首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 14 毫秒
1.
Before sensor‐based variable rate technology (VRT) can be used to reduce nitrogen (N) fertilizer rates in winter wheat (Triticum aestivum L.) spectral radiance readings must be understood. One prominent issue is the impact of crop growth stage on spectral radiance readings, and the ensuing problem of relating databases gathered at different locations and different stages of growth. In order to evaluate the impact of growth stage on spectral radiance, sensor readings were taken from a winter wheat variety trial and two long‐term N and phosphorus (P) fertility trials. The normalized difference vegetative index was computed using red and near infrared (NIR) spectral radiance measurements [NDVI=(NIR‐red)/(NIR+red)]. TotalNuptake in winter wheat at Feekes growth stages 4, 5, 7, and 8 was highly correlated with NDVI. In the variety trial, non‐significant differences in ND VI readings were noticed between the five common genotypes (by growth stage) grown in this region. However, slopes from linear regression of total N uptake on NDVI were different at different stages of growth, which suggests the need for growth stage specific calibration. Freeze injury (altered tissue color) affected the relationship between total N uptake and NDVI, however, NDVI continued to be a good predictor of in‐season total N uptake in wheat even though cell blasting altered tissue color. This work showed that NDVI is a good predictor of biomass, but not necessarily total N concentration in plant tissue. The amount of variability in total N uptake as explained by NDVI increased with advancing growth stage (Feekes 4 to 7), largely due to an increased percentage of soil covered by vegetation.  相似文献   

2.
Current methods of determining nitrogen (N) fertilization rates in winter wheat (Triticum aestivum L.) are based on farmer projected yield goals and fixed N removal rates per unit of grain produced. This work reports on an alternative method of determining fertilizer N rates using estimates of early-season plant N uptake and potential yield determined from in-season spectral measurements collected between January and April. Reflectance measurements under daytime lighting in the red and near infrared regions of the spectra were used to compute the normalized difference vegetation index (NDVI). Using a modified daytime lighting reflectance sensor, early-season plant N uptake between Feekes physiological growth stages 4 (leaf sheaths lengthen) through 6 (first node of stem visible) was found to be highly correlated with NDVI. Further analyses showed that dividing the NDVI sensor measurements between Feekes growth stages 4 and 6, by the days from planting to sensing date was highly correlated with final grain yield. This in-season estimate of yield (INSEY) was subsequently used to compute the potential N that could be removed in the grain. In-season N fertilization needs were then considered to be equal to the amount of predicted grain N uptake (potential yield times grain N) minus predicted early-season plant N uptake (at the time of sensing), divided by an efficiency factor of 0.70. This method of determining in-season fertilizer need has been shown to decrease large area N rates while also increasing wheat grain yields when each 1m2 area was sensed and treated independently.  相似文献   

3.
Abstract

Sensor‐based technologies for in‐season application of nitrogen (N) to winter wheat (Triticum aestivum L.) have been developed and are in use in the southern Great Plains. Questions arise about the suitability of this technology for spring wheat production in the northern Great Plains. A field experiment was established in Brookings, SD, to evaluate the GreenSeeker Hand Held optical sensor (NTech Industries, Ukiah, CA) for predicting in‐season N status on three spring wheat cultivars (Ingot, Oxen, and Walworth) across five N treatments. Nitrogen rates were 0, 34, 68, 102, and 136 kg N ha?1 applied preplant as ammonium nitrate. Sensor readings and plant biomass samples were collected at Feekes 6 and Feekes 10 growth stages. The sensor measures reflectance in the red and near infrared (NIR) regions of the electromagnetic spectrum. A normalized difference vegetation index (NDVI) was calculated. The ability of the sensor readings to predict biomass, plant N concentration, and plant N uptake for each sampling date was determined. In general, biomass, plant N concentration, and N uptake increased with increasing N rate for both sampling dates. Readings collected at Feekes 6 and Feekes 10 showed a significant relationship with plant biomass, N concentration, and N uptake for all varieties. Plant N uptake and NDVI resulted in a higher regression coefficients compared to biomass and plant N concentration for all varieties. Results suggest that existing sensor‐based variable nitrogen technology developed for winter wheat could be utilized in the northern Great Plains for estimating in‐season N need for spring wheat.  相似文献   

4.
Abstract

Nitrogen use efficiency (NUE) is known to be less than fifty percent in winter wheat grain production systems. This study was conducted to determine potential differences in NUE when winter wheat (Triticum aestivum L.) is grown strictly for forage or grain. The effects of different nitrogen rates on plant N concentrations at different growth stages and on grain yield were investigated in two existing long‐term winter wheat experiments near Stillwater (Experiment 222) and Lahoma (Experiment 502), OK. At both locations in all years, total N uptake was greater when wheat forage was harvested twice (Feekes 6 and flowering) compared to total N uptake when wheat was grown only for grain. Percent N content immediately following flowering was much lower compared to percent N in the forage harvested prior to flowering, indicating relatively large losses of N after flowering. Averaged over locations and years, at the 90 kg N ha?1 rate, wheat produced for forage had much higher NUE (82%) compared with grain production systems (30%). While gaseous N loss was not measured in this trial, the higher NUE values found in the forage production systems were attributed to harvesting prior to anthesis and the time when plant N losses are known to be greater.  相似文献   

5.
Nitrogen (N) and phosphorus (P) are major limiting nutrient elements for crop production and continued interest lies in improving their use efficiency. Spectral radiance measurements were evaluated to identify optimum wavelengths for dual detection of N and P status in winter wheat (Triticum aestivum L.). A factorial treatment arrangement of N and P (0, 56, 112, and 168 kg N ha‐1 and 0, 14.5, and 29 kg P ha‐1) was used to further study N and P uptake and associated spectral properties at Perkins and Tipton, Oklahoma. A wide range of spectral radiance measurements (345–1, 145 nm) were obtained from each plot using a PSD 1000 Ocean Optics fiber optic spectrometer. At each reading date, 78 bands and 44 combination indices were generated to test for correlation with forage biomass and N and P uptake. Additional spectral radiance readings were collected using an integrated sensor which has photodiode detectors and interference filters for red and NIR. For this study, simple numerator/denominator indices were useful in predicting biomass, and N uptake and P uptake. Numerator wavelengths that ranged between 705 and 735 nm and denominator wavelengths between 505 and 545 nm provided reliable prediction of forage biomass, and N and P uptake over locations and Feekes growth stages 4 through 6. Using the photodiode sensor, NDVI [(NIR‐red)/(NIR+red)] and NR [(NIR/red)], were also good indices to predict biomass, and N and P uptake. However, no index was found to be good for detecting solely N and P concentration either using the spectrometer or photodiode sensor.  相似文献   

6.
In a 3-year study, grain yield, nitrogen use efficiency (NUE), and grain protein (GP) were evaluated as a function of rate and timing of nitrogen (N) fertilizer application. Linear models that included preplant N, normalized difference vegetation index (NDVI), cumulative rainfall, and average air temperature from planting to sensing (T-avg) were evaluated to predict NUE and GP in winter wheat. GreenSeeker readings were collected at Feekes (F) 3, 4, 5, and 7 growth stages. Combined with rainfall and/or T-avg, NDVI alone was not correlated with NUE. However, NDVI and rainfall explained 45% (r2 = 0.45) of the variability in GP at F7 growth stage. Preplant N, NDVI, rainfall and growing degree days (GDD) combined explained 76% (r2 = 0.76) of the variability in GP at F3. Mid-season climatic data improved the prediction of GP and should therefore be considered for refining fertilizer recommendations when GP levels are expected to be low.  相似文献   

7.
不同生育期冬小麦光谱特征对叶绿素和氮素的响应研究   总被引:8,自引:0,他引:8  
研究测定了不同施氮水平条件下冬小麦冠层在七个典型生育期叶片叶绿素、地上部分全氮含量以及冠层光谱,分析了单波段反射率、可见光和近红外波段组合而成的归一化植被指数(NDVI)、比值植被指数(RVI)与相应时期叶片叶绿素和地上部分全氮含量的相关性。结果表明,施氮量增加,两个农学参量、冠层近红外波段反射率都随之增加,但当施氮量增加到300kg hm-(2一次性施入)时,上述各项指标均降低;整个生长期中孕穗期在近红外区域反射率最高,与可见光波段反射率相差最大;除分蘖期外,其它时期单波段510nm~1100nm反射率、NDVI、RVI与叶绿素和全氮含量显著相关,植被指数的相关性较单波段高,且从分蘖期到乳熟期,相关性逐渐增强;整体来讲,可见光中560nm、660nm和近红外760nm、1100nm和1200nm组合的NDVI在各生育期与两个农学指标的相关性较好,选择NDVI(560,760)可以准确拟合叶片叶绿素和地上部分全氮含量。  相似文献   

8.
张俊华 《土壤》2008,40(4):540-547
本文首先分析不同施 N 水平条件下夏玉米冠层在6个典型生育期的光谱特征曲线,然后计算了可见光和近红外波段光谱反射率组成的归一化植被指数(NDvI)及相应时期叶片叶绿素含量和地上部分全N含量2个重要指标以及孕穗期冠层NDVI和几个N肥吸收利用效率的相关性.结果表明,孕穗期冠层光谱反射率在近红外区域反射率最大,且其可见光和近红外区域反射率差异最大:从苗期到孕穗期,NDVI和叶绿素、全N含量的相关性逐渐增强,到抽雄期减弱,灌浆期又有所增强;整体来讲绿色归一化植被指数 GNDNI(560,760)在各生育期与不同农学参量的相关性比其他波段组合的指数好,其次为NDVI(660,760)波段组合.随着施N量的增加,N肥利用效率、收获指数和N肥收获指数、N素农艺效率以及N肥回收效率均逐渐降低,对各N肥吸收利用指数的预测以NDVI(660,760)、NDVI(660,1100)和GNDVI(560,760)较理想.  相似文献   

9.
[目的]研究冠层光谱技术在蔬菜氮素营养诊断中应用的可行性和提高其准确性的方法,为推进蔬菜氮素营养管理与施肥推荐提供快速无损检测技术.[方法]以茎菜类蔬菜—莴苣(Lactuca sativa L.)为研究对象进行田间试验.设置5个化肥年施用梯度:0、108、162、216、270kg/hm2,在莴苣幼苗期、莲座期、茎形成...  相似文献   

10.
A field experiment with winter oilseed rape was conducted near Göttingen (northern Germany) in the growing season 1998–99. Twelve varieties were compared at two nitrogen (N) application rates (0, 206 kg N ha–1) regarding shoot dry matter production, shoot N content, shoot N uptake (beginning of shooting, beginning of flowering), and seed yield. Canopy reflectance was measured one week before the beginning of shooting and one week before flowering at different wavelengths between 550 and 940 nm using a spectral reflectance sensor, type FAL II. The vegetation indices red edge inflection point (RIP), soil adjusted vegetation index (SAVI), and normalized vegetation index (NDVI) introduced in literature as indicators of growth parameters were calculated from the reflectance values and compared with growth parameters. The results showed that the measuring angle (–45° to 45°) had a significant influence on the calculated vegetation indices. Therefore, the measuring angle should be kept constant during the measurements. Nitrogen fertilization led to an increase of all vegetation indices. The results revealed significant differences between the tested varieties, indicating problems regarding an accurate estimation of the N status of the crop. Consistent differences in the vegetation indices appeared between varieties with extremely different growth parameters. However, no general relationship between growth parameters and vegetation indices of the 12 varieties could be found. Therefore, variety‐specific calibrations are necessary. The indices RIP and SAVI resulted in similar statements and seem to be good parameters regarding N effects and variety differences, whereas NDVI could resolve variety differences in the fertilized treatments only imperfectly.  相似文献   

11.
Studies were conducted to determine relationships among nitrate reductase activity (NRA), dry weight (DW), nitrogen (N) uptake, and N concentration in soft red winter wheat (Triticum aestivwn L.). Data were collected for three growing seasons from field plots grown on a silt loam and one growing season on a sandy loam. Ten cultivars were measured under field conditions with plant samples taken at Feekes Growth Stages 6, 10, 10.5, and 11.1. NRA was measured using an in vivo assay method on fully expanded leaves representing the upper most part of the canopy. Results indicated that N uptake was highest during Stages 10.5 to 11.1, although not significantly different for all cultivars. Few differences were found among cultivars for N concentration. The NRA measured under field conditions was more stable at Growth Stage 6. Path coefficients between NRA and DW, N uptake, and N concentration varied considerably depending on the growth stage, indicating that selection for N utilization using one or more of the measurements evaluated in this study should consider the stage of growth.  相似文献   

12.
为探究宽窄行种植模式下稻秸非均匀性覆盖还田对土壤理化特性和小麦产量的影响,在大田条件下,本研究通过前期不同行间距配置试验筛选出30 cm+15 cm的优势宽窄行组合,并在此基础上设置5个不同梯度的宽窄行稻秸分布比例处理(T1:0、T2:25%、T3:50%、T4:75%、T5:100%),分析窄行(苗带)土壤理化性质和小麦产量变化情况。结果表明,0~10 cm为土壤温度和含水率变化敏感层。随着窄行稻秸覆盖量的升高,小麦生育前期土壤增温幅度增大,中后期降温效果更明显,土壤保墒性能增强,拔节期各处理间土壤含水率差异增大(增加1.2%~3.4%)。窄行稻秸覆盖量增加可在一定程度上降低土壤容重,提高土壤孔隙度,这种增减效应与覆盖量呈一定正比关系,但与生育时期无关;开花期和成熟期,土壤有机质、全氮、速效磷和速效钾含量均随窄行稻秸覆盖量增加呈先升后降趋势,总体上表现出适量稻秸覆盖(T3:窄行秸秆覆盖量为均匀覆盖时窄行秸秆量的1/2)更有利于增加土壤养分含量。小麦产量及其构成因素均随窄行稻秸覆盖比例的不断增加呈降低趋势,其中有效穗数和产量(降幅为4.0%~31.7%)均显著降低(P<0.05)。可见,在稻秸全(大)量非均匀还田和晚播情形下,只有合理配比宽窄行秸秆覆盖量,并适当增加小麦播种量,保证足够基本苗,才能达到稳产肥地的协同效应。  相似文献   

13.
小麦间作菠菜的边际效应与基施氮肥利用率   总被引:1,自引:0,他引:1  
麦田中设置65cm的空带,采用间作菠菜和不种作物(CK)2种方式并施15N肥料,种小麦处施尿素,研究小麦的边际效应和N肥利用效率。结果表明,CK处理的边行小麦具有显著的产量优势,间作菠菜后边行优势减小,但间作小麦仍具有明显的产量优势。边行优势的形成与小麦植株吸收N素密切相关。在小麦、菠菜共生期间,边行小麦的N素营养变劣,菠菜收获后,边行小麦比内行吸收了较多的N素尤其是基施N肥。小麦间作菠菜比CK处理,基肥N利用率提高,土壤残留量降低,损失量减少。  相似文献   

14.
Midseason fertilizer nitrogen (N) rates based on predicted yields can be projected if the quantity of N accumulated in winter wheat (Triticum aestivum L.) and corn (Zea mays L.) is known especially early in the growing season. This study was conducted in 2006 and 2007 to establish the amount of N accumulated in corn and winter wheat over the entire growing season. Plots representing three N fertilization rates 0, 45, and 90 kg ha?1 at Stillwater and 0, 67, and 112 kg ha?1 at Lahoma were selected from two long-term wheat experiments located at research stations in Stillwater and Lahoma, Oklahoma. For corn, three N fertilization rates 0, 112 and 224 kg ha?1 at Lake Carl Blackwell and 0, 56 and 112 kg ha?1 at Perkins were selected from N studies, located at research stations near Lake Carl Blackwell and Perkins, Oklahoma. Sequential aboveground biomass samples were collected from 1 m2 area of wheat and 1.5 m long row (0.76 cm spacing) for corn throughout their respective growing seasons. In general, this work showed that more than 45% of the maximum total N accumulated could be found in corn plants by growth stage V8 (8th leaf collar fully unfolded). For winter wheat, more than 61% of the maximum total N accumulated at later stages of growth could be accounted for by Feekes growth stage 5 (F5, leaf strongly erected). Our findings are consistent with those of others showing that yield potential can be predicted at mid-season since such a large percentage of the total N accumulated was accounted for early on in the growing cycle of either wheat or corn.  相似文献   

15.
The resolution at which variability in soil test and yield parameters exist is fundamental to the efficient use of real-time sensor-based variable rate technology. This study was conducted to determine the optimum field element size for maximum yields in winter wheat (Triticum aestivum L.), using variable nitrogen (N) rates based on sensor readings. The effect of applying N at four different resolutions (0.84, 3.34, 13.38, and 53.51 m2) on grain yield, N uptake and efficiency of use was investigated at Haskell, Hennessey, Perkins, and Tipton, Oklahoma. At Feekes growth stage 5 an optical sensor developed at Oklahoma State University measured red (670 ± 6 nm) and near-infrared (NIR, 780 ± 6 nm) reflectance in each subplot. A normalized-difference-vegetative-index (NDVI) was calculated from the sensor measurements. Nitrogen was applied based on a NDVI–N rate calibration. Nitrogen rate, yield, N uptake, and efficiency of use responses to treatment resolution and applied N fertilizer differed in the 3 years of this experiment. In the first year, no significant influence of resolution on N rate, yield, N uptake, or efficiency of use was observed, likely a result of a late freeze that drastically reduced yields. In the second year of the experiment, there was a trend for a lower N rate and a higher efficiency of use for the 0.84 m2 resolution. In the third year of this study, there was a trend for a higher yield and a higher efficiency of use for the 53.51 m2 resolution at both sites. In general, the finer resolutions tended to have increased efficiency of use in high yielding environments (>2300 kg ha?1), and decreased yields in low yielding environments. This study indicates that application of prescribed fertilizer rates based on spatial variability at resolutions finer than 53.51 m2 could lead to increased yields, decreased grower costs, and decreased environmental impact of excess fertilizers.  相似文献   

16.
Abstract

Spatial variability of soil nutrients is known to exist at distances of less than 1 m. Recently, an on‐the‐go system for application of nitrogen (N) fertilizer based on spectral measurements known as in‐season estimated yield (INSEY) improved N use efficiency (NUE) by as much as 17% in winter wheat. Six trials were conducted in 2001, 2002, and 2003 at Ardmore and Burneyville, OK, with an objective to develop an index similar to INSEY for use in predicting yield potential in bermudagrass (Cynodon dactylon L.) that can be used for adjusting fertilizer N rates. Initial results indicate that 55% of variation in predicted bermudagrass forage yield was explained by a Bermudagrass–INSEY (B‐INSEY) index and 54% of the variation in forage N uptake was explained using the normalized difference vegetative index (NDVI). The remaining challenge is to develop appropriate N fertilizer rates based on this information and apply these rates using on‐the‐go technology.  相似文献   

17.
The use of variable rate technology has become increasingly popular for applying plant nutrient elements. The most widely used method for determining variable fertilizer rates is presently based on soil testing and yield mapping. Three field studies (Bumeyville 1995, Burneyville 1996, and Ardmore 1996) were initiated in established Midland bermudagrass [Cynodon dacrylon (L) Pers.] pastures to determine the relationship between spectral radiance at specific wavelengths with forage nitrogen (N) removal and biomass, and to determine field variability of soil test parameters. Variable N (applied to 1.5 × 2.4 m subplots within 2.4 × 45.7 m main plots), fixed N and check treatments were evaluated at each location. Spectral radiance readings were taken in the red (671±6 nm), green (570±6 nm), and near infrared (NIR) (780±6 nm) wavelengths. The normalized difference vegetation index (NDVI) was calculated as NIR‐red/NIR+red. Variable N rates were applied based on NDVI. The highest fixed variable N rate was set at 224, 336, and 672 kg N ha‐1 for Burneyville, 1995, 1996, and Ardmore, 1996, respectively. At Bumeyville, soil samples were collected in all variable rate plots (1.5 × 2.4 m) and analyzed for various soil test characteristics. NDVI, red, green, and NIR spectral radiance readings were correlated with bermudagrass forage N removal and yield. Correlation of forage yield and N removal with red, NIR, and NDVI were best with maximum forage production, however, when forage production levels were low correlation decreased dramatically for the red wavelength compared with NIR and NDVI. Forage yield and forage N removal in variable rate treatments increased when compared to the check while being equal to the half‐fixed and fixed rates where higher N rates were applied. Also, variability about the mean in variable rate plots was significantly lower than half‐fixed and fixed rates which supports adjusting N rates based on indirect NDVI measurements. Variable N rate plots reduced fertilizer inputs by 60% and produced the same yield as fixed rate plots, while fixed and half‐fixed rates did not increase N content in the forage over that of the variable rate treatment. Soil sample data collected from small consecutive plots (<4 m2) was extremely variable indicating that intense sampling would be needed if variable fertilizer application were to be based on soil test results.  相似文献   

18.
Optimum grain nitrogen (N) concentration and yield in spring wheat (Triticum aestivum L.) can be problematic without proper N fertilizer management. Sensor-based technologies have been used for application of fertilizers and also to predict yield in wheat, although little has been done in the prediction of grain N. Field studies were conducted in South Dakota in 2006 (Gettysburg, Bath, and Cresbard) and 2007 (Gettysburg, Aurora, Leola, and Artas). There were five N treatments (0, 56, 112, 168, and 224 kg N ha?1) applied pre-plant with a second N application applied foliar at anthesis. Sensor readings were taken at growth stages Feekes 10, anthesis, and postfoliar application using the GreenSeeker Hand Held optical sensor. Grain samples were taken at maturity and analyzed for total N. Using similar information collected in 2003 and 2005, a critical normalized difference vegetation index (NDVI) value was determined using the Cate–Nelson procedure. The critical NDVI value needed to ensure optimum grain N was 0.70. In 2006 and 2007, the plots that received an application of N at anthesis had higher grain N than the plots not receiving N. There was also a significant response between applied N and grain yield. The results show that with further studies, the Greenseeker could be used to apply N to maximize yield and grain N in a precise and accurate manner.  相似文献   

19.
Winter wheat varieties (Triticum aestivum L.) with different leaf angle distributions (LADs) were used in this experiment. Results showed that varieties with planophile LADs had leaf orientation values (LOVs) ranging from 25.12 to 40.33, whereas varieties with erectophile LADs had LOVs ranging from 67.5 to 73.25. Canopy spectral reflectance was measured using a ground‐based spectroradiometer. Correlation analysis indicated that LOV affected canopy spectra more than leaf area index (LAI) before the jointing stage. The LAI had the greatest effect after the ground was nearly completely covered. Discriminant analysis showed that simultaneous measurements of normalized difference vegetation index (NDVI) and cover can differentiate LADs in those wheat varieties with similar population magnitude at the jointing stage. In addition, by using increments of the canopy spectral reflectance at different growth stages, the planophile varieties with low LAIs can be differentiated from the erectophile varieties with high LAIs, which cannot be achieved using NDVI and cover. Using ΔR890 as the reflectance increment of booting stage and jointing stage and R890 as the reflectance of 890‐nm energy at the jointing stage, different varieties presented distinctly different scatter plot representations (X = ΔR890, Y = R890). This analysis also indicted that varieties with different LADs can be clustered and identified qualitatively in the plot despite their population magnitude, also validated by discriminant analysis.  相似文献   

20.
不同播量与行距对小麦产量与辐射截获利用的影响   总被引:1,自引:0,他引:1  
在田间试验条件下,设置了3个播种量(6 kg·667m 2、9 kg·667m 2和12 kg·667m 2)和3个种植行距(20 cm、25 cm和30 cm)共9个处理。通过测定小麦群体生长动态、辐射截获量和籽粒产量,研究分析不同行距和播种量对小麦产量形成和辐射利用效率的影响。结果表明:群体总茎数和叶面积指数表现为随播种量增大而增加;在相同播种量下,尽管20 cm行距的小麦分蘖数最高,但其有效成穗数却最低;叶面积指数与群体总茎数变化动态一致,而叶日积却表现为随行距和播量加大而增加。在相同播种量下,籽粒产量和辐射利用效率均随着种植行距增加呈递增趋势变化,在3个播种量下表现趋势一致。行距由20 cm增加到25 cm和30 cm,籽粒产量平均增加81.62 g·m 2和162.53 g·m 2,截获辐射利用效率平均增加0.18%和0.35%。产量和截获辐射利用率在行距间的差异均达到极显著水平,而播种量之间没有表现出显著差异,播种量和行距之间也没有明显互作效应。由此说明:调整行距对产量的影响作用大于调整播种量对产量的影响作用。因此,在水肥条件较好的黄淮海平原区小麦生产中,把传统种植行距15~20 cm调整为25~30 cm,播种量在常规播种量的基础上适量增加,可以提高小麦单产与辐射资源利用潜力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号