首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A 2-yr study was conducted to determine the effects of three weaning management systems on cow and steer performance. Cow-calf pairs were randomly assigned to one of three treatments, in which the steer calves were 1) early-weaned (yr 1, 177 +/- 9 d; yr 2, 158 +/- 21 d of age) and placed on a finishing diet (EW), 2) supplemented with grain for 55 d on pasture (yr 1, 177 to 231 d; yr 2, 158 to 213 d of age) while nursing their dams and then placed on a finishing diet (NWC), and 3) on pasture for 55 d while nursing their dams (yr 1, 177 to 231 d; yr 2, 158 to 213 d of age) and then placed on a finishing diet (NW). In yr 2, potential breed differences were evaluated using steers of three breed types: 1) Angus x Hereford (BRI); 2) Angus x Simmental (CON); and 3) Angus x Wagyu (WAG). In yr 1, EW steers gained 100% faster (P = .0001) than the average of NWC and NW steers, and NWC steers gained 32% faster (P = .02) than NW steers before weaning. In the feedlot, EW steers had lower intakes (7.70 vs 8.16 kg/d, P = .008) and better feed conversions (.170 vs .153, P = .002) than the average of NWC and NW steers. Marbling score was improved for EW steers compared with the average of NWC and NW steers (P = .003). In yr 2, EW steers had higher gains (P = .0006) during the entire study than the average of NWC and NW steers, and NWC steers had higher gains (P = .003) than NW steers. The EW steers had lower intakes (7.29 vs 7.68 kg/d, P = .0008) and better feed conversions (.160 vs .141, P = .0001) than the average of NWC and NW steers. The CON steers were heavier at slaughter than BRI steers (P = .01), and BRI steers were heavier than WAG steers (P =.0004). Early weaning improved the percentage of steers grading Average Choice or higher by 40%. The percentage of BRI steers grading Choice or greater was 21% higher and percentage of steers grading Average Choice or greater was 33% higher than CON. Cows with EW steers had higher ADG than cows with NW steers (.38 vs -.17 kg/d, P = .0001) before weaning. Cows with EW steers gained in body condition score (.23 vs .00, P = .04), and cows with NW steers did not change. Early weaning improved feed efficiency and quality grades of beef steers.  相似文献   

2.
An experiment was conducted to compare three weaning ages on cow-calf performance and steer carcass traits. Crossbred steers (n = 168; 1/2 Simmental x 1/4 Angus x 1/4 Hereford) were randomly assigned to three treatments with eight pens per treatment: groups were 1) weaned at an average of 90 d of age (90 +/- 13 d) and placed in the feedlot, 2) weaned at an average of 152 d of age (152 +/- 13 d) and placed in the feedlot, and 3) weaned at an average of 215 d of age (215 +/- 13 d) and placed in the feedlot. The number of days steers were finished decreased by 55 and 38 d (linear, P = .0001) as weaning age increased when slaughtered at a constant fat end point (.81 cm). Weaning at an average of 90 and 152 d of age improved overall ADG by .15 and .07 kg/d, respectively, over weaning at an average of 215 d of age (linear, P = .005). Over the entire finishing period, intake increased (linear, P = .0006) and efficiency was poorer (linear, P = .004) as weaning age increased. Owing to differences in finishing days and intake, total concentrate consumed increased (linear, P = .03) as weaning age decreased. No differences (P > .21) were observed for carcass weight, longissimus muscle area, or yield grade. No differences (P > .19) were observed in marbling score or percentage of steers grading greater than or equal to Choice or Average Choice. Cow body condition score improved (linear, P = .0001) as weaning age decreased. Pregnancy rate improved 12 percentage units (linear, P = .15) for cows on the 90-d weaning treatment. In this study, early weaning improved gain and feed efficiency, but it increased total concentrate consumed.  相似文献   

3.
Angus-cross steers (n = 198; 270 kg; 8 mo) were used in a 3-yr study to assess the effects of winter stocker growth rate and finishing system on 9-10-11th-rib composition, color, and palatability. During the winter months (December to April), steers were randomly allotted to 3 stocker growth rates: low (0.23 kg/d), medium (0.45 kg/d), or high (0.68 kg/d). At the completion of the stocking phase, steers were allotted randomly within each stocker growth rate to a high concentrate (CONC) or to a pasture (PAST) finishing system. All steers were finished to an equal time endpoint to minimize confounding due to animal age. At the end of the finishing phase, steers were transported to a commercial packing plant for slaughter and a primal rib (NAMP 107) was removed from 1 side of each carcass. The 9-10-11th-rib section was dissected into lean, fat, and bone, and LM samples were analyzed for palatability and collagen content. Hot carcass weight and 9-10-11th-rib section weight were greater (P = 0.01) for high than low or medium. Winter stocker growth rate did not alter 9-10-11th rib composition. The percentage of fat-free lean, including the LM and other lean trim, was greater (P = 0.001) for PAST than CONC. Total fat percentage of the 9-10-11th-rib section was 42% lower (P = 0.001) for PAST than CONC due to lower percentages of s.c., intermuscular, and i.m. fat. The percentage of total bone in the 9-10-11th-rib section was greater (P = 0.001) for PAST than CONC. Finishing beef cattle on PAST increased (P = 0.001) the percentage of lean and bone and reduced (P = 0.001) the percentage of fat in the carcass based on published prediction equations from 9-10-11th rib dissection. Stocker growth rate did not influence the objective color scores of LM or s.c. fat. Longissimus muscle color of PAST was darker (lower L*; P = 0.0001) and less red (lower a*; P = 0.002) than CONC. Juiciness scores were greater (P = 0.02) for CONC than PAST. Initial and overall tenderness scores as well as Warner-Bratzler shear force values did not differ (P > or = 0.28) among finishing systems. Beef flavor intensity was lower (P = 0.0001) and off-flavor intensity greater (P = 0.0001) for PAST than CONC. Total collagen content was greater (P = 0.0005) for PAST than CONC; however, there were no differences in percentage soluble or insoluble collagen. Growth rate during the winter stocker period did not influence rib composition, color, or beef palatability. Finishing steers on forage reduced fat percentages in the rib and LM without altering tenderness of beef steaks.  相似文献   

4.
To examine the effects of cattle breed on the clearance rate of an injectable mineral product, 10 Angus and 10 Simmental steers were blocked by breed and initial BW (332 ± 33 kg) and injected with either Multimin 90 (MM) or sterilized saline (CON) at a dose of 1 mL/45 kg BW. Multimin 90 contains 15 mg Cu/mL (as Cu disodium EDTA), 60 mg Zn/mL (as Zn disodium EDTA), 10 mg Mn/mL (as Mn disodium EDTA), and 5 mg Se/mL (as sodium selenite). Steers received a corn-silage-based diet, and inorganic sources of Cu, Zn, Mn, and Se were supplemented at NRC recommended amounts. Jugular blood was collected immediately before injection and at 8 and 10 h post-injection and on days 1, 8, and 15 post-injection. Liver biopsies were collected 3 d before injection and on days 1, 8, and 15 post-injection. Liver and plasma mineral concentration and glutathione peroxidase (GSH-Px) activity data were analyzed as repeated measures. Plasma concentrations of Zn, Mn, and Se were greater (P = 0.01) and Cu tended to be greater (P = 0.12) post-injection in MM steers compared with the CON steers. Regardless of treatment, Simmental cattle had lower plasma concentrations of Cu, Zn, and Se (P ≤ 0.05) when compared with Angus cattle. Erythrocyte GSH-Px activity was greater (P = 0.01) in MM steers compared with CON steers. Liver concentrations of Cu, Zn, and Se were greater (P = 0.05) in MM steers compared with CON steers post-injection. Liver Mn concentrations tended to be greater (P = 0.06) in MM steers compared with CON steers in the days post-injection. Interestingly, Simmental cattle exhibited greater (P = 0.01) liver Mn concentrations in the days after injection compared with Angus cattle (7.0 and 6.0 mg Mn/kg for Simmental and Angus cattle, respectively), regardless of treatment. It is unclear if this breed difference is biologically relevant; however, these data may suggest that differences in liver excretion of Mn exist between the two breeds. Overall, use of an injectable trace mineral increased liver concentrations of Cu and Se through the 15-d sampling period, suggesting that this injectable mineral is an adequate way to improve Cu and Se status of cattle through at least 15 d.  相似文献   

5.
Sixty Angus and Angus x Hereford steers (246 kg initial BW) were used to determine the effects of Zn level and source on performance, immune response, and carcass characteristics of growing and finishing steers. Treatments consisted of 1) control (no supplemental Zn), 2) ZnO, 3) Zn proteinate-A (ZnProt-A, 10% Zn), and 4) ZnProt-B (15% Zn). Treatments 2, 3, and 4 supplied 25 mg of supplemental Zn/kg diet. Steers were individually fed a corn silage-based diet during the 84-d growing phase and a high corn diet during the finishing phase. Cell-mediated and humoral immune response measurements were obtained between d 67 and 74 of the growing phase. Equal number of steers per treatment were slaughtered after receiving the finishing diets for 84 or 112 d. Performance and carcass measurements were similar in steers fed the two ZnProt sources. Zinc supplementation, regardless of source, increased (P < 0.05) ADG during the growing phase. In the finishing phase, ADG (P = 0.10) and gain/feed (P = 0.07) tended to be higher for steers fed ZnProt compared with those supplemented with ZnO. Gain and feed efficiency were similar for control and ZnO-supplemented steers during the finishing phase. Steers fed ZnProt had heavier (P < 0.05) hot carcass weights and slightly higher (P < 0.05) dressing percentages than those in the control or ZnO treatments. Quality grade, yield grade, marbling, and backfat were increased by Zn supplementation, but were not affected by Zn source. In vitro response of lymphocytes to mitogen stimulation and in vivo swelling response following intradermal injection of phytohemagglutinin were not affected by Zn level or source. Humoral immune response following vaccination with infectious bovine rhinotracheitis also was not affected by treatment. Soluble concentrations of Zn in ruminal fluid were higher (P < 0.05) in steers fed ZnProt compared to ZnO steers. Results indicate that ZnProt may improve performance of finishing steers above that observed with inorganic Zn supplementation.  相似文献   

6.
Two experiments were conducted to examine the effect of previous BW gain during winter grazing on subsequent growth, carcass characteristics, and change in body composition during the feedlot finishing phase. In each experiment, 48 fall-weaned Angus x Angus-Hereford steer calves were assigned randomly to one of three treatments: 1) high rate of BW gain grazing winter wheat (HGW), 2) low rate of BW gain grazing winter wheat (LGW), or 3) grazing dormant tallgrass native range (NR) supplemented with 0.91 kg/d of cottonseed meal. Winter grazing ADG (kg/d) for HGW, LGW, and NR steers were, respectively, 1.31, 0.54, 0.16 (Exp. 1) and 1.10, 0.68, 0.15 (Exp. 2). At the end of winter grazing, four steers were selected randomly from each treatment to measure initial carcass characteristics and chemical composition of carcass, offal, and empty body. All remaining steers were fed a high-concentrate diet to a common backfat end point. Six steers were selected randomly from each treatment for final chemical composition, and carcass characteristics were measured on all steers. Initial fat mass and proportion in carcass, offal, and empty body were greatest (P < 0.001) for HGW, intermediate for LGW, and least for NR steers in both experiments. Live BW ADG and gain efficiency during the finishing phase did not differ (P = 0.24) among treatments, but DMI (% of mean BW) for NR and LGW was greater (P < 0.003) than for HGW steers. Final empty-body composition did not differ (P = 0.25) among treatments in Exp. 1. In Exp. 2, final carcass and empty-body fat proportion (g/kg) was greater (P < 0.03) for LGW and NR than for HGW steers. Accretion of carcass fat-free organic matter was greater (P < 0.004) for LGW than for HGW and NR steers in Exp. 1, but did not differ (P = 0.22) among treatments in Exp. 2. Fat accretion in carcass, offal, and empty body did not differ (P = 0.19) among treatments in Exp. 1, but was greater (P < 0.05) for LGW and NR than for HGW steers in Exp. 2. Heat production by NR steers during finishing was greater (P < 0.02) than by HGW steers in Exp. 1 and 2. Differences in ADG during winter grazing and initial body fat content did not affect rate of live BW gain or gain efficiency during finishing. Feeding steers to a common backfat thickness end point mitigated initial differences in carcass and empty-body fat content. However, maintenance energy requirements during finishing were increased for nutritionally restricted steers that were wintered on dormant native range.  相似文献   

7.
Three experiments were conducted to determine effects of restricting intake of the final finishing diet as a means of dietary adaptation compared with diets increasing in grain over a period of 20 to 22 d on overall cattle performance, carcass characteristics, digestibility, digesta kinetics, and ruminal metabolism. In Exp. 1, 84 Angus x Hereford yearling steers (initial BW = 418 +/- 29.0 kg) were fed for 70 d. Restricting intake during adaptation had no effect (P > 0.10) on overall ADG:DMI, but decreased (P < 0.05) DMI compared with ad libitum access to adaptation diets, which resulted from differences during the initial 28 d of the experiment. In Exp. 2, 150 mixed crossbred steer calves (initial BW = 289 +/- 22.9 kg) were fed for an average of 173 d. Restricting intake decreased (P < 0.01) overall daily gain (1.51 vs 1.65 kg/d) and DMI (8.68 vs 9.15 kg/d) compared with ad libitum fed steers; however, ADG:DMI was not influenced (P > 0.10) by adaptation method. Experiment three used eight ruminally and duodenally fistulated steers (initial BW = 336 +/- 20 kg) in a completely random design. Total tract digestibility, digesta kinetics and ruminal metabolism were determined. Restricting intake reduced (P < 0.10) daily DMI variation from d 1 through 7, 8 through 14, and 22 through 28 compared with ad libitum feeding of three adaptation diets. Restricted steers had reduced (adaptation method x period interaction, P < 0.05) intakes and fecal excretions of ADF and greater OM digestibilities on d 4 through 7, 11 through 14, and 18 through 21. Digesta kinetics and ruminal metabolism were generally not affected (P > 0.10) by adaptation method. Our results suggest that restricted-feeding of the final diet as a means of dietary adaptation can be used in finishing cattle with few problems from acidosis or related intake variation. In light-weight steers (Exp. 2), disruptions in intake during the adaptation period might have resulted in restriction for an extended period, which decreased (P < 0.01) hot carcass weight compared with calves fed ad libitum. Effects of limit feeding during the initial 28 d of the feeding period on site and extent of digestion, digesta kinetics, and ruminal metabolism were minimal, supporting few differences in performance across the finishing period for yearling cattle.  相似文献   

8.
Two experiments were conducted to investigate the effects of proportion of dietary corn silage during periods of feed restriction on performance of steers. In Exp. 1, Simmental x Angus steer calves (n = 107; initial BW = 273 +/- 3.8 kg) were allotted to 12 pens with eight or nine steers/pen and four pens/treatment. Periods of growth were 273 to 366 kg BW (Period 1), 367 to 501 kg BW (Period 2), and 502 to 564 kg BW (Period 3). In two of the dietary regimens, steers were given ad libitum access to feed throughout the experiment and were fed either a 15% corn silage diet in each period or an 85, 50, and 15% corn silage diet in Periods 1, 2, and 3; respectively. In the third feeding regimen, a programmed intake feeding regimen was used. Steers were fed a 15% corn silage diet in each period. However, feed intake was restricted to achieve a predicted gain of 1.13 kg/d in Period 1 and 1.36 kg/d in Period 2, and feed was offered for ad libitum consumption in Period 3. For the entire experiment, ADG was similar (P = 0.41) among treatments and feed efficiency was lower (P < 0.10) for steers in the corn silage regimen than for steers in the programmed intake and ad libitum regimens. In Exp. 2, Simmental x Angus steer calves (n = 106; initial BW = 233 +/- 2 kg) were allotted by BW to 12 pens (three pens/treatment) and fed in three periods similar to those described in Exp. 1. Four feeding regimens were investigated: 1) AL; steers were offered a 15% corn silage diet for ad libitum consumption in all three periods; 2) PI; DMI was programmed to achieve gains as described in Exp. 1; 3) CS-HLL; programmed intake as described above except diets contained 85, 15, and 15% corn silage in Periods 1, 2, and 3, respectively; and 4) CS-HIL; same feeding regimens as CS-HLL, except diets contained 85, 50, and 15% corn silage in Periods 1, 2, and 3, respectively. Steers were given ad libitum access to feed in Period 3. Overall ADG was lower (P < 0.05) for steers in the CS-HLL and CS-HIL feeding regimens than for steers in the AL and PI regimens; feed efficiency was greatest for steers in the PI regimen. Few effects of feeding regimen on carcass characteristics were observed.  相似文献   

9.
In a 4-yr study, early-weaned Simmental steers (n = 192) of known genetics were individually fed to determine genetic, performance, and carcass factors explaining variation in carcass value and profitability. Steers were weaned at 88.0 +/- 1.1 d of age and pen-fed a high-concentrate diet (108.99 dollars/t) for 84.5 +/- 0.4 d before allotment. Calves were implanted with Synovex C at weaning and successively with Synovex S (Fort Dodge Animal Health, Fort Dodge, IA) and Revalor S (Intervet, Inc., Millsboro, DE). Steers consumed a 90% concentrate diet (98.93 dollars/t), consisting primarily of coarse cracked corn and corn silage, for 249.7 +/- 0.7 d and slaughtered at 423.3 +/- 1.4 d of age. Five-year price data were collected for feedstuffs, dressed beef, and grid premiums, and discounts. Average dressed beef price was 110.67 dollars/45.4 kg. Premiums (dollars/45.4 kg) were given for Prime (5.62 dollars), Average Choice (1.50 dollars), and yield grades (YG) 1 (2.46 dollars), 2A (1.31 dollars), and 2B (1.11 dollars). Discounts (dollars/45.4 kg) were given for Standard (-16.85 dollars), Select (-8.90 dollars), and YG 3A (-0.12 dollars), 3B (-0.19 dollars), 4 (-14.16 dollars), and 5 (-19.56 dollars). Discounts were given for HCW extremes as well (409 to 431 kg, -0.64 dollars; 432 to 454 kg -11.39 dollars; > 454 kg, -19.71 dollars). Input costs included annual cow costs (327.77 dollars), veterinary/medical and labor (35 dollars per animal), feed markup (22 dollars/t), yardage (0.25 dollars/d per animal), and interest (10%). Dependent variables were carcass value and profit per steer. Independent variables were year, weaning weight EPD, yearling weight EPD, marbling EPD, DMI, ADG, G:F, HCW, calculated YG, and marbling score (MS). Carcass value was correlated (P < 0.05) with yearling weight and marbling EPD, DMI, ADG, feed efficiency, HCW, and MS. Carcass weight, MS, and YG accounted for nearly 80% of the variation in carcass value among steers, explaining 51, 10, and 8%, respectively. Profit was correlated (P < 0.05) with DMI, ADG, feed efficiency, HCW, and MS. Carcass weight, MS, YG, and DMI accounted for nearly 78% of the variation in profit among steers, explaining 21, 18, 12, and 3%, respectively. Carcass weight was the most critical factor contributing to carcass value, whereas BW and carcass quality were the primary factors affecting steer profitability. These models represent the relative importance of factors contributing to value and profitability in early-weaned Simmental steers based on historical pricing scenarios.  相似文献   

10.
Ninety-three crossbred steer calves (BW+/-SD=385+/-50 kg) were used (n=48 steers in yr 1, n=45 steers in yr 2) to examine the relationship among carcass traits, lean, bone, and fat proportions, visceral tissue weights, and pancreatic digestive enzyme activity with DMI, ADG, G:F, and residual feed intake. Calves were progeny from crossbred dams predominantly of Angus and Simmental breeding and were sired by Angus, Simmental, crossbred (predominantly of Angus and Simmental breeding), Charolais, or Piedmontese bulls. Steers were fed a high-moisture corn-based diet for an average of 112 d. Partial correlation analysis accounting for year, pen within year, week of slaughter within year, and sire breed was conducted. Gain:feed was negatively correlated (P 0.10) between performance measures and the pancreatic proportional content of alpha-amylase and trypsin activity (units/kg of BW). These data indicate that carcass fatness traits and changes in the proportional weight of total viscera may be negatively associated with G:F and that visceral fat weight proportion and trim and kidney fat weight proportion may be important factors influencing this relationship.  相似文献   

11.
A winter grazing/feedlot performance experiment repeated over 2 yr (Exp. 1) and a metabolism experiment (Exp. 2) were conducted to evaluate effects of grazing dormant native range or irrigated winter wheat pasture on subsequent intake, feedlot performance, carcass characteristics, total-tract digestion of nutrients, and ruminal digesta kinetics in beef cattle. In Exp. 1, 30 (yr 1) or 67 (yr 2) English crossbred steers that had previously grazed native range (n = 38) or winter wheat (n = 59) for approximately 180 d were allotted randomly within previous treatment to feedlot pens (yr 1 native range = three pens [seven steers/pen], winter wheat = two pens [eight steers/pen]; yr 2 native range = three pens [eight steers/pen], winter wheat = four pens [10 or 11 steers/pen]). As expected, winter wheat steers had greater (P < 0.01) ADG while grazing than did native range steers. In contrast, feedlot ADG and gain efficiency were greater (P < 0.02) for native range steers than for winter wheat steers. Hot carcass weight, longissimus muscle area, and marbling score were greater (P < 0.01) for winter wheat steers than for native range steers. In contrast, 12th-rib fat depth (P < 0.64) and yield grade (P < 0.77) did not differ among treatments. In Exp. 2, eight ruminally cannulated steers that had previously grazed winter wheat (n = 4; initial BW = 407 +/- 12 kg) or native range (n = 4; initial BW = 293 +/- 23 kg) were used to determine intake, digesta kinetics, and total-tract digestion while being adapted to a 90% concentrate diet. The adaptation and diets used in Exp. 2 were consistent with those used in Exp. 1 and consisted of 70, 75, 80, and 85% concentrate diets, each fed for 5 d. As was similar for intact steers, restricted growth of cannulated native range steers during the winter grazing phase resulted in greater (P < 0.001) DMI (% of BW) and ADG (P < 0.04) compared with winter wheat steers. In addition, ruminal fill (P < 0.01) and total-tract OM digestibility (P < 0.02) were greater for native range than for winter wheat steers across the adaptation period. Greater digestibility by native range steers early in the finishing period might account for some of the compensatory gain response. Although greater performance was achieved by native range steers in the feedlot, grazing winter wheat before finishing resulted in fewer days on feed, increased hot carcass weight, and improved carcass merit.  相似文献   

12.
A 2-yr study was conducted using a 3 × 2 factorial arrangement of treatments to evaluate the effects of feeding dried distillers grains throughout a beef production system on performance, carcass characteristics, and fatty acid profile of beef. Factors were wheat pasture supplement [no supplement (CON), dry-rolled corn (DRC), and dried distillers grains (DDG)] fed at 0.5% BW daily and finishing diet [steam-flaked corn based diet containing 0 (SFC) or 35% (35DDG) DDG]. Each year, 60 preconditioned Hereford steers (initial BW = 198 kg ± 3) grazed winter wheat pasture with or without supplement. Body weight gain was 8% greater for steers consuming DDG supplement compared with CON and DRC steers (P < 0.01). After the grazing period, pastures within supplement treatment were randomly assigned to SFC or 35DDG. There was no supplement by finishing diet interaction for any performance or carcass variable of interest (P ≥ 0.41). Previous supplementation on winter wheat affected BW at feedlot entry and adjusted G:F (P ≤ 0.05) but had no effect on finishing ADG or carcass traits (P ≥ 0.12). On a carcass-adjusted basis, steers consuming 35DDG had reduced final BW, ADG, G:F, and total BW gain throughout the system (P ≤ 0.04) compared with SFC. Additionally, steers consuming 35DDG had reduced HCW, dressing percent, and fat thickness (P ≤ 0.03) compared with SFC. There was a supplement by finishing diet interaction (P = 0.02) for 18:0, in which cattle supplemented with DRC and fed the SFC finishing diet had the lowest concentration of 18:0 but DRC supplemented steers fed the 35DDG diet had the greatest concentration. The interaction was not significant (P ≥ 0.18) for other fatty acids. Main effects of supplement and finishing diet affected (P ≤ 0.05) several other fatty acids of interest, particularly 18:2, which is associated with reduced flavor-stability of beef. The use of DDG as a supplement to wheat pasture resulted in greater ADG during wheat grazing and heavier BW at feedlot entry, but final BW was not different from CON or DRC groups. Feeding DDG at 35% DM in steam-flaked corn-based finishing diets reduced ADG, G:F, and HCW, and affected the fatty acid composition of beef.  相似文献   

13.
Over 2 yr, 45 Angus-sired steer offspring of Angus and Angus crossbred females were used to determine the effects of early weaning on feedlot performance, carcass characteristics, and economic return to the cow-calf enterprise. Steers were assigned by birth date to one of two weaning treatments: 1) weaned at an average age of 100 d (early weaned) or 2) weaned at an average age of 200 d (normally weaned). Within 36 d of weaning, steers were given ad libitum access to a high-concentrate diet (90% dry, wholeshelled corn). Steers were harvested when 12th-rib fat thickness averaged 1.27 cm within treatment as estimated by ultrasound. Carcass measurements were taken 48 h postmortem and rib steak tenderness was determined at 14 d postmortem by Warner-Bratzler shear force. Early-weaned steers had greater ADG from time of early weaning to normal weaning than suckling normally weaned steers (1.27 vs. 0.86 kg/d, respectively; P < 0.001). However, early-weaned steers tended to have lower ADG for the entire finishing period than did normally weaned steers (1.33 vs. 1.39 kg/d, respectively; P = 0.08). Compared with normally weaned steers, early-weaned steers had lower daily DMI (7.40 vs. 5.95 kg/d, respectively; P < 0.001) and lower total DMI for the finishing period (1,618 vs 1,537 kg, respectively; P < 0.05). Early-weaned steers had greater gain:feed for the finishing period than normally weaned steers (0.223 vs 0.189, respectively; P < 0.001). Carcass weights were lighter for early-weaned steers than for normally weaned steers (277.9 vs. 311.2 kg, respectively; P < 0.001). There was no difference in yield grade (3.1 vs. 3.2; P < 0.10) between treatments. All carcasses graded Low-Choice or greater, and there was no difference in the percentage of carcasses grading Mid-Choice or greater (94.5 vs 83.9% for early- and normally-weaned, respectively; P > 0.10). Warner-Bratzler shear force values were similar between treatments. Early-weaned steers had a lower cost of gain than normally weaned steers ($ 0.82 vs. 0.91/kg, respectively; P < 0.001). However, due to lighter carcass weights, early-weaned steers generated less return to the cow-calf enterprise than normally weaned steers ($ 380.89 vs 480.08/steer; P < 0.001). The early weaning of steers at 100 d of age decreased total DMI, improved gain:feed, and lowered the cost of gain; however, return to the cow-calf enterprise was decreased due to lighter carcass weights.  相似文献   

14.
The aim was to evaluate the effect of different rates of weight gain during the backgrounding on animal performance and carcass and meat characteristics of steers finished in feedlots. Thirty-six Angus steers, 12 ± 2 months of age, were backgrounded during 91 days on Aruana grass pasture (Panicum maximum cv. Aruana) managed under different stocking rates to achieve three different weight gains: HIGH ADG (average daily gain)—no feed restriction (ADG = 0.846 kg); MEDIUM ADG—moderate feed restriction (ADG = 0.456 kg); and LOW ADG—high feed restriction (ADG = 0.154 kg). To ensure the difference in ADG, we offered 0.7% live weight of concentrate feed in the HIGH treatment and a better forage supply in the MEDIUM treatment. After the backgrounding, the animals were finished in feedlot. There was no effect of the previous performance on the animals' performance in the feedlot. The LOW presented higher weight (218.9 vs. 207.9 kg) and hot (54.0% vs. 51.3%) and cold (53.5% vs. 50.5%) carcass yield than the MEDIUM, besides presenting meat with less cooking losses (15.0% vs. 18.2%), marbling (7 vs. 4.0 points), palatability (7.1 vs. 6.3 points), juiciness (7.2 vs. 6.4 points), tenderness (7.1 vs. 6.3 points), and lower shear force (5.78 vs. 8.75 kg) than HIGH. LOW ADG steers stay longer in the finishing phase but presented in general better quality carcass and meat than those with MEDIUM or HIGH during the backgrounding.  相似文献   

15.
A study was conducted to determine the effect of dietary Mn on performance of growing and finishing steers, and to evaluate the effect of pharmacological concentrations of Mn on lipid metabolism and subsequent carcass quality in steers. One hundred twenty Angus cross steers were blocked by BW and origin and assigned randomly to one of six treatments (four replicate pens per treatment) providing 0 (control), 10, 20, 30, 120, or 240 mg of supplemental Mn/kg of DM from MnSO4. Steers were fed a corn silage-based growing diet for 84 d, and then switched to a corn-based finishing diet for an average of 112 d. The control growing diet analyzed 29 mg of Mn/kg of DM, whereas the control finishing diet analyzed 8 mg of Mn/kg of DM. Jugular blood samples were obtained on d 56 of the growing and finishing phase for plasma Mn and glucose analysis. Final BW, DMI, ADG, and G:F did not differ (P = 0.38 to P = 0.98) across treatments during growing and finishing phases. Plasma Mn concentrations were not affected by treatment; however, liver and LM Mn at slaughter increased linearly (P = 0.02 and 0.002, respectively) with increasing dietary Mn. Plasma glucose concentrations did not differ (P = 0.90) among treatments. Serum nonesterified fatty acid concentrations tended (P = 0.10) to decrease linearly with increasing dietary Mn on d 56 of the finishing phase. Longissimus muscle lipid concentration was affected quadratically (P = 0.08) by dietary Mn. Muscle lipid seemed to increase slightly when steers were fed 30 or 120 mg of Mn/kg of DM, but decreased with the addition of 240 mg of Mn/kg of DM. Carcass characteristics were not affected by dietary Mn. Manganese concentrations of 29 and 8 mg/kg of DM in the growing and finishing diets, respectively, were adequate for maximizing performance of growing and finishing steers in this experiment. Supplementing physiological or pharmacological concentrations of Mn affected lipid metabolism; however, this did not result in altered carcass characteristics.  相似文献   

16.
The composition of carcass and noncarcass tissue growth was quantified by serial slaughter of 26 Angus x Hereford crossbred steers (initial age and weight 289 +/- 4 d and 245 +/- 4 kg) during continuous growth (CON) or compensatory growth (CG) after a period of growth restriction (.4 kg/d) from 245 to 325 kg BW. All steers were fed a 70% concentrate diet at ad libitum or restricted levels. Homogenized samples of 9-10-11th rib and noncarcass tissues were analyzed for nitrogen, fat, ash, and moisture. Growth rate from 325 to 500 kg BW was 1.54 and 1.16 kg/d for CG and CON steers. The weight of gut fill in CG steers was 10.8 kg less (P less than .05) before realimentation and 8.8 kg more (P less than .10) at 500 kg BW than in CON steers. The allometric accretive rates for carcass chemical components relative to the empty body were not affected by treatment. However, the accretive rates for CG steers were greater (P less than .01) for noncarcass protein (.821 vs .265), noncarcass water (.861 vs .507), and empty-body protein (.835 vs. .601) than for CON steers. Final empty-body fat was lower (P less than .001; 24.2 vs 32.4%) and empty-body protein higher (P less than .001; 16.6 vs 14.8%) in CG steers than in CON steers. Consequently, net energy requirements for growth (NEg) were approximately 18% lower for CG steers. We conclude that reduced NEg requirements and changes in gut fill accounted for most of the compensatory growth response exhibited in these steers.  相似文献   

17.
A study was conducted to evaluate feed intake, ADG, carcass quality, eating behavior, and blood metabolites in feedlot beef steers fed diets that varied in proportion of wheat dried distillers grains with solubles (DDGS) replacing barley grain or barley silage. Two hundred crossbred steers (BW = 489 ± 30 kg) were blocked by BW and randomly allotted to 20 pens (5 pens per treatment). Steers were fed 1 of 4 diets: control without DDGS (CON), 25% (25DDGS), 30% (30DDGS), or 35% (35DDGS) wheat DDGS (DM basis). The CON diet consisted of 15% barley silage and 85% barley-based concentrate; the 3 wheat DDGS diets were formulated by substituting 20% barley grain and 5, 10, or 15% silage, respectively, with 25, 30, or 35% wheat DDGS so that the 35DDGS diet contained no silage. The diets were formulated such that wheat DDGS was substituted for both barley grain and barley silage to evaluate whether wheat DDGS can be fed as a source of both energy and fiber in feedlot finishing diets. Dry matter intake of steers fed 25DDGS was greater (P < 0.01), but final BW, ADG, and G:F were not different compared with steers fed CON diet. Carcass characteristics and liver abscess score were not different between CON and 25DDGS. Steers fed 25DDGS had longer eating time (min/d; P < 0.01), greater meal frequency (P < 0.04), but a slower eating rate (P < 0.04). Replacing barley silage with increasing amounts of wheat DDGS (from 25DDGS to 35DDGS) linearly reduced (P < 0.01) DMI. Final BW, ADG, and G:F were not affected by increasing amounts of wheat DDGS. Carcass traits were not different, whereas liver abscess scores linearly (P < 0.01) increased as more barley silage was replaced by wheat DDGS. Eating time (min/d) and duration of each meal linearly (P < 0.02) decreased, whereas eating rate (min/g of DM) linearly (P < 0.01) increased with increasing replacement of barley silage. Blood urea N was doubled (P < 0.01) compared with CON by inclusion of wheat DDGS. Results indicate that wheat DDGS can be used effectively in feedlot diets, decreasing the need for barley grain or silage without negatively affecting growth performance and carcass characteristics. A reduction in the amount of roughage required to maintain growth performance is a potential advantage in feedlot operations because forage is costly and often of limited availability. Thus, DDGS can be a possible alternative as long as they are available and cost effective; however, increased incidence of liver abscess and increased N content of manure need to be considered when greater amounts of wheat DDGS are included in finishing diets.  相似文献   

18.
One hundred forty-three Angus x Simmental crossbred steers (initial BW = 155.1 +/- 4.5 kg) were used in a 2-yr study (yr 1, n = 67; yr 2, n = 76) to determine the effects of weaning age, implant regimen, and the weaning age x implant regimen interaction on steer growth and performance, organ mass, carcass characteristics, and cooked beef palatability. Steers were early-weaned at an average age of 108 d (EW) or normally weaned at an average age of 202 d (NW) and allotted by weight to an aggressive or nonaggressive implant regimen. On their respective weaning dates, EW and NW steers were penned individually and fed a grain-based diet until they were slaughtered at a final BW of 546 kg. A subsample of steers (n = 2 per treatment) were slaughtered at 254 kg. At 254 kg, EW steers implanted with the aggressive implant regimen had 64% greater backfat depth than those implanted with the nonaggressive implant regimen; conversely, NW steers implanted with the aggressive implant regimen had 52% lower backfat depth than those implanted with the nonaggressive implant regimen (weaning status x implant regimen interaction; P < 0.01). A similar interaction was observed for empty visceral organ weights. Early-weaned steers were younger (354.7 vs 372.4 d; P < 0.01) at final slaughter but were in the feedlot longer (246.5 vs 169.6 d; P < 0.01) than NW steers, whereas the aggressive implant regimen decreased days fed (203.3 vs 212.7; P < 0.07) compared to the nonaggressive implant regimen. Overall ADG was greater for EW than for NW steers (1.61 vs 1.50 kg/d; P < 0.01) and for the aggressive compared with the nonaggressive implant regimen (1.59 vs 1.52 kg/d; P < 0.02). Early-weaned steers consumed less DM per day (7.4 vs 8.5 kg/d; P < 0.01) and were more efficient (0.217 vs 0.208 kg/kg; P < 0.02) but consumed more total DM (1,817 vs 1,429 kg; P < 0.01) than NW steers while in the feedlot. Implant regimen did not affect DMI (P > 0.37) or feed efficiency (P > 0.15). Weaning status did not affect carcass characteristics (P > 0.14), final empty body composition (P > 0.25), or final longissimus muscle composition (P > 0.18); however, steaks from EW steers had higher (P < 0.05) taste panel tenderness and juiciness ratings than steaks from NW steers. The aggressive implant regimen decreased yield grade (P < 0.02), but did not affect quality grade (P > 0.86) compared to the nonaggressive implant regimen. Placing early-weaned steers on an aggressive implant regimen is a viable management option.  相似文献   

19.
The effects of an implant of 140 mg of trenbolone acetate and 28 mg of estradiol (TBA + E2) on performance and carcass composition were evaluated with 72 individually fed steers. Holstein (n = 24), Angus (n = 24), and Angus x Simmental (n = 24) steer calves were allocated by breed and implant treatment to either an individual feeding pen (n = 36) or an electronic feeding door in a group pen (three pens with 12 animals per pen). Intake and refusal of the 85% concentrate diet were recorded daily. Animals were slaughtered when ultrasonic attenuation values of the longissimus muscle at the 12th rib reached .55, which is correlated with low Choice marbling. At slaughter, complete carcass measurements were taken and the right side of each carcass was separated into boneless wholesale cuts. Implanting with TBA + E2 improved (P less than .01) daily gain and feed efficiency. Daily gain was increased 17, 26, and 21% in Holstein, Angus, and crossbred steers, respectively. The implant increased overall daily protein and fat accretion 23%. Carcass conformation and dressing percentage were not affected (P greater than .05) by TBA + E2 treatment. Implantation with TBA + E2 had little effect on yield of wholesale boneless cuts when expressed as a percentage of carcass weight but increased absolute weight as a small degree of marbling by 6 to 40 kg.  相似文献   

20.
Sixty-three Angus x Simmental calves were allotted to a bull or a steer group based on sire, birth date, and birth weight to determine effects of castration status on performance, carcass characteristics, and circulating insulin-like growth factor I (IGF-I) concentrations in early-weaned cattle. At 75 d of age, calves in the steer group were castrated. Calves were not creep-fed prior to weaning. All calves were weaned and weighed at an average age of 115 d and transported by truck to the OARDC feedlot in Wooster, OH. Performance and carcass characteristics were measured in three phases. Phase 1 was from 115 to 200 d of age, phase 2 was from 201 to 277 d of age, and phase 3 was from 278 d of age to slaughter. Before implantation, four bulls and four steers were selected for serial slaughter and carcass evaluation. Steers were implanted with Synovex-C at 130 d of age and with Revalor-S at 200 and 277 d of age. Serum samples were collected from all calves on the day of implantation, 28 and 42 d after implantation, and at slaughter and analyzed for circulating IGF-I concentration. Bulls gained 9.7% faster (1.75 vs 1.60 kg/d; P < 0.01), consumed 25 kg more DM (521 vs 496 kg; P = 0.11), and were 3.3% more efficient (282 vs 273 g/kg, P < 0.10) than steers in phase 1. However, steers gained 10.5% faster (1.62 vs 1.46 kg/d; P < 0.02), consumed similar amounts of DM, and were 6.5% more efficient than bulls (214 vs 201 g/kg; P < 0.06) in phase 2. Overall gains and efficiency were similar between bulls and steers; however, bulls consumed 140 kg more DM (P < 0.05), were 27 kg heavier (P < 0.05), and had to stay in the feedlot 18 more days (P < 0.05) than steers to achieve a similar amount of fat thickness. Implanted steers had greater concentrations of circulating IGF-I than bulls (P < 0.01), and the pattern of IGF-I concentration over time was affected by castration status (castration status x time interaction; P < 0.01). Synovex-C had a lower impact on circulating IGF-I concentration (implant effect, P < 0.01) than either Revalor-S implant. Eighty-five percent of both bulls and steers had marbling scores sufficient to grade low Choice or better. Bulls achieved their target fat thickness later, increased muscle growth, and deposited fat more favorably than steers, possibly due to a gradual increase in IGF-I concentration as the testicles grew rather than the large fluctuations in IGF-I concentration observed in steers following implantation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号