gas emissions (carbon dioxide (CO2) and methane (CH4)). In this study, we evaluated potential trade-offs between water-table management practices for minimizing peat wastage and greenhouse gas emissions, while seeking to sustain romaine lettuce production: one of the most economically relevant crop in the East Anglian Fenlands. In a controlled environment experiment, we measured lettuce yield, CO2, CH4 fluxes and dissolved organic carbon (DOC) released from an agricultural fen soil at two temperatures (ambient and +2°C) and three water-table levels (−30 cm, −40 cm and −50 cm below the surface). We showed that increasing the water table from the currently used field level of −50 cm to −40 cm and −30 cm reduced CO2 emissions, did not affect CH4 fluxes, but significantly reduced yield and increased DOC leaching. Warming of 2°C increased both lettuce yield (fresh leaf biomass) and peat decomposition through the loss of carbon as CO2 and DOC. However, there was no difference in the dry leaf biomass between the intermediate (−40 cm) and the low (−50 cm) water table, suggesting that romaine lettuce grown at this higher water level should have similar energetic value as the crop cultivated at −50 cm, representing a possible compromise to decrease peat oxidation and maintain agricultural production.  相似文献   

3.
Peat forming wetlands are globally important sources of the greenhouse gas CH4. The variability of flux recordings from peatlands is however considerable and the distribution of CH4 below the water table poorly described. Surface peat (0-500 mm below the water table) is responsible for the bulk of emissions and a localised region of intense CH4 concentration may exist within this region but the structure of peat and presence of gas bubbles make the determination of in situ gas distributions problematic. We report on the in situ distribution and concentrations of CH4, CO2 and O2 in surface bog peat cores using Quadrupole Mass Spectrometry and relate this to peat physical structure. Replicate cores collected in spring and autumn from both hollows and hummocks are used (n = 10). CH4 recorded in almost every profile was localised in intense peaks reaching concentrations up to 350 μM at depths where O2 was absent. Each CH4 peak had a coincident CO2 peak with a minimum mean ratio of ∼20:1 (CO2:CH4) and we found more CH4 beneath hollows than hummocks. In statistical comparisons CH4 concentration and distribution differed significantly between profiles for each depth. We demonstrate that variability found within a single core is at least as great as that between cores collected across the bog. The distribution of CH4 was negatively correlated with bulk density and in some cases the location of roots matched those of intense CH4 concentration where bubbles had formed and been trapped. Our comparisons suggest variability in gas distribution is caused by a heterogenous peat structure that controls the movement of gas bubbles and contains localised hotspots of gas production. The small and fine root systems of vascular plants on the peatland surface may cause high levels of methanogenic activity in their vicinity and also represent a physical barrier capable of trapping CH4 bubbles.  相似文献   

4.
We studied methanogen activity—measured by in vitro methane production potential and by detection of the messenger RNA (mRNA) of a functional gene—in two boreal fens under high and deep water table (WT) level conditions resulting from a rainy growing season and a dry growing season. The depth of the highest CH4-producing layers differed between the years. In the wet year, the highest CH4 production rate was around 20 cm below the mean WT. In the dry year, the highest rates were measured close to the peat surface, well above the mean WT. The distribution of activity in the peat profiles of the two fens appeared to be site specific. Under deep-WT conditions, CH4 production potential was generally lower than that under high-WT conditions. Detection of the mRNA of the methanogen-specific mcrA gene indicated in situ methanogenesis in both water-saturated peat (below the WT) and unsaturated peat (above the WT). Analyses of DNA-derived and mRNA-derived methanogen community structures showed greater similarity between those two in water-saturated peat than in unsaturated peat. This suggested that favorable conditions promoted the activity of most members in methanogen communities, but unfavorable conditions showed differences between distinct community members in adaptation to adverse conditions.  相似文献   

5.
Rates of organic carbon mineralization (to CO2 and CH4) vary widely in peat soil. We transplanted four peat soils with different chemical composition into six sites with different environmental conditions to help resolve the debate about control of organic carbon mineralization by resource availability (e.g. carbon and nutrient chemistry) versus environmental conditions (e.g. temperature, moisture, pH). The four peat soils were derived from Sphagnum (bog moss). Two transplant sites were in mid‐boreal Alberta, Canada, two were in low‐boreal Ontario, Canada, and two were in the temperate United States. After 3 years in the field, CH4 production varied significantly as a function of peat type, transplant site, and the type–site interaction. All four peat soils had very small rates of CH4 production (< 20 nmol g?1 day?1) after transplant into two sites, presumably caused by acid site conditions (pH < 4.0). One peat soil had small CH4 production rates regardless of transplant site. A canonical discriminant analysis revealed that large rates of CH4 production (4000 nmol g?1 day?1) correlated with large holocellulose content, a large concentration of p‐hydroxyl phenolic compounds in the Klason lignin, and small concentrations of N, Ca and Mn in peat. Significant variation in rates of CO2 production correlated positively with holocellulose content and negatively with N concentrations, regardless of transplant site. The temperature response for CO2 production varied as a function of climate, being greater for peat formed in a cold climate, but did not apply to transplanted peat. Although we succeeded in elucidating some aspects of peat chemistry controlling production of CH4 and CO2 in Sphagnum‐derived peat soils, we also revealed idiosyncratic combinations of peat chemistry and site conditions that will complicate forecasting rates of peat carbon mineralization into the future.  相似文献   

6.
Lentic wetlands are usually regarded as the most important natural freshwater sources of methane (CH4) and nitrous oxide (N2O) to the atmosphere, and very few studies have quantified the importance of lowland streams in trace gas emissions. In this study, we estimated fluxes of CH4 and N2O in three macrophyte-rich, lowland agricultural streams in New Zealand, to place their trace gas emissions in context with other sources and investigate the value of minimising their emissions from agricultural land. All three streams were net sources of both gases, with emission of CH4 ranging from <1 to 500 μmol m?2 h?1 and of N2O ranging from <1 to 100 μmol m?2 h?1 during mid-summer. For CH4, both turbulent diffusion across the surface and ebullition of sediment gas bubbles were important transport processes, with ebullition accounting for 20–60% of the emissions at different sites. The emissions were similar on a per area basis to other major global sources of CH4 and N2O. Although small on a catchment scale compared to emissions from intensively grazed pastures, they were significant relative to low-intensity pastures and other agricultural land uses. Because hydraulic variables (viz. depth, velocity and slope) strongly influence turbulent diffusion, complete denitrification can best proceed to N2 as the dominant end-product (rather than N2O) in riparian wetlands, rather than in open stream channels where N2O fluxes are sometimes very large.  相似文献   

7.
Drainage of peatlands affects the fluxes of greenhouse gases (GHGs). Organic soils used for agriculture contribute a large proportion of anthropogenic GHG emissions, and on-farm mitigation options are important. This field study investigated whether choice of a cropping system can be used to mitigate emissions of N2O and influence CH4 fluxes from cultivated organic and carbon-rich soils during the growing season. Ten different sites in southern Sweden representing peat soils, peaty marl and gyttja clay, with a range of different soil properties, were used for on-site measurements of N2O and CH4 fluxes. The fluxes during the growing season from soils under two different crops grown in the same field and same environmental conditions were monitored. Crop intensities varied from grasslands to intensive potato cultivation. The results showed no difference in median seasonal N2O emissions between the two crops compared. Median seasonal emissions ranged from 0 to 919?µg?N2O?m?2?h?1, with peaks on individual sampling occasions of up to 3317?µg?N2O?m?2?h?1. Nitrous oxide emissions differed widely between sites, indicating that soil properties are a regulating factor. However, pH was the only soil factor that correlated with N2O emissions (negative exponential correlation). The type of crop grown on the soil did not influence CH4 fluxes. Median seasonal CH4 flux from the different sites ranged from uptake of 36?µg CH4?m?2?h?1 to release of 4.5?µg?CH4?m?2?h?1. From our results, it was concluded that farmers cannot mitigate N2O emissions during the growing season or influence CH4 fluxes by changing the cropping system in the field.  相似文献   

8.
Drying and rewetting to a variable extent influence the C gas exchange between peat soils and the atmosphere. We incubated a decomposed and compacted fen peat and investigated in two experiments 1) the vertical distribution of CO2 and CH4 production rates and their response to drying and 2) the effects of temperature, drying intensity and duration on CO2 production rates and on CH4 production recovery after rewetting. Surface peat down to 5 cm contributed up to 67% (CO2) and above 80% (CH4) of the depth-aggregated (50 cm) production. As CO2 production sharply decreased with depth water table fluctuations in deeper peat layers are thus not expected to cause a substantial increase in soil respiration in this site. Compared to anaerobic water saturated conditions drying increased peat CO2 production by a factor between 1.4 and 2.1. Regarding the effects of the studied factors, warmer conditions increased and prolonged drying duration decreased CO2 production whereas the soil moisture level had little influence. No significant interactions among factors were found. Short dry events under warmer conditions are likely to result in greatest peaks of CO2 production rates. Upon rewetting, CH4 production was monitored over time and the recovery was standardized to pre-drying levels to compare the treatment effects. Methane production increased non-linearly over time and all factors (temperature, drying intensity and duration) influenced the pattern of post-drying CH4 production. Peat undergoing more intense and longer drying events required a longer lag time before substantial CH4 production occurred and warmer conditions appeared to speed up the process.  相似文献   

9.
We conducted laboratory incubation experiments to elucidate the influence of forest type and topographic position on emission and/or consumption potentials of nitrous oxide (N2O) and methane (CH4) from soils of three forest types in Eastern Canada. Soil samples collected from deciduous, black spruce and white pine forests were incubated under a control, an NH4NO3 amendment and an elevated headspace CH4 concentration at 70% water-filled pore space (WFPS), except the poorly drained wetland soils which were incubated at 100% WFPS. Deciduous and boreal forest soils exhibited greater potential of N2O and CH4 fluxes than did white pine forest soils. Mineral N addition resulted in significant increases in N2O emissions from wetland forest soils compared to the unamended soils, whereas well-drained soils exhibited no significant increase in N2O emissions in-response to mineral N additions. Soils in deciduous, boreal and white pine forests consumed CH4 when incubated under an elevated headspace CH4 concentration, except the poorly drained soils in the deciduous forest, which emitted CH4. CH4 consumption rates in deciduous and boreal forest soils were twice the amount consumed by the white pine forest soils. The results suggest that an episodic increase in reactive N input in these forests is not likely to increase N2O emissions, except from the poorly drained wetland soils; however, long-term in situ N fertilization studies are required to validate the observed results. Moreover, wetland soils in the deciduous forest are net sources of CH4 unlike the well-drained soils, which are net sinks of atmospheric CH4. Because wetland soils can produce a substantial amount of CH4 and N2O, the contribution of these wetlands to the total trace gas fluxes need to be accounted for when modeling fluxes from forest soils in Eastern Canada.  相似文献   

10.
There is growing evidence that land use is an important factor in influencing soil methane (CH4) fluxes, and afforestation is viewed as a potential tool for mitigating CH4 releases from soils. However, the influence of different tree species on soil CH4 fluxes is not well understood. We measured soil CH4 fluxes under four tree species and grassland on similar soils at the Gisburn Experimental Forest (NW England) at 2 weekly intervals over 12 months using a static chamber technique. The treatments were Norway spruce (Picea abies), Scots pine (Pinus sylvestris), oak (Quercus petraea), alder (Alnus glutinosa) and grassland. Positive soil CH4 fluxes were observed from grassland plots (average 4.6 kg/ha/year) and negative fluxes from all four tree species (average of all tree species ?0.5 kg/ha/year). There were, however, no statistically significant differences between individual treatments. Soil water table depth and moisture content had the greatest influence on soil CH4 fluxes. It is possible that the afforestation of shallow organic and/or poorly drained soils such as these may have a relatively low capacity for mitigating CH4 fluxes. Although methanotrophic bacteria may exist (i.e. there is the potential for oxidation), they may not be able to dominate due to their requirements for specific environmental conditions.  相似文献   

11.
The expansion of oil palm monocultures into globally important Southeast Asian tropical peatlands has caused severe environmental damage. Despite much of the current focus of environmental impacts being directed at industrial scale plantations, over half of oil palm land-use cover in Southeast Asia is from smallholder plantations. We differentiated a first generation smallholder oil palm monoculture into 8 different sampling zones, and further divided the 8 sampling zones into oil palm root influenced (Proximal) and reduced root influence (Distal) areas, to assess how peat properties regulate in situ carbon dioxide (CO2) and methane (CH4) fluxes. We found that all the physico-chemical properties and nutrient concentrations except sulphur varied significantly among sampling zones. All physico-chemical properties except electrical conductivity, and all nutrient content except nitrogen and potassium varied significantly between Proximal and Distal areas. Mean CO2 fluxes (ranged between 382 and 1191 mg m−2 h−1) varied significantly among sampling zones, and between Proximal and Distal areas, with notably high emissions in Dead Wood and Path zones, and consistently higher emissions in Proximal areas compared to Distal areas within almost all the zones. CH4 fluxes (ranged between −32 and 243 µg m−2 h−1) did not significantly vary between Proximal and Distal areas, however significantly varied amongst sampling zones. CH4 flux was notably high in Canal Edge and Understorey Ferns zones, and negative in Dead Wood zone. The results demonstrate the high heterogeneity of peat properties within oil palm monoculture, strengthening the need for intensive sampling to characterize a land use in the tropical peatlands.  相似文献   

12.
Rewetting of agriculturally used peatlands has been proposed as a measure to stop soil subsidence, conserve peat and rehabilitate ecosystem functioning. Unintended consequences might involve nutrient release and changes in the greenhouse gas (GHG) balance towards CH4-dominated emission. To investigate the risks and benefits of rewetting, we subjected soil columns from drained peat- and clay-covered peatlands to different water level treatments: permanently low, permanently inundated and fluctuating (first inundated, then drained). Surface water and soil pore water chemistry, soil-extractable nutrients and greenhouse gas fluxes were measured throughout the experiment. Permanent inundation released large amounts of nutrients into pore water, especially phosphorus (up to 11.7 mg P-PO4 l?1) and ammonium (4.8 mg N-NH4 l?1). Phosphorus release was larger in peat than in clay soil, presumably due to the larger pool of iron-bound phosphorus in peat. Furthermore, substantial amounts of phosphorus and potassium were exported from the soil matrix to the surface water, risking the pollution of local species-rich (semi-)aquatic ecosystems. Rewetting of both clay and peat soil reduced CO2 emissions. CH4 emissions increased, but, in contrast to the expectations, the fluxes were relatively low. Calculations showed that rewetting reduced net cumulative GHG emissions expressed as CO2 equivalents.  相似文献   

13.
Peatlands play an important role in emissions of the greenhouse gases CO2, CH4 and N2O, which are produced during mineralization of the peat organic matter. To examine the influence of soil type (fen, bog soil) and environmental factors (temperature, groundwater level), emission of CO2, CH4 and N2O and soil temperature and groundwater level were measured weekly or biweekly in loco over a one-year period at four sites located in Ljubljana Marsh, Slovenia using the static chamber technique. The study involved two fen and two bog soils differing in organic carbon and nitrogen content, pH, bulk density, water holding capacity and groundwater level. The lowest CO2 fluxes occurred during the winter, fluxes of N2O were highest during summer and early spring (February, March) and fluxes of CH4 were highest during autumn. The temporal variation in CO2 fluxes could be explained by seasonal temperature variations, whereas CH4 and N2O fluxes could be correlated to groundwater level and soil carbon content. The experimental sites were net sources of measured greenhouse gases except for the drained bog site, which was a net sink of CH4. The mean fluxes of CO2 ranged between 139 mg m−2 h−1 in the undrained bog and 206 mg m−2 h−1 in the drained fen; mean fluxes of CH4 were between −0.04 mg m−2 h−1 in the drained bog and 0.05 mg m−2 h−1 in the drained fen; and mean fluxes of N2O were between 0.43 mg m−2 h−1 in the drained fen and 1.03 mg m−2 h−1 in the drained bog. These results indicate that the examined peatlands emit similar amounts of CO2 and CH4 to peatlands in Central and Northern Europe and significantly higher amounts of N2O.  相似文献   

14.
Woody peat was used as an additive to compost with pig manure in 1.2 m3 composting reactors under aerobic conditions for a 77?days period to estimate the effect on the compost maturity and gaseous emissions (NH3, N2O, and CH4). Pig manure was also composted with cornstalks (the traditional method) as a control treatment. The results showed that both cornstalks and woody peat composts reached the required maturity standard. Composting with woody peat as a bulking agent was found to reduced NH3 emissions by 36% than the cornstalks amended treatment. Although CH4 emission increased by adding woody peat, N2O emission was considerably reduced, resulting in a slight decrease in total greenhouse gas emissions. More importantly, woody peat could reduce the losses of total carbon and total nitrogen, improve the compost quality as fertilizer.  相似文献   

15.
Termites are estimated to contribute between <5 and 19% of the global methane (CH4) emissions. These estimates have large uncertainties because of the limited number of field-based studies and species studied, as well as issues of diurnal and seasonal variations. We measured CH4 fluxes from four common mound-building termite species (Microcerotermes nervosus, M. serratus, Tumulitermes pastinator and Amitermes darwini) diurnally and seasonally in tropical savannas in the Northern Territory, Australia. Our results showed that there were significant diel and seasonal variations of CH4 emissions from termite mounds and we observed large species specific differences. On a diurnal basis, CH4 fluxes were least at the coolest time of the day (∼07.00 h) and greatest at the warmest (∼15.00 h) for all species for both wet and dry seasons. We observed a strong and significant positive correlation between CH4 flux and mound temperature for all species. A mound excavation experiment demonstrated that the positive temperature effect on CH4 emissions was not related to termite movement in and out of a mound but probably a direct effect of temperature on methanogenesis in the termite gut. Fluxes in the wet season were 5-26-fold greater than those in the dry season. A multiple stepwise regression model including mound temperature and mound water content described 70-99% of the seasonal variations in CH4 fluxes for different species. CH4 fluxes from M. nervosus, which was the most abundant mound-building termite species at our sites, had significantly lower fluxes than the other three species measured. Our data demonstrate that CH4 flux estimates could result in large under- or over-estimation of CH4 emissions from termites if the diurnal, seasonal and species specific variations are not accounted for, especially when flux data are extrapolated to landscape scales.  相似文献   

16.
We examined the effect of cation treatments on methanogenic activity and nutrient release from exchange sites in raised bog and fen peats. Treatments consisted of cation chloride solutions (MgCl2, AlCl3 and PbCl2) applied individually. In raised bog peat Al3+ and Pb2+ increased CH4 production. A correlation was found between CH4 production and the amount of micro- and macronutrient cations released by the treatments. In calcareous fen peat, such a stimulation was also found, but there was no correlation between CH4 production and micro and macronutrient release. Direct nutrient and pH effects could not account for these observations. Thus the results support the hypothesis that the methanogenic community in the raised bog is limited by the availability of mineral nutrients and/or inactivity of exo-enzymes, both of which are bound onto exchange sites.  相似文献   

17.
Summary The CH4 flux from intact soil cores of a flooded rice field in Italy was measured under aerobic and anaerobic incubation conditions. The difference between the anaerobic and aerobic CH4 fluxes was apparently due to CH4 oxidation in the oxic soil surface layer. This conclusion was supported by measurements of the vertical CH4 profile in the upper 2-cm layer, and of the V max of CH4 oxidation in slurried samples of the soil surface layer. About 80% of the CH4 was oxidized during its passage through the soil surface layer. CH4 oxidation was apparently limited by the concentration of CH4 and/or O2 in the active surface layer. The addition of ammonium to the water layer on top of the soil core reversibly increased the aerobic CH4 fluxes due to inhibition of CH4 oxidation in the soil surface layer.  相似文献   

18.
Seasonal variations in temperature and moisture in moss peat were monitored in the field at Signy Island, Antarctica. When simulated in intact peat cores in vitro after frozen storage, these variations caused changes on O2-uptake which closely reproduced the results for fresh samples. Respiration rate was used as a measure of aerobic decomposer activity. Supplements of sugars indicated the predominance of microbial respiration and its dependence on the availability of dissolved organic C (DOC). Low temperatures of 0° to 1°C were not rate-limiting for respiration in vivo or in vitro, and O2-uptake was detected at ?1°C. Repeated peaks of O2-uptake under wet conditions resulting from simulated spring freeze-thaw cycles, and a solitary peak during an autumn simulation, suggested release of DOC substrates from frost-damaged cells. Desiccation, microfaunal predation and microaerophily were thought to contribute to respiratory declines. O2-uptake and CO2-evolution were equivalent in peat beneath Polytrichum sampled in autumn. Peat respiration was not generally proportional to microbial biomass, but saccharolytic yeasts were dominant during the respiratory maximum in spring and correlated with O2-uptake in a mixed culture of indigenous microflora. Yeasts grew exponentially in freezethaw cycle simulations but percolated into the peat profile in the field. The basal O2-uptake, which may be attributable to the decomposition of redalcitrant molecules such as cellulose, was lower in simulations of spring than autumn. Although bacterial biomass increased and diversified during summer, the ratio of fungal-to-bacterial contributions to O2-uptake in an incubated homogenate of peat sampled in autumn was 4:1.  相似文献   

19.
北方泥炭地甲烷排放研究: 综述   总被引:7,自引:0,他引:7  
D. Y. F. LAI 《土壤圈》2009,19(4):409-421
Northern peatlands store a large amount of carbon and play a significant role in the global carbon cycle. Owing to the presence of waterlogged and anaerobic conditions, peatlands are typically a source of methane (CH4), a very potent greenhouse gas. This paper reviews the key mechanisms of peatland CH4 production, consumption and transport and the major environmental and biotic controls on peatland CH4 emissions. The advantages and disadvantages of micrometeorological and chamber methods in measuring CH4 fluxes from northern peatlands are also discussed. The magnitude of CH4 flux varies considerably among peatland types (bogs and fens) and microtopographic locations (hummocks and hollows). Some anthropogenic activities including forestry, peat harvesting and industrial emission of sulphur dioxide can cause a reduction in CH4 release from northern peatlands. Further research should be conducted to investigate the in fluence of plant growth forms on CH4 flux from northern peatlands, determine the water table threshold at which plant production in peatlands enhances CH4 release, and quantify peatland CH4 exchange at plant community level with a higher temporal resolution using automatic chambers.  相似文献   

20.
Estimating future fluxes of CH4 between land and atmosphere requires well-conceived process-based biogeochemical models. Current models do not represent the anaerobic oxidation of methane (AOM) in land surface soils, in spite of increasing evidence that this process is widespread. Our objective was to determine whether AOM, or potential AOM, commonly occurs in 20 hydromorphic soils spanning a wide range of chemical properties. Bulk soil samples were collected under shallow water near the shoreline of 15 recently drained fish ponds in southern Bohemia (Czech Republic), as well as from below the water table at 3 peatland locations in northeast Scotland and 2 acid sulfate soils on the southern coast of Finland. Each soil slurry was incubated under both oxic and anoxic conditions, with or without the addition of alternative electron acceptors (SO42− and NO3) or H2PO4. Here, “oxic” and “anoxic” conditions refer to anoxic soil respectively incubated in a headspace containing air or argon. Using the isotope dilution method, we determined the gross production and oxidation rates of CH4 after 2 days incubation under oxic headspace conditions, and after 2, 21 and 60 days incubation under anoxic conditions. Large differences in net CH4 fluxes were observed between soil types and between incubation conditions. AOM was detected in each of the 20 bulk soil samples, which spanned >6 pH units and 2 orders of magnitude in organic C content. Significant positive relationships were found between AOM and gross CH4 production rates under anoxic conditions, resulting in AOM rates that were sometimes higher than CH4 oxidation rates under oxic headspace conditions. There was no relationship between net and gross CH4 production rates, such that 2 soil types could display similar low net rates, yet conceal very large differences in gross rates. The effects of alternative electron acceptors on AOM were idiosyncratic and resulted in no net trend. We did find, however, a negative effect of SO42− and H2PO4 on gross CH4 production rates under anoxic and oxic conditions respectively. Under oxic headspace conditions, CH4 oxidation was related to soil organic C content. Taken collectively, our results suggest that AOM, or potential AOM, is prevalent over a wide range of soil types, that AOM may contribute substantially to CH4 oxidation in soils, and that AOM in soils should be integrated to current process-based CH4 cycling models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号