首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Genotypic differences in potassium (K) uptake and utilization were compared for eight cotton cultivars in growth chamber and field experiments. Four of the cultivars (‘SGK3’, ‘SCRC18’, ‘SCRC21’ and ‘SCRC22’) typically produce lower dry mass and the other four (‘Nannong8’, ‘Xiangza2’, ‘Xinluzao12’ and ‘Xiangza3’) produce greater dry mass in K-deficient solution (0.02 mM). The mean dry weight of seedlings (five-leaf stage) of cultivars with greater biomass was 155% higher than that of cultivars with lower biomass yield under K deficiency. However, all the genotypes had similar dry matter yields in K-sufficient solution (2.5 mM). Thus, the four cultivars with superior biomass yield under low K medium may be described as K efficient cultivars while the inferior cultivars may be described as K inefficient. Although seeds of the studied cultivars originated from different research institutes or seed companies, there were little differences in seed K content among them, irrespective of their K efficiency. Consequently, there were no significant differences in K accumulation in seedlings (4 d after germination in a K-free sand medium) just before transferring to nutrient solutions. However, the K efficient genotypes, on average, accumulated twice as much K at 21 d after transferring to K-deficient solution (0.02 mM). A much larger root system as well as a slightly higher uptake rate (K uptake per unit of root dry weight) may have contributed to the higher net K uptake by the K efficient cultivars. In addition, the K efficiency ratio (dry mass produced per unit of K accumulated) and K utilization efficiency (dry mass produced per unit of K concentration) of the K efficient cultivars exceeded those of the K inefficient genotypes by 29% and 234%, respectively, under K deficiency. On average, the K efficient cultivars produced 59% more potential economic yield (dry weight of all reproductive organs) under field conditions even with available soil K at obviously deficient level (60 mg kg?1). We noted especially that the four K inefficient cultivars studied were all transgenic insect-resistant cotton, suggesting that the introduction of foreign genes (Bt and CpTI) may affect the K use efficiency of cotton.  相似文献   

2.
A pot experiment was conducted in the wire house of Department of Crop Physiology, University of Agriculture, Faisalabad to evaluate the effect of salinity stress on water relations, nutrient uptake and yield of six local spring wheat cultivars. The seeds were sown in plastic pots (25 × 15 cm) and experiment was laid out in a randomized complete block design in factorial arrangement with three repeats. De-ionized water was used as control treatment while salinity stress was imposed by irrigating plants with sodium chloride (NaCl) solution of 10 mM at tillering, stem elongation, anthesis, and grain development stages. Results of the study demonstrated that salinity stress decreased water potential by 32%, osmotic potential by 12%, and relative water contents by 20% as compared to control treatment. The nitrogen (N) uptake was decreased by 36% under salinity stress, while phosphorous (P) and potassium (K) uptake were decreased by 56% and 42%, respectively. The yield of wheat plants was also significantly reduced under salinity stress. It reduced grain yield by 25% and grain weight by 7%. The response of different cultivars was also different to salinity stress as cultivars ‘Lasani-08’ and ‘FSD-08’ were found to be more tolerant as compared to other cultivars.  相似文献   

3.
A 6 year field study comparing the effects of 5 fertilizer sources applied at 4 levels to 3 rabbiteye blueberry (Vaccinium ashei Reade) cultivars was established on a Typic paleudult soil in southern Misssssippi. Fertilizer sources had little influence on plant height, vigor, chlorosis, or fruit yield. The first year, ‘Tifblue’ was lowest in vigor and fruit yield, but after 4 growing seasons, had the highest plant height and fruit yields. Chlorosis symptoms were more prevalent at the highest fertilization rate, in the cultivar ‘Woodard’, and with Ca(NO3)2 fertilizer. During the first 5 years, fruit yields increased as fertilization levels increased from 0 to 5.9 g N/plant but additional fertilization did not influence yields There were no differences in plant vigor due to cultivars but the highest rate of fertilization decreased vigor. The cultivar X fertilization rate interaction was significant for plant height in 1983 and for fruit yields in 1984 and 1985. ‘Delite’ and ‘Woodard’ plant height increased while height of ‘Tifblue’ decreased as fertilization rates increased from the 0 to 5.9 g N/plant levels; higher rates decreased plant height in all cultivars. In 1984 and 1985 fruit yields of ‘Woodard’ and ‘Delite’ were not influenced by fertilization but yields of ‘Tifblue’ indicated a negative response to increasing fertilizer levels.  相似文献   

4.
[目的]探究长期干旱胁迫下不同施钾水平对油菜生长、籽粒品质、钾素利用的影响,旨在明确不同钾肥水平下油菜通过调节生长和营养分配应对干旱胁迫的机制,为油菜抗旱栽培提供科学依据.[方法]以抗旱油菜品种油研57和干旱敏感品种川油36为试验材料,采用盆栽土培试验,每盆装风干土10 kg,设置K2O施用量0、80和160 mg/k...  相似文献   

5.
ABSTRACT

The effects of saline water containing 0, 50, 100, and 150 mM sodium chloride (NaCl), and 100 mM NaCl + 100 mM potassium (K) on photosynthesis, water relations, and ion and carbohydrate content of olive (Olea europaea L.) cultivars ‘Koroneiki’ and ‘Mastoidis’ were studied on five-year-old trees. Salinity increased sodium (Na+) and chloride (Cl?) in tissues of both cultivars, but more so in ‘Koroneiki’ than in ‘Mastoidis.’ Salt-toxicity symptoms were observed at 100 and 150 mM, but not in plants receiving extra K. In salt-stressed plants, leaf water potential declined, whereas turgor potential remained positive due to a rapid decrease in osmotic potential. Salinity increased mannitol content up to 41.3% in ‘Mastoidis’ and 15.8% in ‘Koroneiki’, but reduced starch content in leaves. Photosynthetic rates fell significantly with increasing salinity in both cultivars, but more so in ‘Koroneiki’ than in ‘Mastoidis’. Potassium supplements reduced the concentration of Na+ and increased the concentrations of K+ in leaves, but decreased photosynthesis.  相似文献   

6.
This study investigated the effects of foliar application of normal and nano-sized zinc oxide on the response of sunflower cultivars to salinity. Treatments included five cultivars (‘Alstar’, ‘Olsion’, ‘Yourflor’, ‘Hysun36’ and ‘Hysun33’), two salinity levels [0 and 100 mM sodium chloride (NaCl)], and three levels of fertilizer application. Fertilizer treatments were the foliar application of normal and nano-sized zinc oxide (ZnO). Foliar application of ZnO in either forms increased leaf area, shoot dry weight, net carbon dioxide (CO2) assimilation rate (A), sub-stomatal CO2 concentration (Ci), chlorophyll content, Fv/Fm, and Zn content and decreased Na content in leaves. The extent of increase in chlorophyll content, Fv/Fm and shoot weight was greater as nano-sized ZnO was applied to the normal form. The results show that the nano-sized particles of ZnO compared to normal form has greater effect on biomass production of sunflower plants.  相似文献   

7.
ABSTRACT

Plant species and genotypes within one species may significantly differ in phosphorus (P) uptake and utilization when they suffer from P starvation. The objective of this research was to screen P-efficient germplasm of oilseed rape (Brassica napus L.) and analyze the possible mechanism responsible for P efficiency by two-steps screening experiments and validation of P efficiency. Phosphorus efficiency coefficient at seedling stage, namely, ratio of shoot dry weight under low P to that under adequate P (PECS) of 194 oilseed rape cultivars varied from 0.050 to 0.62 and was significantly related with shoot dry weight under low P level (r = 0.859??, P < 0.01). Oilseed rape cultivar ‘Eyou Changjia’ presented the highest P efficiency coefficient in each growth stage and had the highest seed yield at low P, whereas oilseed rape cultivar ‘B104-2’ was the most sensitive to low P stress among the 12 candidate cultivars obtained from the two-steps screening experiments. Under low P condition in validation experiments of soil and solution cultures, ‘Eyou Changjia’ could produce much more dry matter and acquire more P than ‘B104-2.’ Moreover, P efficient coefficient obtained from the pot experiment was comparable to those from the field experiment. This might be attributed to high P uptake efficiency for ‘Eyou Changjia’ when it suffered from low-P stress. Comparison of results from the hydroponics with those from the pot and field experiments led to the conclusion that the P uptake efficiency in the hydroponics is highly related to that in soil culture conditions. These results show that there are large genotypic differences in response to phosphorus deficiency in oilseed rape germplasm (Brassica napus L.) and ‘Eyou Changjia’ is P-efficient and ‘B104-2’ is P-inefficient. By comparing these results further, the mechanism responsible for P efficiency was suggested to be mainly due to high P uptake efficiency by forming larger root system, and improving the ability of mobilizing and acquiring soil P in P-efficient oilseed rape under the condition of P starvation.  相似文献   

8.
The effect of salinity (NaCl) on chlorophyll, leaf water potential, total soluble sugars, and mineral nutrients in two young Iranian commercial olive cultivars (‘Zard’ and ‘Roghani’) was studied. One-year-old trees of these cultivars were planted in 10-L plastic pots containing equal ratio of sand-perlite mixture (1:1). Sodium chloride at concentrations of 0, 40, 80, 120, or 160 mM plus Hoagland's solution were applied to these pots for 150 days. The results showed that chlorophylls (a), (b), and (a+b) reduced with increasing of salinity up to 40 mM. There was no difference between cultivars for chlorophylls (b) and (a+b) while ‘Roghani’ showed more decreased in content of chlorophyll (a) than did ‘Zard’. Total soluble sugars in leaves increased with an increase in salinity up to 80 mM but decreased with additional increase in salinity. Salinity stress reduced water potential equally in both cultivars. The concentrations of sodium (Na) and chloride (Cl) and Na/potassium (K) ratio were increased and K decreased with increasing of salinity up to 80 mM in leaves and roots. Concentrations of K, magnesium (Mg), calcium (Ca), phosphorus (P), and nitrogen (N) reduced significantly in leaves, shoots and roots with increasing salinity.  相似文献   

9.
Abstract

As part of a project to stimulate Norwegian seed production of common bent (syn. browntop, US: colonial bentgrass, Agrostis capillaris L. syn. A.tenuis Sibth.) field trials comparing sowing rates of 2.5, 5.0, 7.5 or 10 kg ha?1 were conducted at Landvik, south-east Norway, (58°N) from 1989 to 1994. Three trials were laid out of the forage cultivar ‘Leikvin’ and three trials of the lawn cultivar ‘Nor’, each trial being harvested for three consecutive years. While the average per cent ground cover in spring increased from 87% at 2.5 kg ha?1 to 94–96% at 7.5 kg ha?1, seed yields decreased with increasing sowing rate in both cultivars. On average for all harvests, quadrupling the sowing rate from 2.5 to 10 kg ha?1 reduced seed yield by 9% in ‘Leikvin’ and 15% in ‘Nor’, the stronger effect probably being associated with a greater competition between tillers in the lawn cultivar. Seed yield reductions with increasing sowing rate showed no relationship with crop age, but were less accentuated for crops undersown in spring wheat in a dry year than for crops established without cover crop in years with ample rainfall in early summer. Increasing sowing rates reduced plant height and panicle number in ‘Nor’, but had no effect on seed weight or germination in any of the cultivars. It is concluded that seed crops of common bent should be established with a sowing rate of 2–5 kg ha?1, with the lowest rate in lawn cultivars, under ideal seedbed conditions and when seed crops are sown without cover crop.  相似文献   

10.
Seedlings of two strawberry cultivars ‘Camarosa’ and ‘Chandler’ were grown using perlite in a greenhouse for 20 days, and then plants were watered with nutrient solution containing 0, 8.5, 17.0, and 34.0 mM sodium chloride (NaCl) for 6 months. Sodium chloride treatments generally reduced the leaf and root dry weight. Relative water content (RWC) of leaves was maintained despite the increased salt concentrations while loss of turgidity was increased by sodium chloride (NaCl) treatments in both cultivars. As the most variable amino acids, aspartic acid, glutamic acid, arginine, proline, serine, and alanine were determined under salt stress in plants. Sodium chloride treatments generally increased sodium (Na) and chloride (Cl) contents in all plant parts. The plants were able to maintain high potassium (K) levels in the aerial parts with the 8.5 mM NaCl treatment. It can be concluded that ‘Camarosa’ has the ability to osmotic regulation. ‘Chandler’ also tolerates the salt injury at low salt concentrations.  相似文献   

11.
It is unknown if nitrogen (N) fertilizer application will ameliorate the yield loss associated with severe defoliation of soybean [Glycine max (L.) Merr.] at the R5 stage of growth. The objective of this field study was to investigate the interaction of N fertilization rate and extent of defoliation on soybean yield, seed weight, seed N concentration, and nodule activity. Field experiments were conducted in 1988 and 1989 on a Drummer silty clay loam (Typic Haplaquolls). Treatment variables were three cultivars: BSR 101, Chamberlain, and Elgin 87; three N fertilizer rates applied one day after defoliation: 0, 84, and 168 kg N ha‐1 as urea; and three levels of defoliation: 0, 50, and 75%. Grain yield was not significantly affected by N rate but did decrease with defoliation. Fertilizer N did not ameliorate the yield reduction associated with defoliation. Seed weight decreased linearly with increasing defoliation. Plants exposed to the most severe defoliation produced seed which weighed 1 g 100‐1 seed less than seed from nondefoliated plants. In 1989 seed weight of only the nondefoliated plants increased slightly with N rate, seed weight was not affected by N rate for any other year by defoliation treatment combination. Seed N concentration was not affected by N rate. Seed N concentration increased with defoliation in 1988 but not in 1989. Seed N concentration was not affected by defoliation in 1989. N fertilizer application and defoliation decreased nodule activity. Defoliated plants utilized nitrates in preference to dinitrogen fixation. Fertilizer N increased the concentration of nitrates in the plant, but the increase did not ameliorate the yield loss. Developing pods and seed are the predominate sink. The additional energy presumably required for dinitrogen fixation did not exacerbate the yield loss.  相似文献   

12.
In plants, apical dominance prevents the development of lateral shoots. It can be overwhelmed by apical bud defoliation, allowing numerous lateral buds to develop into more lateral branches carrying more fruits and possibly increasing seed yield. This study tested this hypothesis on five hemp (Cannabis sativa L.) cultivars in a 2-year field experiment. In comparison to the intact ones, the defoliated plants developed several lateral shoots. The hemp seed yield was significantly influenced by the year of production, the apical bud removal, and the cultivar. The average two-year seed yield of the defoliated plants (715?±?47?kg/ha) was significantly higher than the yield of the intact plants (568?±?35?kg/ha). Absolutely the greatest effect of apical bud removal on the seed yield was observed for the cultivar ‘Novosadska konoplja’, where increase was 225?kg/ha (25%); a slightly smaller difference occurred for the cultivar ‘Uniko-B’ (183?kg; 30%), followed by ‘Juso-11’ (140?kg/ha; 27%) and ‘Bialobrzeskie’ (128?kg/ha; 29). Cultivar ‘Beniko’ presented the smallest difference with apical bud removal – 58?kg/ha (15%) yield increase We maintain that hemp producers can achieve a larger seed yield not only by selecting an appropriate cultivar and row distance but also by removing apical buds.  相似文献   

13.
The present research was conducted to study the responses of ‘Malas–e–Saveh’ (M) and ‘Shishe–Kab’ (Sh) Iranian pomegranates to sodium chloride (NaCl) stress under greenhouse and field conditions. Treatments included waters electrical conductivity (EC = 1.5, 3, 6, 9 and 12 dS m?1 for greenhouse) and (EC = 1.05 as control, 4.61 and 7.46 dS m?1 for field studies). Interactive effects of salinity × variety indicated the highest chlorophyll and leaf potassium concentration, and the lowest leaf chloride and sodium in control under greenhouse study. Non-photochemical quenching, effective quantum yield of photochemical energy conversion in PSII reduced under the highest salinity level in field, however, basal quantum yield of non-photochemical processes in PSII increased in the highest salinity. Sodium and chloride increased with increased in salinity. Calcium, magnesium and iron significantly decreased with increased in salinity. It seems that there are differences between pomegranate cultivars and Malas-e-Saveh is more tolerant compared with Shishe Kab.  相似文献   

14.
Our study analyzed the effect of foliar tissues and seed tissue for determining the micronutrient status of a crop. Zinc (Zn) requirements of onion (Allium cepa L.) leaves and seeds were estimated from yield response curves based on field experiment conducted on a Zn-deficient calcareous soil. Three onion cultivars, i.e., ‘Swat-1’, ‘Phulkara’, and ‘Sariab Red’ were grown by applying 0, 2, 4, 8, and 16 kg Zn ha?1. Zinc application significantly increased seed yield of all the three cultivars of onion. The order of seed yield response to Zn fertilization was: ‘Swat-1’ < ‘Phulkara’ < ‘Sariab Red’. Fertilizer Zn requirement for near-maximum seed yield was 2 kg Zn ha?1. Zinc concentration in mature onion seed also appeared to be a good indicator of soil Zn availability status. Critical Zn concentration in seed was 18 mg Zn kg?1, and in matured leaves was 21 mg kg?1.  相似文献   

15.
Field screening of 83 groundnut cultivars was undertaken for two seasons to assess their tolerance of salinity based on plant mortality and yield attributes. During the dry season, soil salinity of 4 dS m?1 at sowing and 6–7 dS m?1 21–98 days after sowing (DAS) caused high mortality without seed formation in any cultivars, however, at salinity 4.5 dS m?1 during sowing and 3.5–3.0 dS m?1 15–80 DAS during wet season, 61 cultivars produced seed. The cultivars ‘VRI 3’, ‘UF 70–103’, ‘TKG 19A’, ‘S 206’, ‘Tirupati 4’, ‘M 522’, ‘Punjab 1’, ‘BG 3’, ‘Somnath’ and ‘ICGV 86590’, with high plant stand during both the seasons and over 75 g m?2 seed yield during wet season, were identified salinity tolerant. However, 15 cultivars with more than 50 g m?2 seed yield were moderately tolerant and 28 cultivars with less than 25 g m?2 seed yield were sensitive to salinity.  相似文献   

16.
《Journal of plant nutrition》2013,36(7):1295-1317
Abstract

A field experiment was conducted at Central Cotton Research Institute, Multan, Pakistan on Miani soil series, silt loam soil (Calcaric, Cambisols and fine silty, mixed Hyperthermic Fluventic Haplocambids) to assess the response of four cotton (Gossypium hirsutum L.) cultivars to potassium (K) fertilization. The treatments consisted of four cotton cultivars (CIM-448, CIM-1100, NIAB-Karishma, S-12), four potassium rates (0, 62.5, 125, 250 kg K ha?1), and two sources of potassium fertilizer [muriate of potash (KCl) and sulphate of potash (K2SO4)]. The cotton cultivars differed significantly in response to various potassium fertilizer levels and its sources with respect to seed cotton yield and its components. The highest yield was obtained with the application of 250-kg K ha?1, however, it was economical to add 125 kg K ha?1. Seed cotton yield of cv. CIM-448 was considerably greater than that of the other cultivars in K-unfertilized treatments, which was related to cultivar differences in K uptake efficiency in utilizing native potassium nutrient. Potassium added as muriate of potash caused a significant depression in seed cotton yield than that of sulphate of potash. The increase in yield seemed to have resulted largely from the higher K concentration of leaf tissues at bloom stage and available soil-K because of potassium application. A significant relationship between the yield and number of bolls per plant (r = 0.92**) and boll weight (r = 0.85**) indicated that these two growth attributes were responsible for enhancing the quantum of final harvest of seed cotton.  相似文献   

17.
  【目的】  研究如何在肥料总量控制甚至减少的前提下,通过优化养分管理措施、提高种植密度,进一步挖掘东北中部黑土区春玉米的产量和肥料效应潜力,为春玉米超高产条件下养分高效利用提供理论指导。  【方法】  试验于2005—2013年在吉林省农安县靠山镇进行,在大田条件下设置2种模式,分别为普通高产养分管理模式 (HYNM)和超高产养分管理模式 (SHYNM),以先玉335和郑单958为供试材料,系统监测群体产量构成及养分偏生产力,剖析不同产量群体氮、磷、钾养分吸收、分配和转运特征。  【结果】  在东北中部黑土雨养区,超高产养分管理模式 (SHYNM) 下全区测产玉米单产达15017 kg/hm2 (先玉335),其产量构成为收获穗数76154 穗/hm2,穗粒数583,千粒重337.9 g。与普通高产群体相比,超高产群体对氮、钾肥的相对需求比例明显变大。群体氮素和磷素的吸收高峰在6展叶至12展叶阶段和吐丝期至乳熟期,钾素吸收高峰在6展叶至12展叶阶段。通过大区和生产两个阶段田间实证,超高产养分管理技术显著提高了花后养分累积量和对籽粒养分的贡献率,可以实现在15000 kg/hm2产量水平下,氮、磷、钾肥的偏生产力分别达50.2、100.5、100.5 kg/kg。品种间比较,先玉335比郑单958具有更好的产量表现,且植株养分向籽粒的转运效率更高,其籽粒中的氮、磷、钾累积量均高于郑单958。  【结论】  在合理提升密度的基础上,以“减控总肥量、分段供氮、花前重施磷钾”为主要原则的养分管理技术模式,配合化控措施,延缓了玉米生育后期叶片的衰老,保证了后期干物质积累,在显著增加收获穗数的同时,保证千粒重和穗粒数不降低,在生产中稳定实现了14500~15000 kg/hm2产量水平,同时实现了氮磷钾养分的高效利用。  相似文献   

18.
Abstract

Current nitrogen (N) fertilizer recommendations for Kentucky bluegrass (Poa pratensis L.) seed production in northern Idaho are based on potential yield and annual precipitation. Soil test correlation information collected for other northern Idaho crops provide the basis for P, S and B recommendations. The objective of this paper is to assess the current recommendations with a series of forty field trials conducted on ten sites during four seed production seasons. All field trials were conducted on Alfisols and Mollisols initially containing less than 60 kg N/ha, 3.5 μg/g NaOAc extractable P, 40 kg extractable SO4‐S/ha and 0.5 μg/g extractable B. Fertilization rates evaluated included: 0, 50, 75, 100, 125, 150 and 200 kg N/ha; 0, 30 and 60 kg P2O5/ha; 0, 25, and 50 kg SO4‐S/ha, and 0 and 1.5 kg B/ha. Five field sites contained the cultivar ‘Argyle’ Kentucky bluegrass seed, while the other five sites contained the cultivar ‘South Dakota’.

Excellent relationships between percent maximum Kentucky bluegrass seed production and the sum of inorganic soil N + fertilizer N applied were observed for the ‘Argyle’ (R2=0.65) and ‘South Dakota’ (R2=0.72) cultivars. Phosphorus applications of 30 kg P2O5/ha improved seed yields from 10.0 to 51.6% when initial soil test values were less than 3.0 6 μg/g NaOAc extractable P. When initial SO4‐S soil values were less than 32 kg/ha fertilizer additions increased seed yields from 12.6 to 107.3%. Boron applications did not improve seed yields. Analysis of these trials indicates that adequate information is available to make satisfactory P, S and B fertilizer recommendations; however, additional soil test correlation information is needed for N recommendations.  相似文献   

19.
Nanofertilizers have received considerable attention due to their increased uptake by plants. Therefore, this study aimed to investigate the effect of zinc oxide (ZnO) nanoparticles and also different zinc (Zn) fertilizers (Zn sulfate, Zn chelate) on vegetative and yield traits of two pinto bean cultivars “KS21191” and “KS21193”. This experiment was a factorial based on completely randomized design with 24 treatments (three fertilizer applications and eight levels of Zn fertilizer). The results showed that twice foliar application compared to seed application and once foliar application improved growth and yield characteristics of both pinto bean cultivars. Also, compared to control treatment, zinc nanofertilizers improved vegetative characteristics (such as plant height, internode length, root and shoot dry, and fresh weight), yield (pods number and seed weight) and quality (zinc content in seed) of both pinto bean cultivars. Among the zinc fertilizer treatments, 0.10% and 0.15% of ZnO nanoparticles were as a superior treatment.  相似文献   

20.
The relationship between the total amount of micronutrients absorbed by the above-ground plant tissue and the occurrence of visible micronutrient deficiency symptoms in two strawberry cultivars as influenced by elevated phosphorus (P) levels in fertigation solution was investigated. The plants were cultured with a fertilizer solution containing 0, 0.5, 1, 2, 4, or 6 mM P and tissue nutrient content were determined at 120 days after transplanting. Young leaves of the plants grown with nutrient solution P levels higher than 4 mM and 2 mM, respectively, in ‘Keumhyang’ and ‘Seonhong’, developed interveinal chlorosis. Tissue concentrations (mg·kg?1 dry weight) of metallic micronutrients [iron (Fe), copper (Cu), manganese (Mn), and zinc (Zn)] in both cultivars did not decrease, but the total amount absorbed by the aboveground plant tissue decreased in the treatments in which nutrient deficiencies were observed. These results indicate that total amount of micronutrients is a better indicator of P-induced micronutrient deficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号