首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
丛枝菌根真菌促进植物摄取土壤磷的作用机制   总被引:5,自引:0,他引:5  
磷在土壤中易被固定沉淀,在植物磷利用率低的情况下,过度施肥会造成磷肥浪费,可能通过地表径流、地下水溶解等方式,造成水体富营养化产生面源污染,对人类生产生活造成较大影响。丛枝菌根真菌(arbuscular mycorrhizal fungi,AMF)和植物结合所形成的共生菌根可以显著增强植株对磷的吸收利用。通过AMF可以提高宿主植株对磷的吸收转运的特性,从AMF促进植株对磷元素的摄取机制、AMF促进植物磷摄取分子机理、AMF作用下根系分泌物对植株磷利用的影响与根际微生物对AMF磷元素利用的影响4个方面的研究进展进行分析总结。AMF可以通过改变宿主植株的根系形态和菌丝网络的形成,扩大植株对养分吸收范围;释放有机酸、磷酸酶和质子等根系分泌物改变土壤结构和理化性质,与根际微生物共同作用降解土壤中难溶性磷酸盐;诱导相关磷转运蛋白基因的特异性表达,提高植株对磷的转运能力而促进其吸收。  相似文献   

2.
A greenhouse study was conducted to study the efficiency of 14 isolates of arbuscular mycorrhizal (AM) fungi isolated from a local agricultural soil on the productivity of sweet potato (Ipomoea batatas). The different AM fungi enhanced the biomass and nutritional status of sweet potato seedlings to different extents. The genus Glomus was more effective than Acaulospora or Scutellospora. Efficiency also varied among isolates of Glomus irrespective of individual host plant or location of origin. Intraspecific differences were sometimes greater than interspecific differences. Benefits deriving from fungal isolates were positively correlated with the root-colonization rate and the abundance of extraradical propagules of the AM fungi. Taking plant yield parameters, nutritional status of the plants, and fungal attributes into consideration, GEGM (Glomus etunicatum together with Glomus mosseae) and GE6 (Glomus etunicatum) were the most effective AM symbionts for sweet potato under the experimental conditions.  相似文献   

3.
为高效利用水陆两栖植物鸢尾修复污染水体,本研究通过测定不同的丛枝菌根真菌(AMF)与鸢尾构建共生体系的生长指标、土壤理化性质及植物光合作用指标,探讨不同AMF对水生植物鸢尾的促进作用。结果表明:AMF对鸢尾的促进作用主要体现在地上及地下两部分,其中地下部分通过利用其庞大的菌丝网络吸收土壤中的营养物质,进而促进了鸢尾的生长,其中对比无菌剂侵染的空白植物,摩西球囊霉作用的鸢尾对氮元素的吸收率提高71.75%,磷元素的吸收率提高8.36%,而根内球囊霉作用的鸢尾对氮元素的吸收率提高42.55%,磷元素的吸收率提高9.5%;而地上部分则是通过加强叶片气孔导度的开启来调控植物净光合速率与蒸腾速率之间的平衡,进而提高了鸢尾的最优水资源利用率,加快植物的新陈代谢,最终促进植物的生长发育。其中对于鸢尾光合作用的调节摩西球囊霉的促进效果显著好于(P0.05)根内球囊霉。  相似文献   

4.
Abstract

Glasshouse and field experiments were conducted with micropropagated (tissue culture) taro plants and germinated corms to determine the arbuscular mycorrhizal dependency of taro. The micropropagated plants (cultivar Laiyu 3) were transplanted in plastic pots (3‐L) containing a mixture of vermiculite:perlite:peat:sand (2:1:1:1) with 0 or 8000 units of inoculum potential (UIP) of Glomus mosseae (Nicol & Gerd) Gerdemann and Trappe, Glomus versiforme (Karsten) Berch or Gigaspora rosea Nicolson & Schenck. Budded corms were planted in clay pots (8.5‐L) containing sterilized sandy loam mixed with 0 or 12,000 UIP of G. mosseae or G. versiforme, and 0 or 5 g Ca3(PO4)2 were added. In a field experiment, budded corms were placed in paper pots (0.5‐L) with sterilized sandy loam mixed with 0 or 4000 UIP of G. mosseae or G. versiforme and then planted directly in the field. Inoculation with AM fungi significantly increased survival rate and growth of tissue culture taro plants, and the contents of nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), copper (Cu), and zinc (Zn), enhanced the formation of corms, numbers of second and third branch corms and corm yield, and enhanced the contents of crude protein, starch, and amino acids in the corms. Phosphorus fertilizer slightly increased plant yield but reduced plant absorption of Cu and Zn and root colonization by the AM fungi. Relative mycorrhizal dependence (RMD) of micropropagated plants was greater than that of corms.  相似文献   

5.
The purpose of this study was to evaluate the responses of lentil (Lens culinariscv. ‘Ziba’) to co-inoculation with arbuscular mycorrhizal (AM) fungi and some indigenous rhizobial strains varying in phosphorus (P)-solubilizing ability in a calcareous soil with high pH and low amounts of available P and nitrogen (N). A factorial experiment with completely randomized block design was conducted under controlled greenhouse conditions. The treatments consisted of (1) three inoculants of Rhizobium leguminosarum bv. viciae strains and a mixed rhizobial inoculant with an effective P-solubilizer strain of Mesorhizobium ciceri, (2) two AM fungal species, Glomus mosseae and Glomus intraradices, (3) two P sources, superphosphate and phosphate rock. Four replications were prepared for each treatment and a related control. After the growth period of three months, the dry matter of shoots plus seeds, their P and N contents, and percent of root colonized by AM fungus were measured. The results showed that the effects of AM fungi, rhizobial strains, and P fertilizers were highly significant (p < 0.01) for all the characteristics studied. The rhizobial strain with P-solubilizing ability showed a more beneficial effect on plant growth and nutrient uptake than the strain without this ability, although both strains had similar effectiveness for N2-fixation in symbiosis with lentil. Synergistic relationships were observed between AM fungi and some rhizobial strains that related to the compatible pairing of these two microsymbionts. The P-uptake efficiency was increased when P fertilizers were applied along with AM fungi and/or P-solubilizer rhizobial strains.  相似文献   

6.
Arsenic (As)-contaminated irrigation water is responsible for high As levels in soils and crops in many parts of the world, particularly in the Bengal Delta, Bangladesh and West Bengal, India. While arbuscular mycorrhizal (AM) fungi markedly improve phosphorus (P) uptake, they can also alleviate metal toxicity. In this study, the effects of superphosphate and inoculation with the AM fungus Glomus mosseae on P and As uptake of lentil were investigated. Plant height, shoot dry weight, shoot/root P concentration, and shoot P content increased due to mycorrhizal inoculation. However, As concentration in roots/shoots and root As content were reduced, plant height, shoot dry weight, shoot/root P concentration/content, and root As concentration and content increased due to superphosphate application. Root P concentration decreased with increasing As concentration. It was apparent that As concentration and content in shoots/roots increased with increasing As concentration in irrigation water. Superphosphate interaction with G. mosseae reduced the role of mycorrhizal infection in terms of enhancing P nutrition and reducing uptake of potentially toxic As into plant parts. The role and relationship of mycorrhizal in respect of P nutrition and As remediation efficiency in plant parts was established. In conclusion, it was worth alluding to that lentil with AM fungal inoculation can reduce As uptake and improve P nutrition. However, in retrospect superphosphate increased P and As uptake and decreased the role of the mycorrhizal association. This resulted in stimulating increased P uptake while decreasing As uptake in lentil.  相似文献   

7.
The experiment was conducted to evaluate the nutrient utilization ability of sweet orange (Citrus sinensis L. Osbeck) budded on five rootstocks (viz., Sathgudi, Rangpur lime, Cleopatra mandarin, Troyer citrange, and Trifoliate orange) in Alfisols at the experimental farm of the Citrus Improvement Project, S. V. Agricultural College Farm, Tirupati, Andhra Pradesh, India. Results of the study revealed that all the five rootstocks showed differential behaviors in terms of nutrient absorption from the soil. Rootstocks exhibited significant variation in the leaf content of potassium (K), copper (Cu), manganese (Mn), and boron (B) at all the three stages of sampling. Concentrations of the following key nutrient elements significantly varied: phosphorus (P), calcium (Ca), magnesium (Mg), zinc (Zn), and Cu at stage 1; K, Ca, Mg, Zn, iron (Fe), and Mn at stage 2; and nitrogen (N), P, Zn, Fe, and B at stage 3. The performances of rootstocks in terms of relative nutrient accumulation indices (RNAIs) were in the order of Sathgudi (1.00) > Rangpur lime (0.98) > Cleopatra mandarin (0.96) > Trifoliate orange (0.76) > Troyer citrange (0.69). The present study clearly demonstrated that citrus rootstocks employed had differential nutritional behavior and different abilities to utilize plant nutrient elements. Thus, the findings of the present study and the methodology adopted can help the horticultural breeders and nutritionists choose the best rootstock/scion combination having the desirable traits of nutrient utilization ability and also to plan effective fertilizer schedule programs for achieving greater yields.  相似文献   

8.
土壤因子对西藏高原草地植物AM真菌的影响   总被引:12,自引:0,他引:12  
于西藏高原中部地区就土壤因子对草地植物AM真菌的影响进行的研究表明:AM真菌孢子密度与菌根侵染率、菌根侵染强度无相关性;土壤质地对AM真菌孢子密度的影响明显大于土壤类型,壤土、粉砂土中AM真菌对植物根系的侵染率高于砂壤土;土壤pH与植物根围土壤孢子密度、菌根侵染率分别呈显著正相关和正相关,与菌根侵染强度则呈负相关;土壤有机质与AM真菌孢子密度呈负相关,菌根侵染效果则随土壤有机质含量的增加而提高;高磷土壤环境对AM真菌产孢和侵染均具不同程度的抑制作用,其中植物菌根侵染率随土壤有效磷含量的提高而呈显著下降;AM真菌对莎草科植物矮生嵩草、扁穗莎草根系具有良好的侵染效应。  相似文献   

9.
To be sustainable, production in the traditional yam cropping system, faced with declining soil fertility, could benefit from yam–arbuscular mycorrhizal (AM) symbiosis, which can improve nutrient uptake, disease resistance, and drought tolerance in plants. However, only limited information exists about AM colonization of yam. A pot experiment was conducted to collect information on the response of two genotypes (Dioscorea rotundata accession TDr 97/00903 and D. alata accession TDa 297) to AM inoculation (with and without) and phosphorus (P) (0, 0.05, 0.5, and 5 mg P kg–1 soil). Factorial combinations of the treatments were arranged in a completely randomized design with four replicates. The percentage of AM colonization was significantly lowered at 5 mg P kg–1 soil rate in mycorrhizal plants of both genotypes. TDr 97/00903 showed more responsiveness to AM inoculation than TDa 297. The greatest AM responsiveness for tuber yield (52%) was obtained at 0.5 mg P kg–1 soil rate for TDr 97/00903. Mycorrhizal inoculation significantly increased root dry weight and tuber yield of TDr 97/00903 with the greatest values obtained at the 0.5 mg P kg–1 soil rate. Arbuscular mycorrhizal inoculation did not lead to significant (P < 0.05) changes in root length and area. Phosphorus application significantly increased the shoot dry weight and root diameter of TDa 297. Uptake of P was greatest at 0.5 mg P kg–1 soil in both genotypes and was significantly influenced by AM inoculation. Nitrogen (N) and potassium (K) uptake were greatest in mycorrhizal plants at 0.05 mg P kg–1 soil for TDr 97/00903 but at 0.5 mg P kg–1 soil of nonmycorrhizal plants of TDa 297. The increased tuber yield and nutrient uptake observed in the mycorrhizal plants indicate the potential for the improvement of nutrient acquisition and tuber yield through AM symbiosis.  相似文献   

10.
The production system for certified citrus nursery trees in São Paulo State, Brazil, stipulates the use of screenhouses, rigorous selection of rootstocks, and the production of budwood under high standards in order to prevent diseases such as sudden death, Citrus Var, and foot rot (Phytophthora spp.). The establishment of adequate nutritional levels for citrus nursery trees also leads to higher production efficiency in this system. This work was divided into two trials. The first evaluated the influence of certain concentrations and formulas of slow-release fertilizer on the growth of ‘Pera’ sweet orange (Citrus sinensis L. Osbeck) budded on ‘Rangpur’ lime (Citrus limonia Osbeck) on two substrates. The development of ‘Rangpur’ lime liners was not influenced by composition of the substrate, nor by the concentrations or formulas of slow-release fertilizers. Substrate composition and formulas, or concentrations of fertilizers also did not affect budded tree growth, except that the greatest root fresh and dry matter were found in plants cultivated with lower concentrations. The second trial evaluated the influence of different soluble and slow-release fertilizers on growth of ‘Valencia’ sweet orange (Citrus sinensis L. Osbeck) nursery trees budded on ‘Rangpur’ lime. Scion length, stem diameter, scion fresh and dry matter, and leaf area were not affected by fertilizer sources. Fertigation induced the greatest development of roots (fresh and dry matter) when limestone was added.  相似文献   

11.
在温室盆栽实验条件下,研究接种AM(arbuscular mycorrhiza)真菌、蚯蚓(Eisenia fetida)对南瓜(Cucurbita moschata)修复3环以上多环芳烃(PAHs)污染农田土壤的影响,试验设置单接AM真菌、单接蚯蚓、双接AM真菌和蚯蚓、不接种的对照共4个处理,播种10周后收获。结果表明,接种AM真菌和蚯蚓促进AM真菌侵染南瓜,增加南瓜生物量;显著提高南瓜修复土壤中Phe(菲)、An(t蒽)、Py(r芘)、BkF(苯并(k)荧蒽)、BaP(苯并(a)芘)、BPe(r苯并(g,h,i)苝)等PAHs污染物的效率,促进南瓜高效地吸收3~5环PAHs,尤其是AM真菌和蚯蚓共同接种条件下对南瓜修复土壤效果最优;AM真菌利于南瓜转移根系吸收的高浓度PAHs化合物至地上部,降低PAHs对根系的胁迫,增强南瓜在高浓度PAHs污染土壤中存活,有利于南瓜应用于高浓度PAHs污染土壤的高效修复;蚯蚓对南瓜地下部吸持3~5环高分子量的PAHs化合物有积极作用。因此,选用的AM真菌和蚯蚓在土壤中具有协同作用,促进南瓜高效修复PAHs污染土壤。  相似文献   

12.
Performance of three vesicular arbuscular mycorrhizal (VAM) fungi cultures and a phosphate-solubilizing bacteria (PSB) culture alone or in combination with or without 75% of the recommended P2O5 dose based on soil-test crop response model was examined in maize in a phosphorus (P)-deficient acidic Alfisol in a glasshouse pot experiment. Sole application of VAM besides co-inoculation with PSB (Pseudomonas striata) and inorganic P stimulated mycorrhizal root colonization. Sole application of PSB, VAMT (Glomus intraradices), and VAMI (Glomus mosseae) as well as co-inoculation of VAM with PSB significantly improved crop productivity besides grain protein content, thus indicating a synergistic interaction between VAM and PSB. Application of VAMT or VAMI + PSB + 75% P2O5 remained at par with sole application of 100% P2O5 dose with regard to productivity, nutrient uptake, and soil fertility status (particularly P), thus indicating economization of fertilizer P to the tune of about 25% without compromising crop productivity and soil fertility in an acidic Alfisol.  相似文献   

13.
A pot experiment was conducted to evaluate the effect of indigenous arbuscular mycorrhizal fungi (AMF) and the synergy of indigenous AMF and sheep manure (SM) on cotton growth and nitrogen and phosphorus uptake. AMF were a mixture of Glomus viscosum, Glomus mosseae, and Glomus intraradices initially isolated from a Syrian cotton field. Dry biomass was enhanced significantly by AMF and was higher at AMF plus SM treatment compared to control. Cotton plants showed a significant dependency to indigenous AMF, which was 52% in the AMF treatment. Plant concentrations of nitrogen (N)and phosphorus (P) were significantly higher in mycorrhizal than nonmycorrhizal plants. Maximum plant N and P uptake was found in the treatment of AMF inoculation with SM, which was significantly higher by 202% and 397% over control, respectively. Indigenous AMF was successful in colonizing cotton roots and when combined with SM resulted in better plant growth and N and P uptake.  相似文献   

14.
Vesicular arbuscular mycorrhizal (VAM) fungi symbiosis confers benefits directly to the host plant's growth and yield through acquisition of phosphorus and other macro- and micronutrients, especially from phosphorus (P)–deficient acidic soils. The inoculation of three VAM cultures [viz., local culture (Glomus mosseae), VAM culture from Indian Agricultural Research Institute (IARI), New Delhi (Glomus mosseae), and a culture from the Centre for Mycorrhizal Research, Energy Research Institute (TERI), New Delhi (Glomus intraradices)] along with P fertilization in wheat in a P-deficient acidic alfisol improved the root colonization by 16–24% while grain and straw yields increased by 12.6–15.7% and 13.4–15.4%, respectively, over the control. Uptake of nitrogen (N), P, potassium (K), iron (Fe), manganese (Mn), zinc (Zn), and copper (Cu) was also improved with VAM inoculation over control, but the magnitude of uptake was significantly greater only in the cases of P, Fe, Zn, and Cu. Inoculation of wheat with three VAM cultures in combination with increasing inorganic P application from 50% to 75% of the recommended P2O5 dose to wheat through the targeted yield concept following the soil-test crop response (STCR) precision model resulted in consistent and significant improvement in grain and straw yield, macronutrient (NPK) uptake, and micronutrient (Fe, Mn, Zn, Cu) uptake in wheat though root colonization did not improve at P2O5 doses beyond 50% of the recommended dose. The VAM cultures alone or in combination with increasing P levels from 50% to 75% P2O5 dose resulted in reduction of diethylenetriaminepentaacetic acid (DTPA)–extractable micronutrient (Fe, Mn, Zn, Cu) contents in P-deficient acidic soil over the control and initial fertility status, although micronutrient contents were relatively greater in VAM-supplied plots alone or in combination with 50% to 75% P2O5 dose over sole application of 100% P2O5 dose, thereby indicating the positive role of VAM in nutrient mobilization and nutrient dynamics in the soil–plant system. There was significant improvement in available N and P status in soil with VAM inoculation coupled with increasing P levels upto 75% P2O5 dose, although the greatest P buildup was obtained with sole application of 100% P2O5 dose. The TERI VAM culture (Glomus intraradices) showed its superiority over the other two cultures (Glomus mosseae) in terms of crop yield and nutrient uptake in wheat though the differences were nonsignificant among the VAM cultures alone or at each P level. Overall, it was inferred that use of VA-mycorrhizal fungi is beneficial under low soil P or in low input (nutrient)–intensive agroecosystems.  相似文献   

15.
The effect of emergence time of the weed Datura stramonium (thorn apple) on tomato (Lycopersicon esculentum Mill.) and pepper (Capsicum annuum L.) was evaluated in a greenhouse experiment. The closer emergence of the weed was to that of the crops, the greater was the weed's growth, seed production, and nitrogen (N) uptake. As a result, growth, fruit yield, and N uptake of the crops was reduced. Shoot N content was reduced in tomato, as was fruit N content in pepper. There was competition by the weed with the crops for N, even when weed emergence was as late as the beginning of flowering. This competition, and the damage it caused, was always more severe with respect to pepper than tomato, irrespective of weed emergence time. The earlier the emergence of Datura stramonium, the fewer were the number of fruits produced by either crop. Average fresh fruit weight in tomato was also reduced. In pepper, the average fruit weight was reduced only when the weed emerged up to the four-leaf stage of the crop. The drop in pepper fruit yield caused by weed emergence up to the four-leaf stage of the crop could be due to competition for light by the weed, in addition to competition for N. Tomato competed better against the weed than did pepper.  相似文献   

16.
为探讨丛枝菌根真菌和磷水平对甘薯生长特性的影响,采用盆栽试验方法,设置3个P水平(P_0,P_(50),P_(150)mg/kg),研究了接种AM真菌对甘薯生长、光合特性和叶片酶活性的影响。结果表明:接种AM真菌显著增加了甘薯根系侵染率、丛枝丰度、根内菌丝丰度和泡囊丰度。不同磷水平间甘薯的侵染率、丛枝丰度均差异显著,中磷的总体侵染情况显著高于低磷和高磷水平(P0.05)。低磷和中磷条件下,接种处理显著提高了甘薯的生物量和氮磷吸收量(P0.05),其中在磷50mg/kg水平下,接种菌根真菌后甘薯氮磷养分吸收量显著高于未接种处理,地上地下部生物量分别提高了28.6%和73.3%,而高磷条件下接种处理甘薯地上和地下部的生长显著降低。在低磷和中磷水平下,接种AM真菌显著提高了甘薯的净光合速率、气孔导度和蒸腾速率;在中磷水平下接种AM真菌甘薯叶片的蒸腾速率和气孔导度达到最大值,之后随着磷水平的升高而降低;当土壤磷素供应过高时,接种AM真菌属非气孔限制因素导致的光合速率降低(P0.05)。在低磷和中磷水平下,接种菌根真菌显著提高了甘薯叶片中蔗糖合成酶、6-磷酸葡萄糖酸脱氢酶、蔗糖磷酸合成酶和磷酸酶的活性;在高磷水平下,接种后甘薯叶片代谢酶活性明显降低。不同磷水平下的菌根效应表现为P_(50)P_0P_(150),说明接种菌根的效果受土壤磷水平的影响。  相似文献   

17.
丛枝菌根真菌(arbuscular mycorrhizal fungi,AMF)与80%左右的植物可形成共生结构,在农田生态系统中对植物—土壤系统养分循环起重要作用。为改善我国南方典型瘠薄红壤加速酸化、磷有效性低和土壤生物功能退化等严重问题,采用高通量测序技术揭示秸秆还田方式对根际AMF群落、土壤磷酸酶活性和磷素利用率的作用机制。结果表明,不同秸秆还田方式显著影响土壤理化性质,其中秸秆猪粪配施处理显著提升有机碳(SOC)、全氮(TN)、全磷(TP)、有效磷(AP)以及酸性磷酸酶(acid phosphomonoesterase,ACP)和碱性磷酸酶(alkaline phosphomonoesterase,ALP)活性。秸秆还田显著影响AMF多样性和群落结构,球囊霉属(Glomus)和类球囊霉属(Paraglomus)是AMF群落的优势属,SOC是影响AMF多样性和群落结构的关键因子。秸秆猪粪配施处理对玉米磷素利用率的提升效果最佳,显著高于秸秆还田和秸秆生物质炭处理。AP、TP、ACP活性和AMF群落多样性显著影响了磷肥利用率。不同秸秆还田方式下根际AMF群落可能调控了土壤磷素活化过程...  相似文献   

18.
ABSTRACT

A pot experiment was carried out to investigate the tolerance of cucumber plants (Cucumis sativus L.) to root-knot nematode after inoculation with Glomus intraradices. Plants were inoculated with G. intraradices for four weeks and then transplanted in soil treated with Meloidogyne incognita for a further five weeks. The low phosphorus (P) loamy soil was amended with 50 and 100 mg P kg?1 soil. Mycorrhizal colonization increased shoot dry weight, shoot length, leaf numbers, root fresh weight and shoot P concentration, whereas nematode penetration and reproduction were significantly decreased. Similarly, P fertilization usually increased shoot growth and significantly decreased the number of galls and the number of egg masses and eggs per g root. Our results indicate that inoculation with G. intraradices and P fertilizer confer tolerance of cucumber plants to M. incognita by enhancing plant growth and by suppressing reproduction and/or galling of nematodes during the early stages of plant growth.  相似文献   

19.
Field experiments were conducted during dry (2009/10) and wet (2010) seasons to evaluate sweet sorghum–legume-based cropping systems for soluble sugars and starch production. Treatments were composed of two types of legumes (mung bean, soybean), two planting patterns (alternate single rows, alternate double rows), and two times of seeding (simultaneous, staggered) together with three monocrop treatments of sweet sorghum, mung bean, and soybean in randomized complete block design. Key observations indicated that the average yields of soluble sugars and starch were significantly reduced in intercropping systems in both seasons, due to partial or interactive influence of treatments considered. Yields of soluble sugars and starch were increased by 6 and 11% in the dry season and by 5 and 19% in the wet season in sweet sorghum–soybean and sweet sorghum–mung bean associations, respectively, when established with staggered seeding compared to those in simultaneously seeded combination or in monocropping of sweet sorghum.  相似文献   

20.
A pot experiment was conducted to examine the effects of arbuscular mycorrhizal fungi, Glomus versiforme, G. mosseae, and G. intraradices on growth and nutrition of trifoliate orange (Poncirus trifoliata) seedlings under magnesium (Mg)-nontreated and Mg-treated conditions. Whether treated with Mg or not, G. versiforme inoculation significantly enhanced the growth and concentrations of Mg, phosphorus, calcium, potassium, zinc, and copper in shoots or roots, and activities of acid phosphatase, catalase, invertase, and urease in rhizosphere soils. Additionally, there were higher levels of chlorophyll, proline, soluble sugar and protein in leaves, root viability, superoxide dismutase, peroxidase and catalase in leaves and roots, but lower malondialdehyde content in leaves and roots of mycorrhizal seedlings than non-mycorrhizal ones. Data demonstrated that G. versiforme-inoculated citrus seedlings exhibited higher levels of soil enzymes, osmoregulation, and antioxidant matters, leading to improvement of growth and nutrition of seedlings in low Mg soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号