首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

A field experiment was conducted in 2004–2006 to investigate the effect of green manure treatments on the yield of oats and spring barley. In the experiment, different green manure crops with undersowing and pure sowing were compared for amounts of N, C, and organic matter driven into soil and their effect on cereal yield. The spring barley field had a total of 41.7–62.4 kg N ha?1 and 1.75–2.81 Mg C ha?1 added to the soil with straw, weed, and roots, depending on the level of fertilisation; with red clover, and both common and hybrid lucerne undersowing, with barley straw and roots, the values were 3.45–3.96 Mg C ha?1 and 139.9–184.9 kg N ha?1. Pure sowings of these three leguminous green manure crops had total applications of 3.37–4.14 Mg C ha?1 and 219.7–236.8 kg N ha?1. The mixed and pure sowing of bird's-foot trefoil provided considerably less nitrogen and carbon to the soil with the biomass than with the other leguminous crops. Application of biomass with a high C/N ratio reduced the yield of the succeeding spring cereals. Of the green manures, the most effective were red clover and both common and hybrid lucerne, either as undersowing or as pure sowing. Undersowings with barley significantly increased the N supply for the succeeding crop without yield loss of the main crop compared with the unfertilised variant. Compared with ploughing-in of green manure in autumn, spring ploughing gave a 0.2–0.57 Mg ha?1 larger grain yield.  相似文献   

2.
Abstract. The residual value of mineral N fertilizer applied in the spring was investigated in a field experiment where four cereals (winter wheat, winter barley, spring barley and spring oats) had been grown at reduced (0.7N), normal (1N) or high (1.3N) N fertilizer rates for 20 to 28 years. The effect of previous N fertilizer dressing was tested in two succeeding years by replacing the original N rate with five test N rates ranging from 0 to 240 kg N ha?1 for winter cereals and 0 to 200 kg N ha?1 for spring cereals. In the first test year, winter wheat grown on plots previously supplied with the high rate of mineral fertilizer (202 kg N ha?1 yr?1) yielded more grain and straw and had a higher total N uptake than wheat on plots previously supplied with the normal (174 kg N ha?1 yr?1) or reduced (124 kg N ha?1 yr?1) rate. The grain yield response and N uptake was not significantly affected by the N supply in the test year. The winter wheat grown in the second test year was unaffected by the previous N supply. Grain and straw yield response and total N uptake for spring barley, winter barley and oats, were almost identical irrespective of the previous N rate. After 20 to 28 years there were no significant differences in soil C and N (0 to 20 cm) between soil receiving three rates of N fertilizer. Soil from differently fertilized oat plots showed no significant differences in N mineralizing capacity. Nitrate leaching losses from the soils at the three N rates were estimated and the N balances for the 20 to 28 years experimental period calculated. The data indicated a reduction in overall loss of 189 to 466 kg N ha?1 at the normal and high N rates compared with the reduced N rate. We conclude that the N supplying capacity and soil organic matter content of this fertile sandy loam soil under continuous cereal cropping with straw removal was not significantly affected by differences in N fertilizer residues.  相似文献   

3.
Abstract

Factorial combinations of N, P and K fertilizer have been compared with the use of farmyard manure at M?ystad since 1922 in a seven-year crop rotation (3 ley, oat, potato, wheat, barley). Until 1982, low inputs of N fertilizer (22 kg ha?1) were used. In 1983, they were brought into line with current farming practice. This paper presents the results of three subsequent rotations. Yields without any fertilizer were on average 48% of those with 100 kg N ha?1 in compound fertilizer, whilst those with 20, 40 and 60 Mg ha?1 farmyard manure were 81, 87 and 90%, respectively. Yields with other combinations of N, P and K declined in the order NP, NK, N, PK and K. When NPK fertilizer was used, apparent recoveries of applied fertilizer were close to 50% for N and K, and around 40% for P. Much lower values were found for nutrients applied singly. Balance between N supply and removal was indicated at rates of about 60 kg N fertilizer ha?1 in potatoes, 75 kg ha?1 in cereals and 90 kg ha?1 in leys. A surplus of P was found in all crops at all N levels, and of K in cereals and potatoes. In leys, K balance was achieved with an N supply of 90 kg N ha?1. Nutrient balance was indicated at a little below 20 Mg ha?1 yr?1 farmyard manure. Larger manure applications gave large nutrient surpluses, particularly of N. Soil reaction remained close to neutral with the use of calcium nitrate and manure, but declined with the use of ammonium nitrate. Manure use gave the highest amounts of available P, K and Mg in soil. Similar increases in total inorganic P were found with manure use as with fertilizer use, but amounts of organic P and total K were little affected.  相似文献   

4.
A field experiment was conducted during 2006–2007 at Hyderabad, India on sulfur-deficient alfic ustochrept soil on aromatic crop palmarosa [Cymbopogon martinii (Roxb.) Wats. var. motia Burk.] with five rates of sulfur (S) application (0, 10, 20, 30, and 40 kg ha?1). Four harvests were performed between August 2006 and August 2007 at 90-day intervals. A fifth harvest was taken in November 2007 to study the residual effect of S. Five constituents accounting for 87.4–98.7% of the essential oil were identified by gas chromatography-flame ionization detector (GC-FID) and gas chromatography mass spectroscopy (GC-MS) analyses. The results revealed that 40 kg S ha?1 produced the highest total (total of four harvests) biomass yield (71.5 t ha?1), and total essential oil yield (382.3 kg ha?1). The highest contents of essential oil components cis-β-ocimene (2.5%), linalool (2.9%), geraniol (84.9%), geranyl acetate (9.8%), and geranyl hexanoate (2.6%) were observed in 40 kg S ha?1 treatment. Sulfur exhibited no residual effect, therefore application is recommended to each harvest.  相似文献   

5.
Abstract

A field trial was conducted during the short‐day period of 2004–2005 at Ona, Fl., to study the factorial effect of nitrogen (67, 90, and 134 kg N ha?1) and phosphorus (0, 5, 10, 20, and 40 kg P ha?1) rates on forage dry‐matter yield, quality, nutrient uptake, and leaf pigment concentration of limpograss (Hemarthria altissima). The N and P fertilizers were applied 45 days before each of two harvests. There was no interaction between N and P rates on any of the measured variables. Cool‐season forage yield increased curvilinearly from 137 to 350 kg ha?1 in winter and 237 to 1389 kg ha?1 in early spring, whereas crude protein (CP) concentration increased from 145 to 158 g kg?1, as P was increased from 0 to 40 kg ha?1, but yield and CP were not affected by N rate. There was a decreasing linear relationship between leaf concentration of anthocyanins and P rate of application such that forage obtained with 0 kg P ha?1 had 61% more leaf anthocyanins and purple pigmentation than with 40 kg P ha?1. There was no effect of N on anthocyanins content. It was concluded that increased level of leaf anthocyanins was due to the cumulative stress from cool weather and lower plant‐tissue P levels, which resulted in reduced growth and yield of limpograss. In cool weather, P played a critical role in controlling leaf purple pigmentation and forage yield.  相似文献   

6.
Abstract

Four rates of straw (0, 4, 8 and 12 t ha?1 yr?1) were incorporated in a field experiment with continuous spring barley. The experiment was conducted on a sandy soil (5.5% clay) and a sandy loam soil (11.2% clay). After eight years, the straw incorporation was combined with catch-crop growing with and without winter application of animal slurry and also spring fertilization with mineral fertilizer (0, 50, 100 or 125 kg N ha?1 yr?1). The combined experiment was conducted for three lyears on the sandy soil and for four years on the sandy loam soil. The effects on barley dry matter yield and N uptake are presented together with the long-term effects of the straw incorporations on crop growth and soil C and N. Grain yield on the sandy loam was unaffected by straw incorporation. On the sandy soil the highest straw application rates reduced grain yield in the unfertilized barley. When the barley received mineral fertilizer at recommended levels (100 kg N ha?1 yr?1), grain yield on this soil was also unaffected by the high straw rates. Including a catch crop had a positive effect on the grain yield of barley on both soils. The total N uptake in grain and straw generally increased with straw application up to 8 t ha?1 yr?1. With the highest straw application rate (12 t ha?1 yr?1), the total N uptake decreased but still exceeded N uptake in barley grown with straw removal. The barley accumulated higher amounts of N when a catch crop was included. The total N uptake in the barley was significantly higher after animal slurry application. The extra N uptake, however, was much lower than the amounts of N applied with the slurry. Incorporation of straw had only a small influence on N uptake after slurry application. The straw, therefore, was not able to store the applied N during winter. In the two four-year periods before the combined experiment, grain yield on the sandy loam was generally negatively affected by straw incorporations. In the second period, N uptake began to show a positive effect of the straw. On the sandy soil, grain yield and N uptake during the whole period were generally positively affected by the straw incorporations except for the highest straw rate (12 t ha?1 yr?1). The sandy loam soil showed higher increases in C and N content after the repeated straw incorporations and catch-crop growing than the sandy soil. When application of animal slurry was combined with the catch crop, no further increases in soil C and N were found relative to soil where a catch crop was grown without slurry application. Large amounts of the N applied with the slurry may therefore have been lost by denitrification or nitrate leaching.  相似文献   

7.
ABSTRACT

The aim of the study was to determine the long-term effect of legumes as forecrops on the productivity of rotation with nitrogen fertilisation. The rotation included: legumes + spring barley, winter triticale and winter rape. The study was conducted as a two-factorial field experiment with four replications. The present study showed that legumes, as forecrops, increased the yield of WT cultivated in the second year of rotation. The seed yield of WR cultivated in the third year of rotation significantly increased after all legume forecrops, with the exception of PEA. Yielding of these crops depended also on nitrogen fertilisation. In the case of WT doses 120 kg N ha?1 and 180 kg N ha?1 there was an increased yield compared with control independent of forecrop, but there were no significant differences between doses 120 and 180 kg N ha?1. The conclusion is that we do not need to use dose 180 kg N ha?1 for WT cultivated directly after legumes. In the cultivation of WR in the third year of rotation there is no need to use a dose of nitrogen 180 kg N ha?1 if the fore-fore-crops were indeterminate cultivars of BL or YL.  相似文献   

8.
Abstract

To compare the relative efficiency of different fertilisation strategies, malting barley was fertilised with calcium ammonium nitrate (CAN) or compound ammonium nitrate with phosphorus (NP) applied in two ways: broadcast and harrowed into the seedbed before seeding or banded using the Scandinavian combi-drill design, with the fertiliser between every second seed row, and 40 mm below. A fixed nitrogen level (120 kg N ha?1) was used, giving four fertiliser treatments. Eleven experiments were carried out the years 1992–1994, with latitudes 55° 55′ N as southern and 59° 36′ N as northern limit. Fertiliser-use efficiency, defined as grain yield, or grain nitrogen yield, per unit of applied N, was strongly affected by the treatments: values for combi-drilled were higher than for broadcast fertiliser and higher for NP than for CAN, with the effects being additive. The best treatment, using both banding and NP, resulted, as a mean of all trials, in a grain yield increase of 939 kg ha?1 at 15% moisture content, or a nitrogen yield increase of 18 kg nitrogen ha?1 compared with the poorest, using broadcast CAN. The N combi-drill effect was expected to be dependent on water availability, but this could not be confirmed when accumulated rainfall during crop establishment was used as test variable. The combi-drill effect was strongest in places where major extractable cations were abundant, possible explanations for this are discussed. Application of P to the crop and the use of combi-drill are recommended for malting barley fertilisation in Sweden.  相似文献   

9.
Studies on N balance due to N inputs and outputs and soil N retention to measure cropping system performance and environmental sustainability are limited due to the complexity of measurements of some parameters. We measured N balance based on N inputs and outputs and soil N retention under dryland agroecosystem affected by cropping system and N fertilization from 2006 to 2011 in the northern Great Plains, USA. Cropping systems were conventional tillage barley (Hordeum vulgaris L.)–fallow (CTB‐F), no‐tillage barley–fallow (NTB‐F), no‐tillage barley–pea (Pisum sativum L.) (NTB‐P), and no‐tillage continuous barley (NTCB). In these cropping systems, N was applied to barley at four rates (0, 40, 80, and 120 kg N ha?1), but not to pea and fallow. Total N input due to N fertilization, pea N fixation, soil N mineralization, atmospheric N deposition, nonsymbiotic N fixation, and crop seed N and total N output due to grain N removal, denitrification, volatilization, N leaching, gaseous N (NOx) emissions, surface runoff, and plant senescence were 28–37% greater with NTB‐P and NTCB than CTB‐F and NTB‐F. Total N input and output also increased with increased N rate. Nitrogen accumulation rate at the 0–120 cm soil depth ranged from –32 kg N ha?1 y?1 for CTB‐F to 40 kg N ha?1 y?1 for NTB‐P and from –22 kg N ha?1 y?1 for N rates of 0 kg N ha?1 to 45 kg N ha?1 y?1 for 120 kg N ha?1. Nitrogen balance ranged from 1 kg N ha?1 y?1 for NTB‐P to 74 kg N ha?1 y?1 for CTB‐F. Because of increased grain N removal but reduced N loss to the environment and N fertilizer requirement as well as efficient N cycling, NTB‐P with 40 kg N ha?1 may enhance agronomic performance and environmental sustainability while reducing N inputs compared to other management practices.  相似文献   

10.
Abstract

Results of 240 annual N fertilizer trials in 1991–2007 in spring and winter cereals are presented. On average, spring barley and oat yields increased little beyond 120 kg N ha?1 in fertilizer. Somewhat higher figures were found for spring and winter wheat. Regression equations for yield and N uptakes in grain and straw were derived, related to N fertilizer input and the yield level in individual trials (indicator of yield expectancy). These equations accounted for 90% of the variation in yield and 80% of that in N uptake. Quadratic N responses were significant in all cases, as were interactions between N responses and yield level. They were verified with data from 27 separate trials performed in 2008–2010. The yield equations were used to calculate economically optimum N fertilizer levels with varying ratios of product price to fertilizer cost at contrasting levels of yield. The optimum N fertilizer level for barley and oats was found to increase by 8.3 kg N ha?1 per Mg increase in expected yield. The equivalent figure in wheat was 16.3 kg N ha?1. Optimum N fertilizer levels decreased by 4.1 and 6.7 kg N ha?1, for barley/oats and wheat respectively, per unit increase in the cost/price ratio. The equations for N uptake were used to calculate simple N balances between fertilizer input and removal in crop products. Large N surpluses were indicated at low levels of yield expectancy, but the surplus declined markedly with increasing yield level, despite greater N fertilizer inputs at high yield. Calculations made for national average yield levels in recent years showed N surpluses of 50–60 kg N ha?1 when only grain is removed and 25–40 kg N ha?1 when straw is removed also. Limiting N input to obtain zero balance reduces yields considerably at average levels of yield expectancy.  相似文献   

11.
A study was conducted at Hyderabad during 2009–11 to determine phosphorus (P) dose for ricerice and rice–sunflower. Available P increased when 100% recommended P dose (RDP) was applied. P applied to rice gave at par yield under 100 or 75% RDP. In rice–rice, grain yield of 5668 and 5775 kg ha?1 in kharif (5654 and 5760 kg ha?1 in rabi) were attained with P@75 and 100% RDP. Kharif P residual effect in rabi affected rice yield. P@100/75% RDP in kharif and rabi gave grain of 5916/5973 and straw 6230/6673 kg ha?1. P applied to sunflower revealed that yield was similar with 100 or 75% RDP. Sunflower yield was at par with P@100 or 75% RDP. 25% RDP in rice and sunflower may be reduced to attain similar yield of 100% RDP. In rice–rice, grain yield attained by 100% RDP in both seasons was 11.42t ha?1 yr?1, while 75% RDP gave yield of 11.45t ha?1yr?1.  相似文献   

12.
Abstract

A three-year experiment was carried out at three different sites in northern Germany to investigate the effects of combined sulphur (S, up to 50 kg S ha?1 year?1) and nitrogen (N, up to 300 kg N ha?1 year?1) fertilization on dry matter (DM) yield and forage quality. There was an interaction effect of site, year, S and N fertilization. The greatest DM yield increment relative to yield at the start of the experiment (1997) with no S and N applied was 10.2 t DM ha?1 at Ostenfeld (arable grassland). Cattle slurry when applied to provide 50 kg N ha?1 and 10 kg S ha?1 did not noticeably increase yield. The S content in forage decreased significantly over the years without S fertilization. At 300 kg N ha?1 and 0 kg S ha?1, crude protein (CP) contents achieved 173 g kg?1 DM and were diluted due to higher DM yields with S fertilization. The true protein content (TP% of CP) differed significantly at 300 kg N ha?1. TP achieved 93% with 50 and 87% with 0 kg S ha?1 year?1, respectively. In conclusion, with N fertilizer intensities in the range of 300 kg N ha?1, it is necessary to apply 25 kg S ha?1 to improve forage yield and quality. On the other hand, with N fertilization levels below 300 kg N ha?1, S fertilization could be omitted.  相似文献   

13.
It was hypothesized that the application of eucalyptus biochar enhances nutrient use efficiencies of simultaneously supplied fertilizer, as well as provides additional nutrients (i.e., Ca, P, and K), to support crop performance and residual effects on subsequent crops in a degraded sandy soil. To test this hypothesis, we conducted an on‐farm field experiment in the Khon Kaen province of Northeastern Thailand to assess the effects of different application rates of eucalyptus biochar in combination with mineral fertilizers to upland rice and a succeeding crop of sugarcane on a sandy soil. The field experiment consisted of three treatments: (1) no biochar; (2) 3.1 Mg ha?1 biochar (10.4 kg N ha?1, 3.1 kg P ha?1, 11.0 kg K ha?1, and 17.7 kg Ca ha?1); (3) 6.2 Mg ha?1 biochar (20.8 kg N ha?1, 6.2 kg P ha?1, 22.0 kg K ha?1, and 35.4 kg Ca ha?1). All treatments received the same recommended fertilizer rate (32 kg N ha?1, 14 kg P ha?1, and 16 kg K ha?1 for upland rice; 119 kg N ha?1, 21 kg P ha?1, and 39 kg K ha?1 for sugarcane). At crop harvests, yield and nutrient contents and nitrogen (N) use efficiency were determined, and soil chemical properties and pH0 monitored. The eucalyptus biochar material increased soil Ca availability (117 ± 28 and 116 ± 7 mg kg?1 with 3.1 and 6.2 Mg ha?1 biochar application, respectively) compared to 71 ± 13 mg kg?1 without biochar application, thus promoting Ca uptake and total plant biomass in upland rice. Moreover, the higher rate of eucalyptus biochar improved CEC, organic matter, available P, and exchangeable K at succeeding sugarcane harvest. Additionally, 6.2 Mg ha?1 biochar significantly increased sugarcane yield (41%) and N uptake (70%), thus enhancing N use efficiency (118%) by higher P (96%) and K (128%) uptake, although the sugar content was not increased. Hence, the application rate of 6.2 Mg ha?1 eucalyptus biochar could become a potential practice to enhance not only the nutrient status of crops and soils, but also crop productivity within an upland rice–sugarcane rotation system established on tropical low fertility sandy soils.  相似文献   

14.
ABSTRACT

While pulses are staple food-legumes in Ethiopia, their productivity is low due to low soil fertility. Elite rhizobial strains that significantly increased shoot dry weight and nitrogen (N) contents of common beans and soybeans in greenhouse were selected for two-year field trials to evaluate their effect on yields of the pulses in the field. Each pulse had six treatments, namely four rhizobial inoculants, uninoculated control, and synthetic N fertilizer. In the drought-affected year 2015, inoculated pulses tolerated moisture stress better than non-inoculated controls. Inoculation was conducive to higher or equivalent yields compared to synthetic N fertilizer. At Halaba, bean inoculated with strain HAMBI3562 gave the highest grain yield (1500 ± 81 kg ha?1; mean±SE) while the control yielded only 653 ± 22 kg ha?1. At Boricha, HAMBI3570 gave a grain yield (640 ± 35 kg ha?1) comparable to synthetic N. When rainfall was optimal in 2016, inoculation with HAMBI3562 and HAMBI3570 gave grain yields (around 4300 kg ha?1) equivalent to synthetic N. With soybean, strain HAMBI3513 produced consistently higher or comparable biomass and grain yields compared to synthetic N. In conclusion, HAMBI3562 and HAMBI3570 for beans and HAMBI3513 for soybeans can serve as inoculants for areas having similar conditions as the test areas.  相似文献   

15.
The field experiment was conducted on black soil (Vertic Ustropept) at Zonal Agricultural Research Station farm, Solapur, for successive 30 years from 1987–1988 to 2016–2017 under dryland condition in a randomized block design with 10 treatments and 3 replications. The pooled results of seven years (2010–2011 to 2016–2017) revealed that the application of 25 kg N ha?1 through crop residue (CR, byre waste) along with 25 kg N ha-1 through Leucaena lopping (Leucaena leucocephala) to rabi sorghum gave significantly higher grain and stover yield and Sustainable Yield Index (14.61 and 36.11 q ha?1 and 0.47, respectively) which was on par with T7, where 25 kg N ha?1 through farmyard manure (FYM) + 25 kg N ha?1 through urea was applied for grain and stover yield (13.95 and 34.46 q ha?1 and 0.44, respectively). The gross and net monetary returns and benefit–cost ratio were also influenced significantly due to integrated nitrogen management (Rs. 59,796, Rs. 47,353 ha?1, and 3.13, respectively). This was also reflected in residual soil fertility status of soil after harvest of rabi sorghum. The organic carbon content and available nitrogen content of soil, as well as nitrogen uptake and moisture use efficiency for grain, were also increased. The total microbial count of bacteria, fungi, and actinomycetes was more where FYM or CR addition was done. The count of N fixers and P solubilizers was more under Leucaena application either alone or with CR or urea. Application of CR at 4.8 t ha?1 (25 kg N ha?1) along with Leucaena lopping at 3.5 t ha?1 (25 kg N ha?1) as green leaf manure is the best alternative organic source for fertilizer urea (50 kg N ha?1) to increase the production of dryland rabi sorghum.  相似文献   

16.
The objectives of this work were to study nitrogen (N) release from a biosolid and a compost of banana wastes. The overwinter N decomposition was evaluated as the uptake by a cereal cover crop and the in situ losses from buried bags in a loamy sand (site 1) and in a calcareous silty clay loam (site 2). Organic materials were applied in two rates as sludge (1, 3.75 Mg ha?1; 2, 7.5 Mg ha?1) and compost (1, 3.29 Mg ha?1; 2, 6.58 Mg ha?1). Immediately after their incorporation in October, barley was planted as a cover crop. Its growth was negatively affected by the slow drainage of the silty clay loam, leading to greater N concentration in site 1 (21.18 g kg?1 of barley versus 14.35 g kg?1 of barley in site 2). Yet only 10% of the added N was intercepted by the cover crop in the fast-draining site 1. The ash-rich compost (N: 21.1 g kg?1; ash: 467 g kg?1) was comparable to the control. Within site 2, the biosolid treatments had a residual effect on a second barley crop, as N uptake was 1.99–2.13 times that of the control. The approach of in situ loss from bags incorporated in bare soil was repeated in two successive seasons. Nitrogen losses (% input) during the fall and winter months were comparable between sites 31.9 % (site 1) and 28.6 % (site 2). When the N fate was studied during the winter months only, the loss decreased slightly, suggesting the presence of a fraction liable to decomposition overwinter in Mediterranean conditions. Soil nitrate was determined 1 month after the incorporation of the cover crop in late spring. In the first season, only the sludge 2 treatment generated more nitrate than the control, whereas 19 months after the application of the organic products both sludge treatments had a positive effect. The soil properties influenced the amounts of N mineralized with site 1, yielding twice that of site 2. In the fast-draining soils, the presence of an active cover crop overwinter is necessary, while the N level of sludge 1 (164 kg N ha?1) was more acceptable.  相似文献   

17.
Abstract

The experiment was conducted at Kulumsa, South East Ethiopia, using four levels of nitrogen (N) (0, 50,100 and 150?kg N ha?1) and four levels of phosphorus (P) (0, 35, 70 and 105?kg P2O5 ha?1) fertilizers arranged in 4?×?4 factorial arrangements in randomized complete block design with three replications. The available P was increased after harvest due to the application of N and P fertilizer at the rates of 100 or 150?kg N ha?1 and 70 or 105?kg P2O5 ha?1. More specifically, nutrients concentration and nutrient uptake were significantly (p?<?.01) varied among treatment combinations and nutrient use efficiency was declined by increasing N and P after optimum rates. The higher physiological efficiency of N (53.47?kg kg?1) and P (580.41?kg kg?1) and the highest apparent recovery of N (19.62%) and P (2.47%) was recorded from application of 50?kg N ha?1 and P at 70?kg P2O5 ha?1 and the highest agronomic efficiency of N (10.78?kg kg?1) and P (15.25?kg kg?1) was recorded from N at the rate of 50?kg N ha?1 and P at 35?kg P2O5 ha?1, respectively. The combination of N at 100?kg N ha?1 and P at 70?kg P2O5 ha?1 was promising combination that generated highest net benefit 488,878.5 ETB (Ethiopian birr) ha?1 with the highest marginal rate of return (36638%) and gave the highest seed yield (1858.82?kg ha?1) with yield increment of about 57.72% over the control.  相似文献   

18.
Based on experiments conducted during 1988–2009 on rainfed pearl millet/sorghum with 9 treatments in Vertisols, an efficient treatment for sustainable productivity is identified. Twenty kg of nitrogen (N) from farmyard manure (FYM) + 20 kg N (urea) + 10 kg phosphorus (P) ha?1 in pearl millet and 40 kg N (urea) + 20 kg P + 25 kg zinc sulfate (ZnSO4) ha?1 in sorghum gave maximum yield and rainwater-use efficiency, whereas 20 kg N (FYM) + 20 kg (urea) + 10 kg P ha?1 in pearl millet and 40 kg (urea) + 20 kg P ha?1 in sorghum and gave maximum soil N, P, and potassium (K) over years. The regression model of 20 kg N (crop residue) + 20 kg N (urea) + 10 kg P ha?1 gave maximum R2 for predicting sorghum equivalent yield separately through precipitation and soil variables, whereas 20 kg N (FYM) + 20 kg N (urea) + 10 kg P ha?1 gave maximum R2 under combined model of both variables. Treatment of 20 kg N (FYM) + 20 kg N (urea) + 10 kg P ha?1 was superior for attaining maximum sorghum equivalent yield of 1062 kg ha?1, net returns of Rs. 4805 ha?1, benefit/cost (BC) ratio of 1.50, and 127 kg ha?1 of soil N, 10.3 kg ha?1 of soil P, and 386 kg ha?1 of soil K over years.  相似文献   

19.
ABSTRACT

The study was aimed to determine the appropriate nitrogen (N) rate to combine with liming for enhanced maize yield and nitrogen use efficiency (NUE). Two maize varieties [Ikom White (IKW) and Obatanpa-98 (Oba-98)], two lime rates (0 kg ha?1 and 500 kg ha?1) and three N rates (0, 90 and 180 kg ha?1) were used. The treatments were laid as a split-split plot in a randomized complete block design with three replications. The growth attributes, photosynthetically active radiation (PAR), harvest index, dry matter, and grain yield increased (P ≤ 0.05) with increases in N rates, especially in plots amended with lime. Oba-98 was better yielding (2.12 versus (vs) 1.88 t ha?1) and absorbed more (P ≤ 0.05) radiation (442.06 vs 409.54 μmol m?2s?1) than IKW. The efficiency indices and partial factor productivity were best optimized at the 90 kg ha?1 N rate with Oba-98 having higher values than IKW. Therefore, liming (500 kg ha?1) plus N at 180 kg ha?1produced the best yield of the hybrid maize, Oba-98.  相似文献   

20.
Sorghum is cultivated on Vertisols in the Ethiopian Highlands. An experiment was conducted in the Gumara-Maksegnit watershed in 2013 and 2014 to assess the effect of rate and timing of nitrogen fertilizer application on the possibility to shorten the maturity period and to improve the productivity of sorghum. The experiment was laid out as Randomized Complete Block Design with three replications. Treatments were nitrogen doses between 0 and 87 kg N ha?1 as urea applied at planting, at knee-height stage or in split doses at both stages. Results showed that application of 23, 41, 64 and 87 kg ha?1 N gave a yield increase of 40, 53, 62 and 69% over the control (0 kg N ha?1), respectively. In addition, split application of 41 kg ha?1, 64 kg ha?1 and 87 kg ha?1 of nitrogen fertilizer, half at planting and half at knee height stage, gave 19%, 15% and 18% increase in sorghum grain yield over a single dose application, respectively. Applying 87 kg ha?1 nitrogen fertilizer with split application half at planting and half at knee height stage, along with 46 kg ha?1 of P2O5, gave the highest grain yield and income.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号