首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Highly pathogenic avian influenza (HPAI) viruses of the H5N1 subtype have caused several rounds of outbreaks in Thailand. In this study, we used 3 HPAI viruses isolated in Thailand in January 2004 from chicken, quail, and duck for genetic and pathogenetic studies. Sequence analysis of the entire genomes of these isolates revealed that they were genetically similar to each other. Chickens, quails, domestic ducks, and cross-bred ducks were inoculated with these isolates to evaluate their pathogenicity to different host species. A/chicken/Yamaguchi/7/04 (H5N1), an HPAI virus isolated in Japan, was also used in the chicken and quail studies for comparison. All four isolates were shown to be highly pathogenic to chickens and quails, with 100% mortality by 10(6) EID50 inoculants of the viruses. They caused sudden death in chickens and quails within 2-4 days after inoculation. The mean death times (MDT) of quails infected with the Thai isolates were shorter than those of chickens infected with the same isolates. Mortality against domestic and cross-bred ducks ranged from 50 to 75% by intranasal inoculation with the 10(6) EID50 viruses. Neurological symptoms were observed in most of the inoculated domestic ducks and appeared less severe in the cross-bred ducks. The MDTs of the ducks infected with the Thai isolates were 4.8-6 days post-inoculation. Most of the surviving ducks infected with the Thai isolates had sero-converted until 14 dpi. Our study illustrated the pathobiology of the Thai isolates against different poultry species and would provide useful information for improving control strategies against HPAI.  相似文献   

2.
Nigeria and several other nations have recently been affected by outbreaks of the Asian H5N1 strain of highly pathogenic notifiable avian influenza (HPNAI) virus, which affects the poultry sector most heavily. This study analysed previous methods of assessing losses due to avian influenza, and used a revised economic model to calculate costs associated with the current avian influenza outbreaks. The evaluation used epidemiological data, production figures and other input parameters to determine the final costs. An infection involving 10% of the commercial bird population will cost Nigeria about $245 million and a worse scenario may lead to a loss of around $700 million. The results urge governments to invest more in measures aimed at the effective prevention of HPNAI and to consider the huge economic losses associated with the disease. Finally, an inter-disciplinary approach to managing and controlling HPNAI outbreaks is encouraged.  相似文献   

3.
In 2008, the Indonesian Government implemented a revised village-level Participatory Disease Surveillance and Response (PDSR) program to gain a better understanding of both the magnitude and spatial distribution of H5N1 highly pathogenic avian influenza (HPAI) outbreaks in backyard poultry. To date, there has been considerable collection of data, but limited publically available analysis. This study utilizes data collected by the PDSR program between April 2008 and September 2010 for Java, Bali and the Lampung Province of Sumatra. The analysis employs hierarchical Bayesian occurrence models to quantify spatial and temporal dynamics in backyard HPAI infection reports at the District level in 90 day time periods, and relates the probability of HPAI occurrence to PDSR-reported village HPAI infection status and human and poultry density. The probability of infection in a District was assumed to be dependent on the status of the District in the previous 90 day time period, and described by either a colonization probability (the probability of HPAI infection in a District given there had not been infection in the previous 90 day time period) or a persistence probability (the probability of HPAI infection being maintained in the District from the previous to current 90 day period). Results suggest that the number of surveillance activities in a district had little relationship to outbreak occurrence probabilities, but human and poultry densities were found to have non-linear relationships to outbreak occurrence probabilities. We found significant spatial dependency among neighboring districts, indicating that there are latent spatial processes that are not captured by the covariates available for this study, but which nonetheless impact outbreak dynamics. The results of this work may help improve understanding of the seasonal nature of H5N1 in poultry and the potential role of poultry density in enabling endemicity to occur, as well as to assist the Government of Indonesia target scarce resources to regions and time periods when outbreaks of HPAI in poultry are most likely to occur.  相似文献   

4.
An experimental infection study was performed using pigeons reared for racing or meat production in Japan and clade 2.2 and 2.3.2 isolates of H5N1 highly pathogenic avian influenza virus to evaluate the possible role of pigeons in virus transmission to poultry. In experiment 1, when 20 pigeons were intranasally inoculated with high or low viral doses, no inoculated pigeon exhibited clinical signs for 14 days. Drinking water and almost all swab samples were negative for virus isolation. Virus isolation was positive in 3 oral swab samples from 2 pigeons from day 2 through 4 postinoculation, but viral titers of positive samples were extremely low. Immunohistochemical analysis for virus detection was negative in all tissue samples. Along with seroconversion in a limited number of pigeons postinoculation, these results suggest that pigeons have limited susceptibility to the virus used for experimental infection. In experiment 2, when uninoculated chickens were housed with virus-inoculated pigeons, all pigeons and contact chickens survived for 14 days without exhibiting any clinical signs. According to serological analysis, the chickens did not exhibit seroconversion after close contact with inoculated pigeons. Our data suggest that the risk posed by pigeons with respect to the transmission of the H5N1 highly pathogenic avian influenza virus to poultry would be less than that for other susceptible avian species.  相似文献   

5.
During the outbreak of highly pathogenic avian influenza (HPAI) H5N1 in Sweden in 2006, disease and mortality were observed in a number of wild bird species. Encephalitis was one of the most consistent and severe findings in birds submitted for postmortem examination. However, the distribution and severity of the inflammation varied among individuals. This study characterized the encephalitis and the phenotype of the cellular infiltrate in brains of 40 birds of various species naturally infected with HPAI H5N1. Brain sections stained with hematoxylin and eosin and immunostained for influenza A viral antigen were evaluated in parallel to brain sections immunostained with antibodies against T lymphocytes (CD3+), B lymphocytes (CD79a+), macrophages (Lectin RCA-1+), and astrocytes expressing glial fibrillary acidic protein. The virus showed marked neurotropism, and the neuropathology included multifocal to diffuse areas of gliosis and inflammation in the gray matter, neuronal degeneration, neuronophagia, vacuolation of the neuropil, focal necrosis, perivascular cuffing, and meningitis. Broad ranges in severity, neuroanatomical distribution, and type of cellular infiltrate were observed among the different bird species. Since neurotropism is a key feature of HPAI H5N1 infection in birds and other species and because the clinical presentation can vary, the characterization of the inflammation in the brain is important in understanding the pathogenesis of the disease and also has important diagnostic implications for sample selection.  相似文献   

6.
7.
In 2010, an H5N1 highly pathogenic avian influenza virus (HPAIV) was isolated from feces of apparently healthy ducks migrating southward in Hokkaido, the northernmost prefecture of Japan. The H5N1 HPAIVs were subsequently detected in domestic and wild birds at multiple sites corresponding to the flyway of the waterfowl having stopovers in the Japanese archipelago. The Hokkaido isolate was genetically nearly identical to H5N1 HPAIVs isolated from swans in the spring of 2009 and 2010 in Mongolia, but less pathogenic in experimentally infected ducks than the 2009 Mongolian isolate. These findings suggest that H5N1 HPAIVs with relatively mild pathogenicity might be selected and harbored in the waterfowl population during the 2009-2010 migration seasons. Our data provide "early warning" signals for preparedness against the unprecedented situation in which the waterfowl reservoirs serve as perpetual sources and disseminators of HPAIVs.  相似文献   

8.
9.
This investigation detailed the clinical disease, gross and histologic lesions, and distribution of viral antigen in juvenile laughing gulls (Larus atricilla) intranasally inoculated with either the A/tern/South Africa/61 (H5N3) (tern/SA) influenza virus or the A/chicken/Hong Kong/220/97 (H5N1) (chicken/HK) influenza virus, which are both highly pathogenic for chickens. Neither morbidity nor mortality was observed in gulls inoculated with either virus within the 14-day investigative period. Gross lesions resultant from infection with either virus were only mild, with the tern/SA virus causing decreased lucency of the air sacs (2/6), splenomegaly (2/6), and pancreatic mottling (1/6) and the chicken/HK virus causing only decreased lucency of the air sacs (2/8) and conjunctival edema (2/8). Histologic lesions in the tern/SA-inoculated gulls included a mild to moderate heterophilic to lymphoplasmacytic airsacculitis (6/6), mild to moderate interstitial pneumonia (3/6), and moderate necrotizing pancreatitis and hepatitis at 14 days postinoculation (DPI) (2/6). Immunohistochemical demonstration of viral antigen occurred only in association with lesions in the liver and pancreas. In contrast, viral antigen was not demonstrated in any tissues from the chicken/HK-inoculated gulls, and inflammatory lesions were confined to the air sac (3/8) and lungs (3/8). Both viruses were isolated at low titers (<10(1.68) mean embryo lethal dose) from oropharyngeal and cloacal swabs up to 7 days postinoculation (DPI), from the lung and kidney of one of two tern/SA-inoculated gulls at 14 DPI, and from the lung of one of two chicken/HK-inoculated gulls at 7 DPI. Antibodies to influenza viruses as determined with the agar gel precipitin test at 14 DPI were detected only in the two tern/SA-inoculated gulls and not in the two chicken/HK-inoculated gulls.  相似文献   

10.
Logistic regression models integrating disease presence/absence data are widely used to identify risk factors for a given disease. However, when data arise from imperfect surveillance systems, the interpretation of results is confusing since explanatory variables can be related either to the occurrence of the disease or to the efficiency of the surveillance system. As an alternative, we present spatial and non-spatial zero-inflated Poisson (ZIP) regressions for modelling the number of highly pathogenic avian influenza (HPAI) H5N1 outbreaks that were reported at subdistrict level in Thailand during the second epidemic wave (July 3rd 2004 to May 5th 2005). The spatial ZIP model fitted the data more effectively than its non-spatial version. This model clarified the role of the different variables: for example, results suggested that human population density was not associated with the disease occurrence but was rather associated with the number of reported outbreaks given disease occurrence. In addition, these models allowed estimating that 902 (95% CI 881–922) subdistricts suffered at least one HPAI H5N1 outbreak in Thailand although only 779 were reported to veterinary authorities, leading to a general surveillance sensitivity of 86.4% (95% CI 84.5–88.4). Finally, the outputs of the spatial ZIP model revealed the spatial distribution of the probability that a subdistrict could have been a false negative. The methodology presented here can easily be adapted to other animal health contexts.  相似文献   

11.
Highly pathogenic avian influenza viruses (HPAIV) of the H5N1 subtype have spread since 2003 in poultry and wild birds in Asia, Europe and Africa. In Korea, the highly pathogenic H5N1 avian influenza outbreaks took place in 2003/2004, 2006/2007 and 2008. As the 2006/2007 isolates differ phylogenetically from the 2003/2004 isolates, we assessed the clinical responses of chickens, ducks and quails to intranasal inoculation of the 2006/2007 index case virus, A/chicken/Korea/IS/06. All the chickens and quails died on 3 days and 3-6 days post-inoculation (DPI), respectively, whilst the ducks only showed signs of mild depression. The uninoculated chickens and quails placed soon after with the inoculated flock died on 5.3 and 7.5 DPI, respectively. Both oropharyngeal and cloacal swabs were taken for all three species during various time intervals after inoculation. It was found that oropharyngeal swabs showed higher viral titers than in cloacal swabs applicable to all three avian species. The chickens and quails shed the virus until they died (up to 3 to 6 days after inoculation, respectively) whilst the ducks shed the virus on 2-4 DPI. The postmortem tissues collected from the chickens and quails on day 3 and days 4-5 and from clinically normal ducks that were euthanized on day 4 contained the virus. However, the ducks had significantly lower viral titers than the chickens or quails. Thus, the three avian species varied significantly in their clinical signs, mortality, tissue virus titers, and duration of virus shedding. Our observations suggest that duck and quail farms should be monitored particularly closely for the presence of HPAIV so that further virus transmission to other avian or mammalian hosts can be prevented.  相似文献   

12.
2006年从山西省分离获得的H5N1亚型禽流感病毒(AIV)曾引起免疫鸡群的大量死亡,与我国之前分离的病毒抗原差异性较大,称为"山西鸡型"抗原变异株。本研究应用该亚群代表毒株CK/SX/2/06(H5N1),研究该病毒对SPF鸭和鸭胚的致病性,并通过病毒在鸭和鸭胚内的连续传代,探讨该亚群病毒在鸭和鸭胚中的进化规律。结果表明,病毒对3周龄鸭呈低致病性,在各脏器中的复制能力较弱;鸭感染病毒后无明显临床症状,排毒水平较低并且不能感染同居鸭。病毒在3周龄鸭和10日龄鸭胚中分别继代感染3代和5代后,对3周龄鸭仍呈低致病性且HA基因未发生氨基酸位点变化。病毒不能致死3周龄鸭和1日龄雏鸭,但能致死10日龄~23日龄鸭胚,而且对鸭胚的致病性随着鸭胚日龄的增长逐渐减弱,致死鸭胚时间从对10日龄鸭胚24h致死到对23日龄鸭胚72h致死直至对25日龄鸭胚只感染但不致死。病毒对鸭呈低致病性且在鸭群传播中保持着基因水平和致病性上的相对稳定,对不同日龄鸭胚、1日龄和3周龄鸭致病性的不同表现,与目前存在于我国的其他亚群H5N1HPAIV对鸭致病性和进化特点上呈现出明显的差异,并对家禽养殖业存在威胁。  相似文献   

13.
This paper analyses the publicly available data on the distribution and evolution of highly pathogenic avian influenza virus (HPAIV) H5N1 clades, whilst acknowledging the biases resulting from the non-random selection of isolates for gene sequencing. The data indicate molecular heterogeneity in the global distribution of HPAIV H5N1, in particular in different parts of East and Southeast Asia. Analysis of the temporal pattern of haemagglutinin clade data shows a progression from clade 0 (the ‘dominant’ clade between 1996 and 2002) to clade 1 (2003–2005) and then to clade 2.3.4 (2005 onwards). This process continuously produces variants, depending on the frequency of virus multiplication in the host population, which is influenced by geographical variation in poultry density, poultry production systems and also HPAI risk management measures such as vaccination. Increased multilateral collaboration needs to focus on developing enhanced disease surveillance and control targeted at evolutionary ‘hotspots’.  相似文献   

14.
Highly pathogenic avian influenza (HPAI) subtype H5N1 is a trans-boundary animal disease that has crossed the animal-human species barrier and over the past decade has had a considerable impact on the poultry industry, wild bird populations and on human health. Understanding the spatio-temporal patterns of H5N1 outbreaks can provide visual clues to the dynamics of disease spread and of areas at risk, and thus improve the cost-effectiveness of disease control and prevention. This study describes the characteristics and investigates the temporal, spatial and space-time dynamics of H5N1 outbreaks in domestic poultry between December 2003 and December 2009 using a global database. The study found that the start date of the epidemic wave was postponed, the duration of the epidemic was prolonged and its magnitude reduced over time, but the disease transmission cycle was not efficiently interrupted. Two 'hot-spot' regions of H5N1 outbreaks were identified: well-documented locations in East and Southeast Asia, as well as a novel location at the boundaries of Europe and Africa, where enhanced surveillance should be conducted. The risk of a pandemic due to H5N1 remains high.  相似文献   

15.
In 1999-2000, Italian poultry production was disrupted by an H7N1 virus subtype epidemic of highly pathogenic avian influenza (HPAI). The objectives of the present study were to identify risk factors for infection on poultry farms located in regions that had the highest number of outbreaks (Veneto and Lombardia) and the impact of pre-emptive culling as a complementary measure for eradicating infection. A Cox regression model that included spatial factors, such as the G index, was used. The results confirmed the relationship between risk of infection and poultry species, production type and size of farms. The effectiveness of pre-emptive culling was confirmed. An increased risk of infection was observed for poultry farms located near an infected farm and those at altitudes less than 150m above sea level. The measures for the control and eradication of AI virus infection need to consider species differences in susceptibility, the types of production and the density of poultry farms in the affected areas.  相似文献   

16.
The Asian lineage highly pathogenic avian influenza (HPAI) H5N1 virus is a known pathogen of birds. Only recently, the virus has been reported to cause sporadic fatal disease in carnivores, and its zoonotic potential has been dominating the popular media. Attention to felids was drawn by two outbreaks with high mortality in tigers, leopards and other exotic felids in Thailand. Subsequently, domestic cats were found naturally infected and experimentally susceptible to H5N1 virus. A high susceptibility of the dog to H3N8 equine influenza A virus had been reported earlier, and recently also HPAI H5N1 virus has been identified as a canine pathogen. The ferret, hamster and mouse are suitable as experimental animals; importantly, these species are also kept as pets. Experimental intratracheal and oral infection of cats with an HPAI H5N1 virus isolate from a human case resulted in lethal disease; furthermore, cats have been infected by the feeding of infected chickens. Spread of the infection from experimentally infected to in-contact cats has been reported. The epidemiological role of the cat and other pet animal species in transmitting HPAI H5N1 virus to humans needs continuous consideration and attention.  相似文献   

17.
18.
19.
Natural and experimental infections have shown that cats are susceptible to highly pathogenic avian influenza A virus subtype H5N1 (HPAIV H5N1). Cats can be severely affected and die from the disease, but subclinical infections have also been reported. To learn more about the role of cats in the spread of the virus and about the risk posed to cats, the prevalence of H5N1 virus was examined in 171 cats from areas in Germany and Austria in which birds infected with HPAIV H5N1 had been found. Pharyngeal swabs were examined for H5N1 virus using real-time polymerase chain reaction, and serum samples were tested for antibodies to influenza virus. None of the cats showed evidence of infection with H5N1 virus. Prevalence of H5N1 virus was determined to be <1.8% (95% confidence interval (CI): 0.000000-0.017366); prevalence of antibodies was <2.6% (95% CI: 0.000000-0.025068).  相似文献   

20.
Beginning in 2003, highly pathogenic avian influenza (HPAI) H5N1 virus spread across Southeast Asia, causing unprecedented epidemics. Thailand was massively infected in 2004 and 2005 and continues today to experience sporadic outbreaks. While research findings suggest that the spread of HPAI H5N1 is influenced primarily by trade patterns, identifying the anthropogenic risk factors involved remains a challenge. In this study, we investigated which anthropogenic factors played a role in the risk of HPAI in Thailand using outbreak data from the “second wave” of the epidemic (3 July 2004 to 5 May 2005) in the country. We first performed a spatial analysis of the relative risk of HPAI H5N1 at the subdistrict level based on a hierarchical Bayesian model. We observed a strong spatial heterogeneity of the relative risk. We then tested a set of potential risk factors in a multivariable linear model. The results confirmed the role of free-grazing ducks and rice-cropping intensity but showed a weak association with fighting cock density. The results also revealed a set of anthropogenic factors significantly linked with the risk of HPAI. High risk was associated strongly with densely populated areas, short distances to a highway junction, and short distances to large cities. These findings highlight a new explanatory pattern for the risk of HPAI and indicate that, in addition to agro-environmental factors, anthropogenic factors play an important role in the spread of H5N1. To limit the spread of future outbreaks, efforts to control the movement of poultry products must be sustained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号