首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Excessive nitrogen (N) fertilizer application is common in the central Zhejiang Province area, China. A three-year (2009–11) experiment was conducted to determine the optimum N application rate for this area by studying the effects of various N rates on rice (Oryza sativa L.) yield, N-use efficiency (NUE), and quality of paddy field water. Results showed that no significant yield differences were observed under N rates from 180 to 315 kg ha?1. The NUE could be improved by reducing N application rates without significantly decreasing yield. Due to high ammonia (NH4+-N) and nitrate (NO3N) concentrations, 5–7 days after N application was a critical stage for reducing N pollution. The N rate for the greatest yield was 176 kg ha?1, accounting for 65 percent of the conventional N rate (270 kg ha?1). The N-rate reduction in this area may be necessary for maintaining high yield, improving NUE, and reducing environmental pollution.  相似文献   

2.
Permanent raised-bed is an alternative planting system for wheat (Triticum aestivum L.) in rain-fed areas. However, this system in monoculture conditions produces lower yields compared with wheat in rotation. Our objective was to estimate these yield differences as affected by nitrogen (N) use efficiency (NUE). Wheat in monoculture and in rotation with maize (Zea mays L.) was evaluated for eight years (2002–2009) with four N rates (0, 40, 80 or 120 kg ha?1). Yield response to N in monoculture was consistently lower than for wheat in rotation. Yield reduction in monoculture at low and high N rate was 81 and 99% attributed to NUE out of which 70 and 82% was due to the uptake efficiency (UPE) and 30 and 19% to the utilization efficiency (UTE), respectively. Total N uptake proved to be the parameter that needs to be improved to enhance wheat yield in monoculture.

Abbreviations: NUE: nitrogen use efficiency; UPE: uptake efficiency; UTE: utilization efficiency; Ns: nitrogen supply; NDVI: normalized difference vegetation index  相似文献   

3.
Although nitrogen (N) has the highest requirement for plant growth, N use efficiency (NUE) seldom exceeds 40%. NUE may be improved by integrated application of fertilizer N and enriched organic amendments. The present experiment aimed to test the extent of increase in NUE by integrated application of fertilizer N farmyard manure (FYM) and rock phosphate enriched compost (RPEC). Mineralization kinetics and N release from FYM and RPEC were studied by an incubation experiment. Results revealed that maximum potentially mineralizable N as well as N release (283.9, 186.7 mg kg?1 soil, respectively) were from RPEC + fertilizer N treated soils, followed by FYM + fertilizer N. Maximum yield, N uptake, and N recovery were obtained from RPEC + fertilizer N treated soils followed by FYM + fertilizer N. Soils treated with RPEC had shown significantly higher dehydrogenase activity than FYM treated soils. Thus, RPEC might increase yield as well as NUE over FYM. N uptake by plant at maximum tillering stage and flowering stage of wheat correlated positively (R2 > 0.85) with the decay rate (k and kN0) parameter of incubation experiment suggesting their relevance as indicators of plant available N.  相似文献   

4.
Reducing ammonia (NH3) volatilization is a practical way to increase nitrogen (N) fertilizer use efficiency (NUE). In this field study, soil was amended once with either cotton (Gossypium hirsutum L.) straw (6 t ha?1) or its biochar (3.7 t ha?1) unfertilized (0 kg N ha?1) or fertilized (450 kg N ha?1), and then soil inorganic N concentration and distribution, NH3 volatilization, cotton yield and NUE were measured during the next two growing seasons. In unfertilized plots, NH3 volatilization losses in the straw-amended and biochar-amended treatments were 38–40% and 42–46%, respectively, less than that in control (i.e., unamended soil) during the two growing seasons. In the fertilized plots, NH3 volatilization losses in the straw-amended and biochar-amended treatments were 30–39% and 43–54%, respectively, less than that in the control. Straw amendment increased inorganic N concentrations, cotton yield, cotton N uptake and NUE during the first cropping season after application, but not during the second. In contrast, biochar increased cotton N uptake and NUE during both the first and the second cropping seasons after application. Furthermore, the effects of biochar on cotton N uptake and NUE were greater in the second year than in the first year. These results indicate that cotton straw and cotton straw biochar can both reduce NH3 volatilization and also increase cotton yield, N uptake and NUE. In addition, the positive effects of one application of cotton straw biochar were more long-lasting than those of cotton straw.  相似文献   

5.
The intensive winter wheat (Triticum aestivum L.)–summer maize (Zea mays L.) cropping systems in the North China Plain (NCP) rely on the heavy use of mineral nitrogen (N) fertilizers. As the fertigated area of wheat and maize in the NCP has grown rapidly during recent years, developing N management strategies is required for sustainable wheat and maize production. Field experiments were conducted in Hebei Province during three consecutive growth seasons in 2012–2015 to assess the influence of different N fertigation rates on N uptake, yield, and nitrogen use efficiency [NUE: recovery efficiency (REN) and agronomic efficiency (AEN)]. Five levels of N application, 0 (FN0), 40 (FN40%), 70 (FN70%), 100 (FN100%), and 130% (FN130%) of the farmer practice rate (FP: 250 kg N ha?1 and 205.5 kg N ha?1 for wheat and maize, respectively), corresponding to 0, 182.2, 318.9, 455.5, and 592.2 kg N ha?1 y?1, respectively, were tested. Nitrogen in the form of urea was dissolved in irrigation water and split into six and four applications for wheat and maize, respectively. In addition, the treatment “drip irrigation + 100% N conventional broadcasting” (DN100%) was also conducted. All treatments were arranged in a randomized complete block design with three replications. The results revealed the significant influence of both N fertigation rate and N application method on grain yield and NUE. Compared to DN100%, FN100% significantly increased the 3‐year averaged N recovery efficiency (REN) by 0.09 kg kg?1 and 0.04 kg kg?1, and the 3‐year averaged N agronomic efficiency (AEN) by 2.43 kg kg?1 and 1.62 kg kg?1 for wheat and maize, respectively. Among N fertigation rates, there was no significant increase in grain yield in response to N applied at a greater rate than 70% of FP due to excess N accumulation in vegetative tissues. Compared to FN70%, FN100%, and FN130%, FN40% increased the REN by 0.17–0.57 kg kg?1 and 0.03–0.34 kg kg?1and the AEN by 4.60–27.56 kg kg?1 and 2.40–10.62 kg kg?1 for wheat and maize, respectively. Based on a linear‐response relationship between the N fertigation rate and grain yield over three rotational periods it can be concluded that recommended N rates under drip fertigation with optimum split applications can be reduced to 46% (114.6 kg N ha?1) and 58% (116.6 kg N ha?1) of FP for wheat and maize, respectively, without negatively affecting grain yield, thereby increasing NUE.  相似文献   

6.
This study investigated the effects of nitrogen (N) source, rate, and timing of application on dry-matter yield (DMY), N responses, N uptake and N-use efficiency (NUE) in a grass crop. The experiment used three fertilizer treatments: calcium ammonium nitrate (CAN), urea, and urea treated with N-(n-butyl) thiophosphoric triamide (NBTPT), applied at 0 (control), 25, 50, and 75 kg ha?1 of N over eighteen application timings. Results showed relatively lower agronomic performance of urea compared with CAN when applied in early spring. Urea reported lower N responses, lower relative DMY (90 percent), and relative N uptake (85 percent), which translated in lower NUE (0.45 kg kg?1) compared with CAN (0.70 kg kg?1). In spring fertilizer applications, urea and NBTPT showed DMY and NUE values comparable to those obtained with CAN. However, NBTPT enhanced overall performance of urea, which was shown with increasing temperatures toward summer or increasing N application rates. For summer applications, the efficiency of urea was less (P < 0.05) than that of CAN or NBTPT in all measured parameters, suggesting greater ammonia volatilization loss in urea-treated grass. Nitrogen saved in volatilization improved uptake and responses in NBTPT-treated grass, and hence DMY was not affected compared with CAN in summer fertilizer applications. The results of this study are supportive of increased usage of urea-based fertilizers treated with NBTPT.  相似文献   

7.
A field experiment was carried out to study the effect of different rates of potassium (K) fertilizer [0, 50, 100, and 150 potassium oxide (K2O) ha–1] in the presence of increased supply of nitrogen (N) (120, 180, and 240 kg N ha–1) on cotton (Gossypium hirsutum L.) yield and the N and K use efficiencies using the 15N isotopic dilution technique. Potassium fertilizer increased cotton yield, which was significant and more pronounced with the application of N in the high level (N3). The greatest cotton yield (6442 kg ha–1) was obtained in N2K3 treatment with an increase of 14% over the control. In addition, K fertilizer significantly increased N uptake efficiency in the N2 and N3 treatments. The greatest N uptake efficiency (98%) was in N2K3 treatment. The greatest K uptake efficiency (42%) was occurred in N3K1 treatment. In conclusion, the use of K fertilizer could be useful when growing cotton in soils of moderate to high N content to improve N uptake efficiency and consequently increase cotton yield.  相似文献   

8.
Maize (Zea mays L.) is an important food crop in the Guinea savannas of Nigeria. Despite its high production potential, drought, Striga hermonthica parasitsim, and poor soil fertility particularly nitrogen deficiency limit maize production in the savannas. Breeders at IITA have developed drought- and Striga-tolerant cultivars for testing, dissemination, and deployment in the region. Information on the response of these cultivars to N fertilization is, however, not available. This study evaluated grain yield, total N uptake (TNU), N uptake (NUPE), N utilization (NUTE), and N use efficiency (NUE) of selected maize cultivars along with a widely grown improved maize cultivar at two locations in the Guinea savannas of northern Nigeria. Maize grain yield increased with N application. The average grain yield of the maize cultivars was 76% higher at 30, 156% higher at 60, and 203% higher at 120 kg N ha?1 than at 0 kg N ha?1. This suggests that N is a limiting nutrient in the Nigerian savannas. Five drought-tolerant cultivars produced consistently higher yields when N was added at all levels. These cultivars had either high NUPE or NUTE confirming earlier reports that high N uptake or NUTE improves maize grain yield. The study also confirms earlier reports that maize cultivars that are selected for tolerance to drought are also efficient in uptake and use of N fertilizer. This means that these cultivars can be grown with application of less N fertilizer thereby reducing investment on fertilizers and reduction in environmental pollution.  相似文献   

9.
Abstract

Pearl millet is a potential dryland crop for Nebraska. Experiments were conducted in eastern Nebraska in 2000, 2001, and 2002, and in western Nebraska in 2000 and 2001. The objectives were to determine optimum nitrogen (N) rate, N uptake, and N use efficiency (NUE) for pearl millet. The hybrids “68×086R” and “293A×086R” and N rates of 0, 45, 90, and 135 kg N ha?1 were used. Hybrids had similar yield, N uptake and NUE responses. In western Nebraska in 2000, pearl millet yield response to N rate was linear, but the yield increase was only 354 kg ha?1 to application of 135 kg N ha?1. In eastern Nebraska, pearl millet response to N rate was quadratic with maximum grain yields of 4040 in 2001 and 4890 kg ha?1 in 2002 attained with 90 kg N ha?1. The optimum N rate for pearl millet was 90 kg N ha?1 for eastern Nebraska. For western Nebraska, drought may often limit pearl millet's response to N fertilizer.  相似文献   

10.
ABSTRACT

The effects of nitrogen (N at 0, 100 and 180 kg N ha-1) and sulfur (S at 0, 20, 40 and 60 kg S ha-1) on crop yield, nutrient uptake, nitrogen use efficiency (NUE), and amino acid composition of two bread wheat cultivars, ‘Shehan’ and ‘Enkoy,’ grown in Andisols and Cambisols in randomized blocks with three replications were evaluated. Both cultivars responded significantly (P < 0.05) to N and S applications and S application with N improved the NUE by 28%. The yield increase for the two cultivars by N and S application ranged between 0.8 to 2.4 Mg ha?1. The N concentration increased significantly from N0 to N2 in both cultivars. Sulfur fertilization increased the concentration of cysteine and methionine by 27% and 14%, respectively, as compared to N alone. The grain yield, NUE, N, and S uptake, and the S-amino acid concentration of ‘Enkoy’ were significantly higher than ‘Shehan’ cultivar.  相似文献   

11.
Timely and fitting nitrogen (N) application decreases costs and pollution risk in maize cultivation. To explore the accumulation and remobilization of dry matter (DM), N, phosphorus (P), and potassium (K) in waxy maize under various N topdressings (0?kg ha?1, LN; 150?kg ha?1, MN; 300?kg ha?1, HN) at the jointing stage, a field trial involving two waxy maize varieties (Suyunuo 5 and Yunuo 7) was conducted in 2013–2016. The highest grain yield was obtained under MN mainly due to the highest grain numbers and grain weight. The increase in grain yield under MN was mainly due to the high DM accumulation post-silking, as well as high N, P, and K accumulation and remobilization pre-silking. Generally, the plants had high harvest index (HI) of DM (N, P, and K), partial N fertilizer productivity, and moderate N utilization efficiency (NUE) under MN.  相似文献   

12.
ZHOU Yanli  SUN Bo 《土壤圈》2017,27(6):1092-1104
There is a need for rice cultivars with high yields and nitrogen (N) use efficiency (NUE), but with low cadmium (Cd) accumulation in Cd-contaminated paddy soils. To determine the relative effects of rice genotype, soil type, and Cd addition on rice grain yield and NUE, a pot experiment consisting of nine rice cultivars was conducted in two types of paddy soils, red soil (RS) and yellow soil (YS), without or with Cd spiked at 0.6 mg kg-1. The N supply was from both soil organic N pools and N fertilizers; thus, NUE was defined as the grain yield per unit of total crop-available N in the soil. Cd addition decreased grain yield and NUE in most rice cultivars, which was mainly related to reduced N uptake efficiency (NpUE, defined as the percentage of N taken up by the crop per unit of soil available N). However, Cd addition enhanced N assimilation efficiency (NtUE, defined as the grain yield per unit of N taken up by the crop) by 21.9% on average in all rice cultivars. The NpUE was mainly affected by soil type, whereas NtUE was affected by rice cultivar. Hybrid cultivars had higher NUEs than the japonica and indica cultivars because of their greater biomass and higher tolerance to Cd contamination. Reduction of NUE after Cd addition was stronger in RS than in YS, which was related to the lower absorption capacity for Cd in RS. Canonical correspondence analysis-based variation partitioning showed that cultivar type had the largest effect (34.4%) on NUE, followed by Cd addition (15.2%) and soil type (10.0%).  相似文献   

13.
Abstract

Limited information is available regarding the utilization and loss of fertilizer nitrogen (N) applied to intensively managed upland rice. Effects of N fertilization on upland rice were conducted as N0 (no N applied), N225 (225 kg N · ha?1), N300 (300 kg N · ha?1), and N375 (375 kg N · ha?1) in pot experiments. 15N‐labeled techniques were used in basal and topdressing N fertilizations. Results showed with the increase of N quantity applied, tiller, panicle numbers per pot, and spikelet number per panicle increased significantly (P<0.05). Chlorophyll b content of N225 and N300 were significantly higher than N0 (P<0.05), and net photosynthetic rate (Pn) of N300 increased significantly compared with N0 and N225. Under basal fertilization, N use efficiency (NUE) of root, stem, leaf, and grain in N300 was the highest. The NUE and loss rate ranged from 23.3% to 30.3% and 62.4% to 73.8%, respectively, under basal fertilization. They varied from 16.5% to 27.5% and 70.7% to 80.4%, respectively, under topdressing fertilization. The highest NUE was observed in N300 under basal fertilization. As increased quantities of N were applied, Pn and biological characteristics improved, thus crop yield of upland rice increased. Grain yield of N300 and N375 were significantly higher than that of N0 and N225 (P<0.01); however, there was no significant difference between them. Therefore, N fertilization with medium applied quantity under basal fertilization will facilitate growing, photosynthesis, and grain yield increase of upland rice.  相似文献   

14.
Abstract

Forage sorghum (Sorghum bicolor (L.) Moench) is an important annual forage crop but prone to high nitrate concentration which can cause toxicity when fed to cattle (Bos taurus and Bos indicus). Two field experiments were conducted over six site-years across Kansas to determine the optimum nitrogen (N) rate for no-till forage sorghum dry matter (DM) yield and investigate the effect of N fertilization on sorghum forage nitrate content. A quadratic model described the relationship between sorghum DM and N rate across the combined site-years. Maximum DM yield of 6530?kg ha?1 was produced with N application rate of 100?kg N ha?1. The economic optimum N rate ranged from 55 to 70?kg N ha?1 depending on sorghum hay price and N fertilizer costs. Crude protein concentration increased with N fertilizer application but N rates beyond 70?kg N ha?1 resulted in forage nitrate concentrations greater than safe limit of 3000?mg kg?1. Nitrogen uptake increased with N fertilizer application but nitrogen use efficiency and N recovery decreased with increasing N fertilizer rates. In conclusion, forage sorghum required 55–70?kg N ha?1 to produce an economic optimum DM yields with safe nitrate concentration.  相似文献   

15.
This study provides current data on plant nitrogen (N) uptake required for maximum sugar yield (PNUpmax) and the corresponding fertilizer N dose (ND) (optimum N dose [NDopt]) for high-yielding beet crops (sugar yield up to 20 Mg ha?1). In 2010 and 2011, field experiments were conducted with four cultivars from Beta genus differing in dry matter composition, and six mineral NDs (0–200 kg N ha?1) at three sites (The Netherlands, Germany, Denmark). Differences between cultivars in PNUpmax and NDopt were small; however, environments (defined as combination of site and year) substantially differed from each other: highest PNUpmax and lowest NDopt occurred at environments supplying high amounts of N from soil resources, and vice versa. The level of maximum sugar yield (SYmax) was related neither to PNUpmax (200–270 kg N ha?1) nor to NDopt. However, N dose and plant N uptake required for 95% of maximum sugar yield was 50–80 kg N ha?1 lower than for maximum sugar yield. To conclude, accepting a slight reduction in sugar yield might allow for a substantial decrease in the ND. Cultivar choice and yield level need not to be taken into account at present.  相似文献   

16.
Evaluation of any crop response to different nitrogen amounts is important for determining the amount that can be considered as optimum from economical and environmental point of view. This study was conducted to (1) evaluate the growth and yield of pumpkin (Cucurbita pepo L.) under different nitrogen rates and (2) determine the nitrogen use efficiency (NUE) of pumpkin in two growing seasons (2013 and 2014). In both growing seasons, nitrogen fertilizer (at three rates including 50, 150, and 250 kg ha?1) was band-dressed on the planted side of each furrow, coinciding with 4–6 leaves stage and flowering. Crop performance over 2 years was evaluated by measuring shoot dry matter, crop growth rate (CGR), leaf area index (LAI), leaf area duration (LAD), intercepted PAR (PARi), radiation use efficiency (RUE), shoot nitrogen uptake, water use efficiency (WUE), NUE, and fruit and seed yield. The results showed that in both growing seasons, the highest growth and yield of pumpkin were obtained by applying 250 kg N ha?1 (using urea fertilizer containing 46% nitrogen). Increased nitrogen rate from 50 to 250 kg ha?1 resulted in 87.3%, 27.0%, 62.1%, 87.5%, and 84.5% increase in shoot dry weight, RUE, WUE, fruit yield, and seed yield of pumpkin, respectively, across both growing seasons. However, higher application nitrogen rate decreased the NUE of pumpkin, i.e., the NUE decreased by 62.5% when the nitrogen rate increased from 50 to 250 kg ha?1. The effect of nitrogen applied in 2014 growing season on growth and yield of pumpkin was higher than that in 2013 growing season, which might be due to more suitable weather condition. In conclusion, the nitrogen rate of 250 kg ha?1 produced the highest amount of fruit and seed yield in pumpkin.  相似文献   

17.
Flat transplanting with flooded irrigation is commonly used for growing rice, but it results in ineffective use of applied fertilizer and water. The objective of this study was to compare nitrogen use efficiency and water saving of rice transplanted on beds and on flat ground. This field experiment was performed in randomized complete design for three continuous years and all treatments were repeated three times. Results showed that transplanting of four lines of rice nursery on bed and one line in furrow and nitrogen application at 150 kg ha?1 recorded 16.06, 21.81, 16.0 and 20.21% higher paddy yield, nitrogen (N) uptake in paddy, N use efficiency and N agronomic efficiency than traditional flat method at same N level. Without loss in yield, about 25 kg ha ?1 of N fertilizer and 24% of water can be saved with bed transplanting of rice as compared to flat method.  相似文献   

18.
Abstract

Excessive use of nitrogen (N) fertilizers in wheat fields has led to elevated NO3-N concentrations in groundwater and reduced N use efficiency. Three-year field and 15N tracing experiments were conducted to investigate the effects of N application rates on N uptake from basal and topdressing 15N, N use efficiency, and grain yield in winter wheat plants; and determine the dynamics of N derived from both basal and topdressing 15N in soil in high-yielding fields. The results showed that 69.5–84.5% of N accumulated in wheat plants derived from soil, while 6.0–12.5%and 9.2–18.1% derived from basal 15N and top 15N fertilizer, respectively. The basal N fertilizer recovery averaged 33.9% in plants, residual averaged 59.2% in 0–200 cm depth soil; the topdressing N fertilizer recovery averaged 50.5% in plants, residual averaged 48.2% in 0–200 cm soil. More top 15N was accumulated in plants and more remained in 0–100 cm soil rather than in 100–200 cm soil at maturity, compared with the basal 15N. However, during the period from pre-sowing to pre-wintering, the soil nitrate moved down to deeper layers, and most accumulated in the layers below 140 cm. With an increase of N fertilizer rate, the proportion of the N derived from soil in plants decreased, but that derived from basal and topdressing fertilizer increased; the proportion of basal and top 15N recovery in plants decreased, and that of residual in soil increased. A moderate application rate of 96–168 kg N ha?1 led to increases in nitrate content in 0–60 cm soil layer, N uptake amount, grain yield and apparent recovery fraction of applied fertilizer N in wheat. Applying above 240 kg N ha?1 promoted the downward movement of basal and top 15N and soil nitrate, but had no significant effect on N uptake amount; the excessive N application also obviously decreased the grain yield, N uptake efficiency, apparent recovery fraction of applied fertilizer N, physiological efficiency and internal N use efficiency. It is suggested that the appropriate application rate of nitrogen on a high-yielding wheat field was 96–168 kg N ha?1.  相似文献   

19.
A field experiment was carried out in northern Vietnam to investigate the effects of adding different additives [rice (Oriza sativa L.) straw only, or rice straw with added lime, superphosphate (SSP), urea or a mixture of selected microorganism species] on nitrogen (N) losses and nutrient concentrations in manure composts. The composts and fresh manure were applied to a three-crop per year sequence (maize–rice–rice) on a degraded soil (Plinthic Acrisol/Plinthaquult) to investigate the effects of manure type on crop yield, N uptake and fertilizer value. Total N losses during composting with SSP were 20% of initial total N, while with other additives they were 30–35%. With SSP as a compost additive, 65–85% of the initial ammonium-N (NH4-N) in the manure remained in the compost compared with 25% for microorganisms and 30% for lime. Nitrogen uptake efficiency (NUE) of fresh manure was lower than that of composted manure when applied to maize (Zea mays L.), but higher when applied to rice (Oriza sativa L.). The NUE of compost with SSP was generally higher than that of compost with straw only and lime. The mineral fertilizer equivalent (MFE) of manure types for maize decreased in the order: manure composted with SSP?>?manure composted with straw only and fresh manure?>?manure composted with lime. For rice, the corresponding order was: fresh manure?>?manure composted with SSP/microorganisms/urea?>?manure composted with lime/with straw alone. The MFE was higher when 5 tons manure ha?1 were applied than when 10 tons manure ha?1 were applied throughout the crop sequence. The residual effect of composted manures (determined in a fourth crop, with no manure applied) was generally 50% higher than that of fresh manure after one year of manure and compost application. Thus, addition of SSP during composting improved the field fertilizer value of composted pig manure the most.  相似文献   

20.
Dry bean (Phaseolus vulgaris L.) is an important legume worldwide and nitrogen (N) is most yield limiting nutrients. A field experiment was conducted for two consecutive years to evaluate response of 15 dry bean genotypes to nitrogen and rhizobial inoculation. The N and rhizobia treatments were (i) control (0 kg N ha?1), (ii) seed inoculation with rhizobia strains, (iii) seed inoculation with rhizobia strains + 50 kg N ha?1, and (iv) 120 kg N ha?1. Straw yield, grain yield, and yield components were significantly influenced by N and rhizobial treatments. Grain yield, straw yield, number of pods m?2, and grain harvest index were significantly influenced by year, nitrogen + rhizobium, and genotype treatments. Year × Nitrogen + rhizobium × genotype interactions were also significant for these traits. Hence, these traits varied among genotypes with the variation in year and nitrogen + rhizobium treatments. Inoculation with rhizobium alone did not produce maximum yield and fertilizer N is required in combination with inoculation. Based on grain yield efficiency index, genotypes were classified as efficient, moderately efficient, and inefficient in nitrogen use efficiency (NUE). NUE defined as grain produced per unit N applied decreased with increasing N rate. Overall, NUE was 23.17 kg grain yield kg?1 N applied at 50 kg N ha?1 and 13.33 kg grain per kg N applied at 120 kg N ha?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号