首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

Indian mustard (Brassica juncea Czern.) has the potential to extract zinc (Zn) and other metals from contaminated soils, but the potential to accumulate metals at different levels of exposure is not well documented. The objectives of this research were to assess plant growth and Zn accumulation for different metal-accumulating accessions of Indian mustard grown with various Zn concentrations. In the experiment, three accessions of Indian mustard (426308, 182921, and 211000) were supplied with 12 levels of Zn (ranging from 0.0 to 7.0 mg L?1) for three weeks in solution culture. Accession 426308 had a greater capacity for dry-mass accumulation than the others, but differences among accessions lessened as the concentration of Zn in solution increased. Accessions did not differ in Zn concentrations in shoots, but accession 426308 had a greater potential to accumulate Zn than the other accessions. Elevating the Zn supply in solutions had a limited effect on increasing the total Zn accumulation of shoots. Plants suffered Zn-induced iron (Fe) deficiency if the Zn concentration in solution exceeded 2.0 mg Zn L?1. The level of Zn tolerance of Indian mustard accessions was: 211000 > 182921 > 426308. Maximum Zn accumulation in shoots was approximately 5.0 mg Zn per plant. The phytoextraction potential of Indian mustard may be limited under Zn-contaminated conditions by nutrient disorders and toxic effects of Zn that suppress growth.  相似文献   

2.
ABSTRACT

The source of nitrogen (N) used in soil fertility practices affects plant growth, nutrient absorption, and the availability of nutrients. Consequently, the potential of plants to extract zinc (Zn) from soils may be increased by controlling the ratio of NH4 + to NO3 ? to maximize growth and Zn accumulation. The objectives of this research were to determine the effects of Zn supply and different molar ratios of NH4 + to NO3 ? on growth and Zn accumulation in Indian mustard (Brassica juncea Czern.). In a factorial experiment with solution culture, Indian mustard (accession 182921) was supplied with two concentrations of Zn (0.05 and 4.0 mg L?1) in combination with six N treatments with different molar percentage ratios of NH4 + to NO3 ? (0:100, 10:90, 20:80, 30:70, 40:60, and 50:50) for three weeks. Zinc supplied at 0.05 mg Zn L?1 represented a common concentration of Zn in solution culture, whereas 4.0 mg Zn L?1 was excessive for plant nutrition. If the supply of Zn in solution was excessive, plants developed symptoms of foliar chlorosis, which became severe if plants were supplied with 80% of N as NO3 ?. Supplying high proportions of NO3 ? in the nutrient medium stimulated Zn accumulation, whereas increasing proportions of NH4 + (up to 50% of the total N) enhanced shoot growth. The pH of nutrient solutions generally decreased with increasing proportion of NH4 + in solutions and with increased Zn supply. The Zn phytoextraction potential of Indian mustard was maximized, at about 15 mg Zn plant?1, if plants received 10% of the total N as NH4 + and 90% as NO3 ?.  相似文献   

3.

Plant growth and mineral element accumulation in Brassica juncea var. crispifolia (crisped-leaf mustard) under exposure to lanthanum (La) and cadmium (Cd) were studied by employing a hydroponic experiment with a complete two-factorial design. Four levels of La (0.05–5.0 mg L?1) and two levels of Cd (1.0 and 10.0 mg L?1) were used in this experiment. Lanthanum did not improve plant growth in this experiment. Addition of La (≥ 1.0 mg L?1) or Cd (≥ 10 mg L?1) to the solution inhibited root elongation. Lanthanum treatments reduced accumulations of iron (Fe), manganese (Mn), and zinc (Zn) in roots, and Mn in shoots. Lanthanum at ≥ 1.0 mg L?1 limited the Cd translocation from roots to shoots and thus decreased the accumulation of Cd in shoots. Cadmium had no influence on La accumulations in roots, but inhibited the accumulation of La in shoots. The study results suggest that applications of rare earth elements in vegetables would be potentially risky to human health.  相似文献   

4.
Abstract

Laboratory experiments were conducted to determine the influence of three types of decomposing fresh organic materials [pig manure (PM), Astagalus sinicus (AS), and Alternanthera philoxeroides (AP)] on dissolution of Fe2O3 and ZnO and also the use of a loamy calcareous soil as an alternative source of iron (Fe) and zinc (Zn). Levels of Fe and Zn concentrations in composting solutions changed with composting time. The maximum levels of solution Fe resulting from the decomposition of the three organic materials were 20, 612, and 348 mg L?1 for PM, AS, and AP, respectively, when the soil was supplied as the Fe source, and 17, 32, and 16 mg L?1 when Fe2O3 was supplied as the Fe source. Corresponding maximum levels of solution Zn were 0.9, 0.7, and 1.3 mg L?1 and 35, 171, and 103 mg L?1 when the soil and ZnO was supplied as the Zn source respectively for the same three organic materials.  相似文献   

5.
This nutrient solution experiment investigated the effects of zinc (Zn) and cadmium (Cd) on winter wheat growth and enzymatic activity. Twelve nutrient solution treatments were prepared of four zinc levels (0, 0.5, 5 and 50 mg L?1) and three cadmium levels (0, 5 and 50 mg L?1). Cadmium concentrations ≥5 mg L?1 decreased plant growth, superoxide dismutase activity, and leaf and stem zinc concentrations, but increased plant cadmium concentrations, proline content, and peroxidase and catalase activities. Root activity and zinc concentration were highest in the 5 mg L?1 treatment and lowest in the 50 mg L?1 treatment. Zinc concentrations ≥5 mg L?1 inhibited plant growth, but increased proline content and cadmium concentration in stems and leaves. Low levels of zinc (0.5 mg L?1) increased cadmium-induced toxicity in wheat plants but high levels of zinc (50 mg L?1) reduced. In conclusion, these results indicated that the addition of zinc alleviated cadmium toxicity if the zinc/cadmium ratio was >10/1. Additional study needs to be done to quantify zinc content before zinc is supplied to alleviate cadmium toxicity.  相似文献   

6.
Abstract

An experiment was carried out in a controlled temperature (CT) room for five weeks with tomato cvs., Moneymaker, Liberto, and Calypso, to investigate possible relationships between zinc (Zn) deficiency or toxicity and electrolyte leakage in plant leaves. The concentrations of Zn in nutrient solution were 0.01, 0.5, and 5.0 mg L?1, respectively. There were significant reductions in the dry matter and chlorophyll content of all three cultivars grown both at 0.01 (low) and 5 mg L?1 (high) Zn compared to 0.5 mg L?1. The concentration of Zn at 0.01 mg L?1 was not sufficient to provide for optimal plant growth, while 5 mg L?1 in nutrient solution was detrimental to plant growth for all three cultivars. Dry matter production was generally lowest in the plants grown at low (0.01 mg L?1) Zn except for Moneymaker where the lowest biomass was in the high Zn treatment. Zinc concentration was increased in the leaves and roots with increasing Zn concentration in nutrient solution. Phosphorus concentration was toxic in the leaves of the plants grown at low (0.01 mg L?1) and was deficienct at high Zn (5 mg L?1). The electrolyte leakage (%) gradually increased in the plants grown at low and high Zn concentrations and these increases were greatest in the leaves of plants grown at low Zn (except for Moneymaker grown at high Zn where reduction in dry matter was less). The best results for all growth parameters tested were for the plants grown at 0.5 mg L?1 Zn. The results of this short‐term experiment show that electrolyte leakage which is relatively simple and easy to measure may be a good indicator of cultivar tolerance to Zn deficiency and toxicity.  相似文献   

7.
Increased Cd concentrations in the environment impair plant growth, but plants properly supplied with S may develop greater tolerance to the damage caused by Cd and be used in the remediation of contaminated environments. The aim of this study was to evaluate the Cd-phytoextraction potential of Panicum maximum cv. Tanzania grown with S rates and to identify alterations in the concentrations of nutrients and amino acids and in the activity of some antioxidant enzymes under Cd stress conditions. Combinations of five S rates (0.1, 1.0, 1.9, 2.8, and 3.7 mmol L?1) and five Cd rates (0.0, 0.5, 1.0, 1.5, and 2.0 mmol L?1) in a nutrient solution were provided in two plant growth periods. Concentrations of N, P, and Zn increased, while K, Fe, and Mn decreased with exposure to Cd. The concentration of Ca decreased as the S supply was increased. Isoleucine, leucine, proline, and valine concentrations increased with exposure to Cd and with higher levels of S. The APX activity was higher at the highest Cd exposure level. Activity and number of SOD and GR isoforms in the roots and of CAT in the shoots of the regrown plant decreased at the highest level of contamination by Cd, which was lessened by the supply of greater S rates. Tanzania guinea grass grown with an adequate supply of S has the potential for phytoextraction of Cd-contaminated environments.  相似文献   

8.
Tumorous crown gall tissue in sunflower (Helianthus annus L.) initiates a mechanism for making Fe available to itself as evidenced by its ability to reduce Fe3+ to Fe2+. The objective of this study was to determine if a limited Fe supply to the plant might affect the growth, nutrition and reduction of Fe3+ to Fe2+ by the tumorous crown gall. Healthy green 14‐day‐old sunflower plants (cv mammoth Russian) were either stem‐inoculated with Agrobacterium tumefaciens to induce tumorous crown gall tissue development or were left uninoculated for comparison. The plants were grown in a modified Hoagland nutrient solution with treatments containing 0.0, 0.15, 0.6 and 2.0 mg Fe L‐1. The 0 mg Fe L‐1 treatment induced maximum Fe chlorosis, and consequently there was a release of hydrogen ions and of a yellow pigment by the roots, but there was no measureable release of ‘reductants’ by the roots. Iron‐deficiency stress (0 mg Fe L‐1) also resulted in reduced tumorous crown gall growth, less reduction of Fe3+ to Fe2+, and lower levels of Fe in the tumorous tissue compared to tumorous tissues adequately supplied with Fe. The tumorous crown gall tissue on the stem reduced much more Fe3+ to Fe2+ than the nontumorous stem tissue regardless of Fe level in the treatment. Tumor tissue contained more Fe, Cu and P than the nontumorous stem tissues which may indicate a modified metabolism in this tissue. An abundant supply of Fe seems to enhance the development and growth of the tumorous crown gall tissue and a deficient supply of Fe retards its growth.  相似文献   

9.
《Journal of plant nutrition》2013,36(12):1861-1870
A short term experiment with tomato (Lycopersicon esculentum) cvs. Blizzard, Liberto, and Calypso was carried out in a controlled temperature room to investigate the effectiveness of phosphorus (P) and iron (Fe) supplemented in nutrient solution on plant growth at high zinc (Zn) (77.0 μmol L?1). Zinc concentrations in complete nutrient solution were either 7.7 or 77.0 μmol L?1. One week after application of high Zn, supplementary P and Fe at 1 and 0.05 mmol L?1respectively were added into nutrient solution for three weeks. There were significant reductions in both dry weights and chlorophyll contents in the plants grown at high (77.0 μmol L?1) Zn compared with those in the control treatment for all three cultivars. Application of supplementary P and Fe resulted in marked increases in both dry weight and chlorophyll concentrations for all three cultivars achieving values not significantly different to the control. Zinc concentration in plant tissues increased to toxic levels for all three cultivars in the high Zn treatment. Application of supplementary P and Fe decreased Zn concentration in the leaves and roots of plants grown at high Zn, but Zn concentrations were still at toxic levels. Phosphorus and Fe concentration in leaves declined to a deficient level in the high Zn treatment, but was markedly increased in the roots. Application of supplementary P and Fe corrected both P and Fe deficiencies in leaves of plants grown at high Zn and reduced root P and Fe concentrations.  相似文献   

10.
The effects of calcium and humic acid on seed germination, growth and macro- and micro-nutrient contents of tomato (Lycopersicon esculentum L.) seedlings in saline soil conditions were evaluated. Different levels of humic acid (0, 500, 1000 and 2000 mg kg?1) and calcium (0, 100, 200 and 400 mg kg?1) were applied to growth media treated with 50 mg NaCl kg?1 before sowing seeds. Seed germination, hypocotyl length, cotyledon width and length, root size, shoot length, leaf number, shoot and root fresh weights, and shoot and root dry weights of the plant seedlings were determined. Macro- and micro-nutrient (N, P, K, Ca, Mg, S, Cu, Fe, Mn and Zn) contents of shoot and root of seedlings were also measured. Humic acid applied to the plant growth medium at 1000 mg kg?1 concentration increased seedling growth and nutrient contents of plants. Humic acid not only increased macro-nutrient contents, but also enhanced micro-nutrient contents of plant organs. However, high levels of humic acid arrested plant growth or decreased nutrient contents. Levels of 100 and 200 mg kg?1 Ca2+ application significantly increased N, Ca and S contents of shoot, and N and K contents of root.  相似文献   

11.
Abstract

A pot experiment was conducted under glasshouse conditions during 2004 at the Central Institute of Medicinal and Aromatic Plants (CIMAP) in Lucknow. The study presented here was aimed at evaluating the response of Mentha arvensis (cv. Kushal), an essential oil–bearing plant, to different concentrations of zinc (Zn) and iron (Fe) supply with respect to their influence on biomass, oil yield, and oil quality. Suckers of Japanese mint were grown with four graded levels each of Fe and Zn (viz. 0, 5.0, 10.0, 25.0 mg Fe kg?1 and 0, 2.5, 5.0, 15.0 mg Zn kg?1) and a combination of both the elements. The results indicated that the fresh weight, oil content, and chlorophyll content increased significantly with increase in Fe supply; the optimum level was recorded as 10 mg Fe kg?1. Iron uptake increased significantly with increases in its supply. Zinc, when applied singly, showed enhancement in growth parameters, but the effects were nonsignificant. The optimal levels of supply for Zn and Fe in M. arvensis was evaluated to be 5 mg Zn kg?1 and 10 mg Fe kg?1, respectively.  相似文献   

12.
ABSTRACT

Effects of application of zinc (Zn) (0, 1, 5, 10 mg kg?1 soil) and phosphorus (P) (0, 10, 50, 100 mg kg?1 soil) on growth and cadmium (Cd) accumulations in shoots and roots of winter wheat (Triticum aestivum L.) seedlings were investigated in a pot experiment. All soils were supplied with a constant concentration of Cd (6 mg kg?1 soil). Phosphorus application resulted in a pronounced increase in shoot and root biomass. Effects of Zn on plant growth were not as marked as those of P. High Zn (10 mg kg?1) decreased the biomass of both shoots and roots; this result may be ascribed to Zn toxicity. Phosphorus and Zn showed complicated interactions in uptake by plants within the ranges of P and Zn levels used. Cadmium in shoots decreased significantly with increasing Zn (P < 0.001) except at P addition of 10 mg kg?1. In contrast, root Cd concentrations increased significantly except at Zn addition of 5 mg kg?1 (P < 0.001). These results indicated that Zn might inhibit Cd translocation from roots to shoots. Cadmium concentrations increased in shoots (P < 0.001) but decreased in roots (P < 0.001) with increasing P supply. The interactions between Zn and P had a significant effect on Cd accumulation in both shoots (p = 0.002) and roots (P < 0.001).  相似文献   

13.
Two indica rice (Oryza sativa L.) cultivars, viz. ‘Swarna’ and ‘Kalinga III’ were compared for their response to iron (Fe) stress. The cultivars were raised with four Fe levels viz. 0.05, 1, 5, 10 mg L?1 in hydroponic culture. Plant growth, soluble protein, chlorophyll content and phytoferritin of leaves increased significantly with increase in Fe concentration up to 5 mg L?1, but decreased at 10 mg L?1. In contrast, lipid peroxidation, decreased up to 5 mg L?1 then increased at 10 mg L?1. However, at 10 mg L?1 of Fe these parameters were more adversely affected in ‘Swarna’ than ‘Kalinga III’. The later also accumulated relatively more Fe, zinc (Zn), manganese (Mn), and copper (Cu) from the growing medium. Zinc concentrations of the tissue, on the other hand, exhibited the opposite trend. Iron stress may, thus lead to secondary metallic ion stresses and under such situations cultivars like ‘Kalinga III’ will perform better than ‘Swarna’.  相似文献   

14.
采用温室盆栽试验研究了印度芥菜对土壤中锌镉污染的忍耐、积累能力 ,以检验这种植物修复Zn、Cd污染土壤的可能性及其潜力。在加入Zn 5 0 0和 1 0 0 0mgkg- 1 的土壤中 ,印度芥菜生长 66天后 ,叶片中积累Zn的平均浓度分别达 2 80和 662mgkg- 1 ,地上部带走的Zn分别为每盆 2 1 95和 341 2 μg。在加入Cd 2 0 0mgkg- 1 的土壤中生长的印度芥菜 ,叶片中积累Cd浓度为 1 61mgkg- 1 ,地上部带走的Cd为每盆 381 μg。和普通植物相比 ,印度芥菜更能将Zn和Cd从根运输到地上部。Zn 5 0 0mgkg- 1 处理的土壤在种植印度芥菜后其NH4NO3提取的Zn显著高于不种植物的处理 ;土壤添加Cd 2 0 0mgkg- 1 的处理NH4NO3提取的Cd也显著高于不种植物的处理 ,可能的原因是植物根分泌出特殊的分泌物 ,专一性地螯合溶解根系附近的难溶态Zn和Cd,从而提高土壤溶液中的浓度。印度芥菜对Zn、Cd有较强的忍耐和富集能力 ,是Zn、Cd污染土壤修复有潜力的植物。  相似文献   

15.
Assessment of native plants and laboratory-scale phytoextraction tests are fundamental and preliminary steps in checking the feasibility and practice of low-cost and low-impact phytoremediation. In this study, we investigated the absorption of B by plants as a tool to remove boron in sediments from different areas of the Cecina River basin in Tuscany, Italy. The investigation was performed analyzing total and available B fraction in sediment samples as well as the B content in different tissues of native plants colonizing the contaminated areas. In laboratory scale, a phytoextraction screening test was performed. Selected high biomass crops (Brassica juncea, Zea mays, and Helianthus annuus) were evaluated in the most contaminated sample in two consecutive growing cycles. Results from field survey showed no hyperaccumulator native plant was present in the investigated areas although, high accumulation levels were found in native species from Bulera dump (Rumex crispus??259 mg?kg?1 and Poa spp??203 mg?kg?1). Results from laboratory phytoextraction tests showed a higher ability of B. juncea which removed about 18.5 mg?B?kg?1 sediment in after the two consecutive growing cycles, representing on the whole 45% of the initial available B fraction. The sediment characteristics affected by the phytoextraction processes were also discussed.  相似文献   

16.
ABSTRACT

Nickel (Ni) is an essential element for activation of urease in higher plants. The effects of Ni as an essential micronutrient on growth and chlorophyll content of wheat plants grew in nutrient solutions supplied either with ammonium nitrate or urea as two different nitrogen (N) sources were investigated. Plants were allowed to grow for six weeks, then leaf chlorophyll content, shoot and root fresh and dry weights, and Ni concentration in shoots and roots were determined. Shoot and root Ni concentration in both urea and ammonium nitrate-fed plants increased significantly with the increase in Ni concentration. Growth and chlorophyll content in leaves of the urea-fed plants increased when Ni concentration in the solution was as high as 0.05 mg L?1 and decreased at 0.1 mg Ni L?1. In ammonium nitrate-fed plants, these parameters increased up to 0.01 mg Ni L?1 and started to decrease with further increase in Ni concentration. Plants that grew in nutrient solutions containing urea had more shoots and roots fresh and dry weight at third and fourth Ni levels (0.05 and 0.1 mg L?1) than those that grew in media containing ammonium nitrate with similar Ni levels. Total chlorophyll content was also higher in plants supplied with urea plus Ni. The amount of Ni required for optimum wheat growth was dependent on the forms of N used. When supplied with ammonium nitrate or urea, the amount of Ni needed was 0.01 and 0.05 mgL?1 of nutrient solutions, respectively.  相似文献   

17.
Three tomato cvs., Blizzard, Liberto, and Calypso, were grown hydroponically in a controlled temperature (C.T.) room for six weeks at three zinc (Zn) concentrations (0.01, 0.5, and 5.0 mg Zn L‐1) in the nutrient solution. There were significant reductions in the dry matter and chlorophyll contents of all three cultivars grown at both low (0.01 mg L‐1) and high (5 mg L‐1) Zn as compared to 0.5 mg Zn L‐1. The concentration of Zn at 0.01 mg L‐1 was not sufficient to provide for optimal plant growth, while 5 mg Zn L‐1 in the nutrient solution was detrimental to plant growth for all three cultivars. The best results for all parameters tested were for the plants grown at 0.5 mg Zn L‐1. The concentration of phosphorus (P) was at an excess level in leaves of plants grown in 0.01 mg Zn L‐1, while it was deficient in the 5 mg Zn L‐1 treatment. Acid Phosphatase Enzyme [EC.3.1.3.2.] (APE) activity was significantly higher in both the leaves and roots of P‐deficient plants, i.e., plants receiving high (5 mg L‐1) Zn. Acid Phosphatase Enzyme activity was slightly higher in the mature leaves than those in developing leaves, where P concentration was higher. Concentration of P and, in particular Zn, increased in the roots with increasing Zn in the nutrient solution. The APE activity increased in the roots of P‐deficient plants receiving high Zn (5 mg L‐1).  相似文献   

18.
Fertilization strategies during stock plant and cutting production are linked in terms of cutting nutrient levels and quality. Objectives were to evaluate (1) the effect of stock plant nutrition on tissue nutrient concentration and growth during vegetative propagation and (2) response to fertilizer during propagation for cuttings with 4 different initial tissue nutrient concentrations. ‘Supertunia Royal Velvet’ petunia stock plants were grown under constant fertigation of 0, 50, 100 or 200 mg nitrogen (N).L?1 for 21 days. The 200 mg N.L?1 solution contained 150 nitrate (NO3-N), 50 ammonium (NH4-N), 24 phosphorus (P), 166 potassium (K), 40 calcium (Ca), 20 magnesium (Mg), 0.7 sulfur (S), 1.0 iron (Fe), 0.5 manganese (Mn), 0.5 zinc (Zn), 0.24 copper (Cu), 0.24 boron (B), and 0.1 molybdenum (Mo). Providing a complete fertilizer during propagation of petunia, beginning immediately after sticking of cuttings, reduces the risk of nutrient deficiency. Particularly in situations where fertilizer is not applied early during propagation, stock plants should be managed to ensure unrooted cuttings have adequate nutrient reserves.  相似文献   

19.
Abstract

In soilless production systems, water quality can have a major impact on the growth of plants. It has become evident that moderately alkaline water is a problem for tobacco transplant growers in some regions of Kentucky. To determine the level of bicarbonate (HCO3 ?) alkalinity, which is detrimental to burley tobacco transplants, and to better understand the effect of calcium (Ca) and the interaction of HCO3 ? and Ca on the growth of burley tobacco transplants grown in a float system, three levels of CaCl2 (25,75, and 125 mg L?1 Ca++) in factorial combination with five levels of HCO3 ? (0, 122, 244, 366, and 488 mg HCO3 ?L?1) were tested in nutrient solution culture. Four‐week‐old burley tobacco (Nicotiana tabacum L. var. KY‐907) seedlings were transplanted to 18‐L containers filled with aerated Hoagland's solution with the different levels of calcium and HCO3 ? for two weeks. High HCC3 ? alkalinity caused root system damage and plant growth inhibition, but did not induce iron (Fe) chlorosis. A significantly lower concentration of Zinc (Zn) was measured in the shoots as HCO3 ? levels in solution increased. In the presence of high calcium, plant growth was not significantly improved. No significant interaction of HCO3 ? and Ca on growth or nutrient uptake was observed in this study.  相似文献   

20.
《Journal of plant nutrition》2013,36(10):2315-2331
ABSTRACT

Split root solution culture experiments were conducted to study the effects of the rare earth element lanthanum (La) on rice (Oryza sativa) growth, nutrient uptake and distribution. Results showed that low concentrations of La could promote rice growth including yield (0.05 mg L?1 to 1.5 mg L?1), dry root weight (0.05 mg L?1 to 0.75 mg L?1) and grain numbers (0.05 mg L?1 to 6 mg L?1). High concentrations depressed grain formation (9 mg L?1 to 30 mg L?1) and root elongation (1.5 mg L?1 to 30 mg L?1). No significant influence on straw dry weight was found over the whole concentration range except for the 0.05 mg L?1 treatment. In the pot and field experiments, the addition of La had no significant influence on rice growth.Lanthanum had variable influence on nutrient uptake in different parts of rice. Low concentrations (0.05 mg L?1 to 0.75 mg L?1) increased the root copper (Cu), iron (Fe), and magnesium (Mg), and grain Cu, calcium (Ca), phosphorus (P), manganese (Mn), and Mg uptake. High concentrations (9 to 30 mg L?1) decreased the grain Ca, zinc (Zn), P, Mn, Fe and Mg, and straw Ca, Mn, and Mg uptake. With increasing La concentration, root Zn, P, Mn, Cu, and Ca concentrations increased, and grain Ca and Fe, and straw Mn, Mg, and Ca concentrations decreased. Possible reasons are discussed for the differences between the effects of La in nutrient solutions and in pot and field experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号