首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gibberellin A3 or 2,4-dichlorophenoxyacetic acid were applied to the foliage of peanut plants under axenic culture and in the greenhouse. Leaves, roots and exudates from axenically grown plants were analyzed for total lipids, free sterols, free fatty acids and paraffinic hydrocarbons. The total lipid concentrations of leaves, roots and root exudates were not altered. The free sterol of roots, and the paraffinie hydrocarbon concentrations of both leaves and roots increased, but the free fatty acid of root exudates decreased. Plants treated in the greenhouse were rated for disease severity after soil infestation with Pythium myriotylum. Roots of treated plants exhibited less rot than roots of non-treated plants. We believe there are possibilites of altering disease susceptibility using foliar applications of growth regulators through their effects on root lipids and root-lipid exudation patterns.  相似文献   

2.
Some formulations of phosphite (Phi) have been recommended as a source of P nutrition for several crops including citrus even though there are known negative effects of Phi on plant growth. Changes in plant growth and metabolism after Phi application should be reflected in altered nutrient‐use efficiency and leaf photosynthesis. We carried out a greenhouse study using seedlings of two contrasting citrus (Citrus spp.) rootstocks, Carrizo citrange (CC) and Smooth Flat Seville (SFS), growing in either aerated hydroponic culture or sterilized native sandy soil. Plants were subjected to four P treatments: No P (control, P0); 0.5 mM Pi (PO4‐P); 0.25 mM Pi + 0.25 mM Phi (Pi + Phi), or 0.5 mM Phi (Phi). Photosynthetic characteristics, concentrations of total P (Pt) and soluble PO4‐P or PO3‐P in leaves and roots, and plant growth were evaluated after 80–83 d P treatments. Overall, the Pi plants had the highest Pt (total P) and total plant dry weight while the P0 plants had the lowest Pt but highest total root length and root‐to‐shoot ratio. Leaf chlorophyll (SPAD readings) and net assimilation of CO2 (ACO2) of the P0 and Phi plants were similarly lower than those of Pi and Pi + Phi plants. Growth responses of the Pi + Phi treatment were intermediate between the Pi and Phi treatments. Although Phi increased Pt and soluble‐PO4‐P concentration in leaves and roots above the P0 treatment, this did not translate into increased plant growth. In fact, the Phi treatment had some phytotoxic symptoms, impaired P‐ and N‐utilization efficiency for biomass production as well as lower nutrient‐use efficiency in the photosynthetic process. Thus, these two rootstocks could not use Phi as a nutritional source of P.  相似文献   

3.
Phosphite (     ; Pi) uptake in cell suspension culture, information on how Phi affects the Pi uptake of intact plants remains to be determined. The present study was conducted to investigate the effect of Phi on Pi absorption of intact komatsuna plants ( Brassica rapa var. peruviridis cv. Ajisai) in hydroponic culture. Phosphite markedly decreased Pi absorption of the intact komatsuna plants under both low (0.05 mmol L−1 ) and high (0.5 mmol L−1) Pi supply, although the growth (both shoots and roots) and water uptake of the high Pi-supplied plants was not affected by Phi. The inhibiting effect of Phi was small at 0.2 mmol L−1, but became large at 2 mmol L−1. Using relatively large seedlings (28 days old) to better assess the influence of Phi on Pi absorption early in the treatment, the results indicated that there was an immediate decrease in Pi absorption within the first 2-day period of Phi treatment when the water absorption of the plants was not affected. Taken together, the results suggested that there was a strong inhibiting effect of Phi on Pi uptake of intact komatsuna plants and this effect is exerted most likely by competition between Phi and Pi at uptake level. We speculate that the application of Phi to plant roots in an environment that is unfavorable for Phi-to-Pi conversion (e.g. hydroponic culture) may need to increase the amount of required Pi fertilization of plants to compensate for the reduction in Pi uptake by Phi. Further research is needed to confirm our results.  相似文献   

4.
Disease control with compost often is attributed to four factors including competition, antibiosis, parasitism and induced systemic resistance (ISR). Induction of systemic resistance by source separated household waste and yard trimmings compost against Pythium root rot of cucumber caused by Pythium ultimum was studied in a split-root bioassay. Split-root pairings were tested in root rot potting soil paired with potting soil, compost-amended potting soil suppressive to root rot paired with the potting soil, and compost-amended potting soil paired with the compost-amended potting soil. Only one side of the split roots was infested with P. ultimum. Root rot, based on dry and fresh root weights, was significantly reduced in split roots of plants produced in the conducive infested potting soil paired with the suppressive yard trimmings compost-amended mix. This suggested that systemic effects were induced in the roots by the suppressive compost against Pythium root rot. Growth of transplants germinated in the source separated household waste compost mix was significantly better than those germinated in the potting soil. Finally, root rot of plants germinated in the suppressive mix and then transplanted into the conducive mix was also significantly less severe than that of plants germinated in the conducive mix.  相似文献   

5.
A pot experiment was conducted to examine the effects of arbuscular mycorrhizal fungi, Glomus versiforme, G. mosseae, and G. intraradices on growth and nutrition of trifoliate orange (Poncirus trifoliata) seedlings under magnesium (Mg)-nontreated and Mg-treated conditions. Whether treated with Mg or not, G. versiforme inoculation significantly enhanced the growth and concentrations of Mg, phosphorus, calcium, potassium, zinc, and copper in shoots or roots, and activities of acid phosphatase, catalase, invertase, and urease in rhizosphere soils. Additionally, there were higher levels of chlorophyll, proline, soluble sugar and protein in leaves, root viability, superoxide dismutase, peroxidase and catalase in leaves and roots, but lower malondialdehyde content in leaves and roots of mycorrhizal seedlings than non-mycorrhizal ones. Data demonstrated that G. versiforme-inoculated citrus seedlings exhibited higher levels of soil enzymes, osmoregulation, and antioxidant matters, leading to improvement of growth and nutrition of seedlings in low Mg soil.  相似文献   

6.
Summary This study examined the response of rice (Oryza sativa L.) plants at the pretransplant/nursery stage to inoculation with vesicular-arbuscular mycorrhizal (VAM) fungi and fluorescent Pseudomonas spp., singly or in combination. The VAM fungi and fluorescent Pseudomonas spp. were isolated from the rhizosphere of rice plants. In the plants grown in soil inoculated with fluorescent Pseudomonas spp. alone, I found increases in shoot growth, and in root length and fine roots, and decreases in root growth, and P and N concentrations. In contrast, in the plants colonized by VAM fungi alone, the results were the reverse of those of the pseudomonad treatment. Dual inoculation of soil with VAM fungi and fluorescent Pseudomonas spp. yielded plants with the highest biomass and nutrient acquisition. In contrast, the plants of the control treatment had the lowest biomass and nutrient levels. The dual-inoculated plants had intermediate root and specific root lengths. The precentages of mycorrhizal colonization and colonized root lengths were significantly lower in the dual-inoculated treatment than the VAM fungal treatment. Inoculation of plants with fluorescent Pseudomonas spp. suppressed VAM fungal colonization and apparently reduced photosynthate loss to the mycorrhizal associates, which led to greater biomass and nutrient levels in dual-inoculated plants compared with plants inoculated with VAM fungi alone. Dual inoculation of seedlings with fluorescent Pseudomonas spp. and VAM fungi may be preferable to inoculation with VAM alone and may contribute to the successful establishment of these plants in the field.  相似文献   

7.
The morphology and length of roots and shoots of tomato (Lycopersicon esculentum Mill.) seedlings grown on a nutrient medium for fourteen days in a controlled environment chamber were apparently not affected, whereas the dry matter content of roots was significantly enhanced when 200 mg L?1 of humic acid (HA) isolated from either a non-amended soil or a sewage-sludge-amended soil was present in the nutrient medium. In contrast, the HA-like fraction isolated directly from the sewage sludge caused, under the same conditions, extensive alterations of tomato morphology and a significant reduction of the length and dry weight of both shoots and roots. The presence in the nutrient medium of the herbicides alachlor or imazethapyr at concentrations of 1 and 0.01 mg L?1, respectively, caused a marked decrease of tomato root and shoot length and dry weight. Differently, the herbicide rimsulfuron at a concentration of 0.01 mg L?1 produced a slight decrease in shoot and root length and a slight increase in their dry weight. A combination of 200 mg L?1 soil HA and each of the herbicides alachlor, rimsulfuron and imazethapyr at concentrations of 1, 0.01 and 0.01 mg L?1, respectively, in the nutrient medium attenuated the growth depression of tomato shoots and roots observed in the presence of the herbicide alone. However, the simultaneous presence of sewage sludge HA and any herbicide in the nutrient solution caused negative synergistic effects on tomato growth. The volume of nutrient solution and the amount of electrolytes taken up by tomato plants during the growth experiments correlated highly significantly with the total plant dry weight. Tomato seedlings induced a pH decrease in the nutrient medium in all treatments except in those where sludge-HA was present, either alone or in combination with any herbicide.  相似文献   

8.
A study was conducted to determine the effects of legume companion crops and phosphorus (P) fertilizer on the growth and survival characteristics of newly established loblolly pine (Pinus taeda L.) seedlings. At 12 months post‐establishment, there was no legume effect (P>0.05) on root lateral development or ropting depth for pine seedlings. Likewise, there was no legume effect (P>0.05) on aboveground biomass production of pine seedlings. Partridge pea (Cassia fasciculata Michx.) had a negative effect (P<0.05) on pine seedling total root biomass compared to other treatments. Pine seedlings grown with legumes allocated less resources to root development compared to pine seedlings grown alone. Pine seedlings grown alone or with cowpea [Vigna unguiculata (L.) Walp.] were subject to less mortality (P<.05) than seedlings grown with alyceclover [Alysicarpus vaginalis (L.) DC] or partridge pea. Phosphorus fertilization enhanced dry matter (DM) yield of legumes but had no effect on rooting depth of pine seedlings during the first 12 months of growth. After 12 months post‐establishment, the most pronounced effect of P fertilization was that of increased nitrogen (N) content of leaf, stem, and roots of pine seedlings. Native, annual herbaceous grass biomass in the control plots (no legume) reduced the amount of soil N to below pre‐planting levels, while soil N levels in all legume plots exceeded pre‐trial levels.  相似文献   

9.
Abstract

The present study investigated how foliar zinc (Zn) application affects seedling growth and Zn concentration of rice grown in a Zn-deficient calcareous soil with different soil Zn treatments. Seeds were sown in soil with five rates of Zn (0, 0.02, 0.1, 0.5 and 5.0?mg kg?1 soil) with and without foliar application of 0.5% ZnSO4. Seedlings were harvested at 35?days and separated into (i) the youngest leaves, (ii) the remaining shoot parts and (iii) roots. In soil with no Zn supply, shoot and root dry weight of the rice seedlings were significantly increased by foliar and soil Zn treatments. Plant growth was not clearly increased in low soil Zn treatments, while at each soil Zn treatment, foliar Zn application promoted growth of plants. Plants with adequate Zn supply had the highest Zn concentrations in the youngest leaf. Foliar Zn spray improved Zn concentration of the new growth formed after foliar spraying which shows that Zn is phloem mobile and moved from treated leaves into youngest new leaves. The results indicate clearly in rice seedlings that shoot growth shows more responsive to low Zn than the root growth. The results obtained in the present study are of great interest for proper rice growth in Zn-deficient calcareous soils but needs to be confirmed in other rice genotypes.  相似文献   

10.
11.
Bean plants (Phaseolus vulgaris L.) were cultured for 10 or 18 days on phosphate sufficient (+P) or phosphate deficient (‐P) nutrient medium. Nitrate and phosphate distribution between shoot and root, nitrate uptake, and nitrate reductase activity (NR activity, in vivo and in vitro) in root and leaves was estimated. The decrease in Pi concentration in leaves and roots led to decreased rate of NO3 uptake and increased NO3 accumulation in roots, accompanied by alterations in NO3 distribution between shoot and roots. Nitrate reductase activity estimated in vitro was twice higher than estimated in vivo and both in +P and ‐P plants was lower in the roots than in the shoots. The decrease of NR activity in ‐P plants was more pronounced in the roots and after 2 weeks of phosphate starvation it was about 40% lower as compared with the control. The depression in nitrate uptake may be the result of feedback inhibition due to accumulation of nitrate in the roots. The increased NO3 concentration in root tissue may be explained by decreased NR activity and lower transport of nitrate from roots to shoot.  相似文献   

12.
【目的】生长素响应因子(ARF)在介导生长素信号传递和调控下游生长素响应基因的表达中发挥着重要功能。本文旨在以在富集丰磷特异表达基因的小麦根系cDNA差减文库中鉴定的1个ARF类别的家族成员TaARF6为基础,对该基因cDNA序列、分子特征、不同供磷水平下该基因在根、叶中表达模式及遗传转化TaARF6对丰磷和缺磷条件下植株形态的影响进行较全面研究,阐明该小麦生长素响应因子基因介导不同供磷水平下对植株生长特性的影响。【方法】采用生物信息学工具预测TaARF6编码蛋白特征; 采用溶液培养法培养丰、缺磷处理小麦幼苗,采用半定量RT-PCR技术鉴定TaARF6在丰、缺磷处理下的表达特征。采用DNA重组技术构建将TaARF6编码阅读框融合至表达载体中的表达质粒,利用农杆菌介导的遗传转化法建立超表达TaARF6转基因烟草植株。采用琼脂培养和溶液培养法,培养丰、缺磷不同供磷水平下野生型植株和转基因烟草植株,进而利用常规分析方法鉴定不同磷水平下植株长势、根系和茎叶生物量和植株根叶形态及性状。【结果】1)TaARF6编码生长素响应因子(ARF)型转录因子,编码蛋白中含有ARF家族成员具有的保守结构域。该基因在氨基酸水平上与源于短柄草BdARF6和源于水稻的OsARF6具有高度同源特征。表达分析表明,TaARF6在根、叶中均呈典型低磷下表达下调、复磷后表达再度回升模式,表明该基因表达受到外界供磷水平的调节。2)遗传转化结果表明,在正常生长和低磷逆境下,与野生型植株相比,转基因烟草株系幼苗和植株形态明显增大。3)丰、缺磷不同供磷水平下,与未转化的野生型(WT)对照植株相比,转基因系(Line 3 和Line 5)植株幼苗和植株根系、茎叶和单株鲜、干重均较野生型显著增加。此外,与WT相比,转基因系植株根系数量增多、主侧根长度、根体积、叶面积和根冠比增加。【结论】TaARF6编码典型的生长素响应因子,其编码蛋白具有生长素响应因子特有结构域。TaARF6对环境中的低磷胁迫逆境能产生明显应答。上调表达TaARF6基因,具有增加植株根、叶鲜、干重和改善根叶及植株形态的生物学功能。本研究表明,通过对植株体内生长素响应基因的转录调控,TaARF6在介导植株不同供磷水平下的根叶形态建成和干物质累积过程中发挥着重要作用。  相似文献   

13.
Vesicular‐arbuscular mycorrhizal (VAM) fungi have been proposed as a low‐input solution to the problem of inadequate phosphorus (P) levels in many tropical and subtropical soils. To determine the mycorrhizal dependency of two Hawaiian endemic tree species, mamane (Sophora chrysophylla Seem.) and koa (Acacia koa Gray), seedlings were grown in the greenhouse with and without the VAM fungus, Glomus aggregatum Schenck and Smith emend Koske, at three levels of soil solution P (0,0.02, and 0.20 mg P/L) in a volcanic ash soil. Inoculation significantly increased colonization of roots by the VAM fungus in both mamane and koa seedlings. At 0.02 mg P/L, mamane inoculated with the VAM fungus had significantly greater subleaflet P concentrations at 48 days after planting (DAP), and significantly greater leaf areas, shoot dry weights, and root lengths at harvest compared to uninoculated plants. At 0 mg P/L, koa grown in association with the VAM fungus had significantly greater subleaflet P concentrations at 41 DAP, and significantly greater leaf areas, and dry weights of leaves, stems, and roots at harvest. Mamane was highly dependent on the VAM association for maximum growth, while koa was moderately dependent on the VAM association. These results demonstrate that P uptake and early growth of mamane and koa can be increased significantly at low soil P levels by inoculating seedlings with an effective VAM fungus. Future research needs to demonstrate continuing positive growth benefits of VAM fungal inoculation after transplanting from the nursery to field conditions.  相似文献   

14.
不同水分状况下施锌对玉米生长和锌吸收的影响   总被引:3,自引:3,他引:3  
选择潮土(砂壤)和土(粘壤)两种质地不同的土壤,进行盆栽试验,研究不同土壤水分条件下施锌对玉米生长和锌吸收的影响。结果表明,施锌显著增加了玉米植株根、茎、叶以及整株干物质重;缺锌条件下玉米植株根冠比、根叶比和根茎比趋向增大。施锌显著提高了玉米植株各器官中锌的浓度和吸收量,并明显促进锌向地上部运移。干旱胁迫抑制了玉米植株生长,根冠比、根茎比、根叶比增大;随着土壤水分供应增加,植株生长加快,各器官生物量以茎和叶增加大于根。水分胁迫下,在潮土上玉米叶片中锌浓度上升;在土上叶片中锌浓度下降。但增施锌后,根和茎锌浓度增加幅度较大,叶片增加幅度较小;施锌和水分胁迫对根和茎锌浓度的交互作用极显著。水分胁迫下,玉米植株对锌的吸收总量减少。水分胁迫和锌肥施用对玉米叶片、茎锌吸收量的交互作用十分显著,但对根锌吸收量的交互影响不显著。  相似文献   

15.
A pot experiment was conducted to study the effects of high concentrations of available Cu and Pb in soil originated from the vicinity of a copper foundry in Poland (Cu, 2,585–3,725 mg kg?1 d.wt.; Pb, 1,459–1,812 mg kg?1 d.wt.) on the growth and chemical constituents of Betula pendula seedlings. Control plants grew in unpolluted forest soil. Dry matter accumulation in the plants during the growing season and root/leaf mineral content were determined. Colonization of birch roots by ectomycorrhizal (ECM) fungi also was evaluated, as was soil dehydrogenase activity for influence of the metals on soil microorganisms. The heavy metals negatively affected seedling growth, ECM colonization, and soil dehydrogenase activity. A reverse relationship was found between ECM abundance and heavy metal concentrations in birch leaves, indicating the potential of mycorrhizas to protect the aboveground part of young silver birch seedlings from elevated environmental levels of Cu and Pb.  相似文献   

16.
The effects of nitrogen (N) forms (ammonium- or nitrate-N) on plant growth under salinity stress [150 mmol sodium chloride (NaCl)] were studied in hydroponically cultured cotton. Net fluxes of sodium (Na+), ammonium (NH4+), and nitrate (NO3?) were also determined using the Non-Invasive Micro-Test Technology. Plant growth was impaired under salinity stress, but nitrate-fed plants were less sensitive to salinity than ammonium-fed plants due mainly to superior root growth by the nitrate-fed plants. The root length, root surface area, root volume, and root viability of seedlings treated with NO3-N were greater than those treated with NH4-N with or without salinity stress. Under salinity stress, the Na+ content of seedlings treated with NO3-N was lower than that in seedlings treated with NH4-N owing to higher root Na+ efflux. A lower net NO3? efflux was observed in roots of nitrate-fed plants relative to the net NH4+ efflux from roots of ammonium-fed plants. This resulted in much more nitrogen accumulation in different tissues, especially in leaves, thereby enhancing photosynthesis in nitrate-fed plants under salinity stress. Nitrate-N is superior to ammonium-N based on nitrogen uptake and cotton growth under salinity stress.  相似文献   

17.
ABSTRACT

Greenhouse experiments were conducted to assess the effects of salinization of soil on emergence, seedling growth, and mineral accumulation of Prosopis cineraria (Linn.) Druce (Mimosaceae). A mixture of chlorides and sulfates of sodium (Na), potassium (K), calcium (Ca), and magnesium (Mg) was added to the soil and salinity was maintained at 5.1, 7.2, 9.3, 11.5, and 13.3 dS m?1. A negative relationship between seedling emergence and salt concentration was obtained. Seedlings did not emerge when soil salinity exceeded 11.5 dS m?1. Results suggested that this tree species is salt tolerant at seed germination and seedling stages. Elongation of stem and root was retarded by increasing salt stress. Young roots and stem were most tolerant to salt stress, followed by old roots and leaves. Leaf tissue exhibited maximum reduction in dry-mass production in response to increasing salt stress. However, production of young roots and death of old roots were found to be continuous and plants apparently use this process as an avoidance mechanism to remove excess ions and delay onset of ion accumulation in this tissue. Plants accumulated Na in roots and were able to regulate transfer of Na ions to leaves. Stem tissues were a barrier for translocation of Na from root to leaf. Moreover, K decreased in root tissues with increased salinization. Nitrogen (N) content significantly (P < 0.01) decreased in all tissues (leaf, stem, and root) in response to low water treatment and salinization of soil. Phosphorus (P) content significantly (P < 0.01) decreased while Ca increased in leaves as soil salinity increased. Changes in elements-accumulation patterns and the possible mechanisms for avoidance of Na toxicity in tissues and organism level are discussed.  相似文献   

18.
Using a water culture technique, 0.05 ppm zinc (Zn) was found to be the critical deficiency concentraction for one‐year American ginseng (Panax quinquefolium L) plants, 0.3 ppm was optimum, 0.5 ppm the critical Zn‐toxicity concentration, and 10 ppm the concentration when severe toxicity occurs. Therefore, the optimum Zn concentration for the growth of American ginseng plants was between 0.1 ppm ‐ 0.3 ppm. Zinc deficiency symptoms of one‐year old American ginseng plants were indicated by the inhabition of root growth, with little fibrous root development, and smaller leaves compared to normal leaves. The symptoms of toxicity were also indicated by the inhibition of root growth, and when seedlings were suffering from an acute toxicity, no fibrous roots appeared, and eventually the roots yellowed and leaves grew slowly or even entirely ceased to grow, the final result being very small leaves which are also chlorotic. Zinc maintained within the 0.1 ppm to 0.3 ppm sufficiency range promoted the synthesis and accumulation of ginsenosides by American ginseng plants, and both low and high Zn concentrations restrained the synthesis and accumulation of ginsenosides. Both Zn deficiency and the optimum Zn concentration (0.3ppm) are beneficial to the accumulation of amino acids in the roots of American ginseng plants. Close to the optimum Zn concentration, the ratios of P/Zn and Fe/Zn in the shoot of American ginseng plants were maintained at 77 and 9.4, respectively.  相似文献   

19.
The remediation of metal(loid) polluted soil using plants (i.e. phytoremediation) often requires the application of amendments, as well as chemical fertilizer. However, such fertilizers can have negative effects when applied alone and can thus be applied together with other organic amendments to diminish this negative effect. Finally, plants to be used in phytoremediation should be selected based on their adaptive capacity and tolerance to poor and highly contaminated soils, characteristics that possesses Ailanthus altissima. The objective of this study was to evaluate the effects of osmocote fertilization on the amended mining technosol properties and plant growth parameters, as well as to study the accumulation pattern of As and Pb in plant roots. Results showed that osmocote ameliorated soil conditions, but increased Pb mobility. It also greatly improved plant growth. Finally, different behaviours of metal(loid) accumulation were observed in the roots: As was absorbed mainly in the roots because of its similarity with P, with very low amounts in the leaves, whereas Pb was adsorbed mainly on the root surface, with lesser proportion absorbed inside the root system.  相似文献   

20.
Studies aiming at quantification of roots growing in soil are often constrained by the lack of suitable methods for continuous, non‐destructive measurements. A system is presented in which maize (Zea mays L.) seedlings were grown in acrylic containers — rhizotrons — in a soil layer 6‐mm thick. These thin‐layer soil rhizotrons facilitate homogeneous soil preparation and non‐destructive observation of root growth. Rhizotrons with plants were placed in a growth chamber on a rack slanted to a 45° angle to promote growth of roots along the transparent acrylic sheet. At 2‐ to 3‐day intervals, rhizotrons were placed on a flatbed scanner to collect digital images from which root length and root diameters were measured using RMS software. Images taken during the course of the experiment were also analyzed with QUACOS software that measures average pixel color values. Color readings obtained were converted to soil water content using images of reference soils of known soil water contents. To verify that roots observed at the surface of the rhizotrons were representative of the total root system in the rhizotrons, they were compared with destructive samples of roots that were carefully washed from soil and analyzed for total root length and root diameter. A significant positive relation was found between visible and washed out roots. However, the influence of soil water content and soil bulk density was reflected on seminal roots rather than first order laterals that are responsible for more than 80 % of the total root length. Changes in soil water content during plant growth could be quantitifed in the range of 0.04 to 0.26 cm3 cm—3 if image areas of 500 x 500 pixel were analyzed and averaged. With spatial resolution of 12 x 12 pixel, however, soil water contents could only be discriminated below 0.09 cm3 cm—3 due to the spatial variation of color readings. Results show that this thin‐layer soil rhizotron system allows researchers to observe and quantify simultaneously the time courses of seedling root development and soil water content without disturbance to the soil or roots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号