首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

The addition of carbonates to a nutrient solution to alleviate ammonium (NH4 +) toxicity in hydroponically-grown cucumber (Cucumis sativus L.) plants was investigated. Stable isotopes [nitrogen (15N) and carbon (13C)] were used to assess the uptake of nitrogen [NH4 + or nitrate (NO3 ?)] as well as carbon [bicarbonate (HCO3 ?)/carbonate (CO3 2?)] by the roots. Ammonium as the sole N source at 5 mM decreased plant fresh weights compared to NO3 ?. However, at lower concentrations of NH4 + (25% of 5 mM total N), growth was increased compared to NO3 ? alone. Inorganic C enrichment [calcium carbonate (CaCO3)] of the nutrient solution increased the fresh weight of NH4 + grown plants with up to 150% relative to control plants receiving calcium hydroxide [Ca(OH)2] for pH regulation. Root 15N enrichment was lower in 15NH4 + supplied plants compared to 15NO3 ?, while the 13C enrichment in leaves was increased by NH4 + nutrition compared to NO3 ? or NH4NO3. The enhanced C capture was associated with high PEPCase activity in the roots. It is concluded that inorganic carbon enrichment of the root medium may alleviate NH4 + toxicity via increased synthesis of C skeletons and, accordingly, increased capacity for NH4 + assimilation and N export to the shoots.  相似文献   

2.
High concentrations of bicarbonate (HCO? 3) cause alkalinity of irrigation water and are associated with suppression in plant growth and micronutrient deficiencies, such as iron (Fe) and zinc (Zn). Because reports indicate that the deleterious effects of alkalinity may be counteracted partially by supplementary potassium (K+) or ammonium (NH4 +) an experiment was designed to evaluate the response of bean plants (Phaseolus vulgaris L.) grown in high alkalinity conditions to varying proportions of NH4 +, K+, or sodium (Na+) (as a potential substitute for K+). Plants established in a growth chamber were grown in hydroponics for 21 days in solutions containing 5 mM HCO? 3 and a total of 5 mM of a mixture of NH4 +, K+, and Na+. The proportions of NH4 +, K+, and Na+ were designed according to mixture experiment methodology. Total N in all the mixture treatments was maintained at 10 mM by using nitrate (NO? 3)-N, thus the NH4 +:NO? 3 ratio varied according to the proportion of NH4 + in the mixtures. Alkalinity caused suppression in plant growth and chlorophyll concentration in the younger leaves, whereas excessive NH4 + was associated with leaf scorching and decreased leaf expansion. High proportions of K+ alleviated alkalinity symptoms and produced higher shoot and root dry mass provided that NH4 + was included in the mixture. However, a proportion of NH4 + higher than 0.333 in the mixture (>1.66 mM NH4 +) induced toxicity. The highest shoot dry mass occurred if the NH4 +:NO? 3 ratio was 0.19:0.81 and the NH4 +:K+:Na+ proportion was 0.38:0.38:0.24 (1.9 mM NH4 + + 1.9 mM K+ + 1.2 mM Na+). Thus, an improvement in plant growth is achieved when NH4 +, K+, and Na+ are blended together, in spite of the high alkalinity treatment imposed. Optimum NH4 + was associated with a decrease in solution pH and an increase in shoot Fe and Zn concentration.  相似文献   

3.
ABSTRACT

Aspects of ammonium (NH4 +) toxicity in cucumber (Cucumis sativus L.) were investigated following growth with different N sources [nitrate (NO3 ?), NH4 +, or NH4NO3] supplied in concentrations of 1, 5, 10, or 15 mM. Plant dry weights and root: shoot ratios were lower with NH4 +-fed plants than with NO3 ?-fed plants. Ammonium accumulated strongly in leaves, stem, and roots when the concentration in the growth medium exceeded 1 mM. The increase in tissue NH4 + coincided with saturation of glutamine synthetase activity and accumulation of glutamine and arginine. Low tissue levels of calcium and magnesium in the NH4 +-fed plants constituted part of the NH4 +-toxicity syndrome. Additions of small amounts of NH4 + to NO3 ? -grown cucumber plants markedly increased the growth.  相似文献   

4.
《Journal of plant nutrition》2013,36(12):2413-2424
Abstract

Tomato and watermelon plants were grown in nutrient solutions in which nitrogen (N) was supplied as NO3 ? (6 mM‐N) or NH4 + (6 mM‐N). The experiments were conducted to evaluate the effect which different N sources exert on iron (Fe) uptake and accumulation, on the enzymatic activities of aconitase (Aco), chelate reductase (FeCH‐R), peroxidase (POD), catalase (CAT), and Fe‐superoxide dismutase (FeSOD), and on biomass production. For both species of plants, fertilization with NH4 + caused the total Fe concentration to be lower, in the roots and in the leaves in relation to the concentrations recorded in plants fertilized with NO3 ?. The response of the enzymes related to Fe correlated with their concentration. The plants treated with N?NO3 ? registered the highest activities in Aco, FeCH‐R, POD, and CAT for both tomato and watermelon. On the other hand, only in the tomato plants was the superoxide dismutase (SOD) activity appreciably influenced primarily by NH4 +, due possibly to the toxic effect of this N source. Finally, in relation to biomass production, fertilization with NH4 + drastically reduced growth in the tomato plants, while in watermelon plants, no significant alteration was detected in dry‐matter production, regardless of the N form used. It was concluded that the response of the parameters analyzed to NH4 + fertilization, in tomato and watermelon, compared to fertilization with NO3 ? was similar. By contrast, tomato plants, but not watermelon plants, were negatively influenced by NH4 +.  相似文献   

5.
Fertigation with KNO3 as a means of reducing salinity hazards was tested with peanut (Arachis hypogaea) plants grown on dune sand, resulting in a reduction of plant growth and yield. The objective of this work was to study the interactions between N, K+ and NaCl as well as the effects of the NH4 +/NO3 ratio on vegetative and reproductive growth. Wheat (Triticum aestivum L.) plants were grown in polyethylene pots with fine calcareous dune sand with different proportions of NH4 + and NO3 , under saline (60 mM NaCl) and non‐saline conditions. Three replicates were harvested at the beginning of flowering, and one was grown to grain maturity. NaCl reduced shoot dry weight in all the treatments. Increasing the NH4 + proportion in the total of 6 mM N in the nutrient solution, increased shoot dry weight, did not change nitrogen concentration in the dry mass but increased P percentage, either with or without 60 mM NaCl. The number of tillers produced in each treatment was correlated with dry matter yield. The effect of the NH4 +/NO3 ratio may be explained by alteration of the cation‐anion balance on the nutrient uptake by roots, which lowered pH of the nutrient solution with increasing NH4 + concentration, by alteration of the cation‐anion balance on the nutrient uptake by roots, which lowered pH of the nutrient solution with increasing NH4 + concentration.  相似文献   

6.
ABSTRACT

The present study was performed to characterize the interaction between nitrogen (N) form and availability with respect to growth, water relations, and mineral nutrition of wild swiss chard (Beta macrocarpa Guss). Plants were cultured hydroponically with two levels of N concentrations, high-N (2.5 mM) or low-N (0.5 mM), added as nitrate (NO? 3) or ammonium (NH+ 4). At high N, growth was affected significantly by N form. If the NO? 3 medium was considered as control, the use of NH+ 4 decreased dry matter production and leaf area by ca. 35%. Use of NH+ 4 led to water economy and did not affect the nutrient content of the plant tissues. Compared to growth with high N, plants growth fell in either low- NO? 3 or low- NH+ 4 medium. In this case, the difference between the two N sources was not significant. Our results showed that the replacement of NO? 3 by NH+ 4 as the N source decreased the NO? 3 concentration in consumable leaves and increased the water use efficiency.  相似文献   

7.
The effects of different forms and concentrations of N in the rooting medium on the CO2/H2O gas exchange of leaves of the pedunculate oak (Quercus robur L.) were investigated. Two-year-old seedlings were grown in nutrient solutions containing low (1.8 mM) or high (4.8 mM) concentrations of NH4+, 3.6 mM NO3?, or both NH4+ and NO3? (1.8 mM + 1.8 mM). In various sets of plants subjected to these N treatments, the following parameters were determined: biomasses of leaves and fine roots, leaf area-related net photosynthesis at light saturation (A) and leaf conductance (g), foliar concentrations of chlorophylls, N, Ca2+, Mg2+ and K+ and the ash alkalinity of the leaves (as a measure of the carboxylate content). In all treatments, the leaves were equally well supplied with nutrients. Oaks grown in high NH4+ concentrations produced significantly smaller leaf and root biomasses. Compared to oaks cultivated with both N forms or with low NH4+ concentration, oaks grown with high NH4+ supply showed lower values of A and g, but no significant differences in ash alkalinity and leaf area-related chlorophyll concentrations. Oaks fed with NO3? as the only N form had an intermediate biomass production, but low values of A and g. The time courses of A in the different treatments closely followed the patterns of g. In all N treatments, the same linear relationship was found between A and g, indicating that, within a rather wide range, the variation in the form and amount of supplied N does not affect the instantaneous water use efficiency of young pedunculate oaks.  相似文献   

8.
The objective of this research was to study the effects of nitrogen (N) forms (NO3, 2.6 mM; NH4+, 2.6 mM; NO3, 1 mM + NH4+, 1.6 mM) on the growth and mineral composition of kiwifruit plants exposed to three boron (B) levels (0.025, 0.1, 0.3 mM). The kiwifruit plants were grown in a 1:1 sand : perlite mixture and irrigated daily with nutrient solutions. Shoot height, mean shoot dry weight, the number of leaves, mean leaf dry weight, and N concentration of NH4‐treated plants were significantly higher compared to the NO3 treatment at all B levels. The concentration of 0.3 mM B significantly reduced shoot height for all N treatments. Boron toxicity symptoms appeared 14 days after starting the experiment, when plants were treated with 0.1 and/or 0.3 mM B. The nitrate supply reduced the B concentration of roots, but B levels of different leaf parts were hardly affected by the N form. Furthermore, the NH4‐N form significantly reduced the Mg concentration of the leaves.  相似文献   

9.
One aluminum (Al)-sensitive (B-73) and two Al-tolerant (F-2 and L-2039) maize genotypes were subjected to Al stress (100 μM Al) under two nitrogen (N) treatments [13.2 mM nitrate (NO3?) and 8.3 mM NO3? + 4.9 mM ammonium (NH4+)]. Growth parameters, chlorophyll, root N and NO3? contents, root nicotinamide adenine dinucleotide (NADH-) and nicotinamide adenine dinucleotide phosphate (NADPH)-nitrate reductase, glutamine synthetase, and glutamate dehydrogenase activities were determined. Aluminum significantly decreased growth and chlorophyll content in Al-sensitive genotype. Nitrate accumulation in roots was increased by Al in tolerant plants. In the sensitive genotype, Al suppressed all enzymes in NO3? plants, while in NO3?/NH4+ plants the suppression was less severe, and NADPH-nitrate reductase was even stimulated. In tolerant NO3?plants, glutamate dehydrogenase was stimulated in F-2 and glutamine synthetase suppressed in L-2039 genotype. In tolerant NO3?/NH4+- plants, all enzymes were stimulated by Al, which may be attributed to their participation in defense mechanisms.  相似文献   

10.
Abstract

This trial was carried out to establish an appropriate nutrient solution for Aglaonema commutatum and to investigate the nutritional effects generated by modifications in the solution. Six treatments were tested: control (T0; pH 6.5, E.C. 1.5 dS m?1, 6 mmol L?1 NO3 ?‐N, and 6 mmol L?1 K+); high nitrogen (N) level (T1; 9 mmol L?1 6:3 NO3 ?–NH4 +); N form (T2; 6 mmol L?1 N‐NH4 +); high K+ level (T3; 12 mmol L?1 K+); high electrical conductivity (T4; E.C. 4 dS m?1, 25 mmol L?1 NaCl), and basic pH (T5; pH 8). At the end of the cultivation, leaf, shoot, and root dry weights and elemental concentrations were determined. Nutrient contents and total plant uptake were calculated from the dry weights and nutrient concentrations. Plant K+ uptake increased with application of K+ or basic nutrient solution. The uptake and transport of calcium (Ca) were enhanced by the use of NO3 ?‐N and inhibited by the presence of other cations in the medium (NH4 +, K+, Na+) and by basic pH. Magnesium (Mg) uptake increased with NO3 ?‐N application and with pH. Sodium (Na) uptake was the highest in the saline treatment (T4), followed by the basic pH treatment. Sodium accumulation was detected in the roots (natrophobic plant), where the plant generated a physiological barrier to avoid damage. Dry weight did not differ significantly (p<0.05) among treatments except in the NaCl treatment. These results may help in the formulation of nutrient solutions that take into account the ionic composition of irrigation water and the physiological requirements of plants.  相似文献   

11.
Root development responds not only to the quantity of inorganic nitrogen in the rhizosphere, but to its form, NH4+ or NO3?. Root growth of tomato showed a hyperbolic response to soil levels of inorganic nitrogen: very few roots were found in soil blocks depleted in inorganic nitrogen, roots proliferated as soils increased to 2 μg NH4+-N g?1 soil or 6 μg NO3?-N g?1 soil, and root growth declined in soils with the higher levels of inorganic nitrogen. High NH4+ concentrations inhibited root growth, but low concentrations promoted the development of an extensive, fine root system. Supply with NO3? as the sole nitrogen source led to a more compact root system. These differences in root morphology under NH4+ and NO3? nutrition may be mediated through pH. Rice and maize roots absorbed NH4+ most rapidly right at the apex and appeared to assimilate this NH4+ in the zone of elongation. During NH4+ assimilation, root cells must release protons, and the resulting acidification around the walls of cells in this region should stimulate root extension. By contrast, NO3? absorption reached a maximum in the maturation zone of rice and maize roots, and this NO3? was probably assimilated in more basal regions. Absorption of NO3? requires proton efflux, whereas NO3? assimilation requires proton influx. The net result under NO3? nutrition was only subtle shifts in rhizosphere pH that probably would not influence root elongation. The signal through which roots detect changes in rhizosphere NH4+ and NO3? levels is still obscure. It is proposed that a product of nitrogen metabolism such as nitric oxide serves as a signal.  相似文献   

12.
Abstract

Pansy (Viola xwittrockiana Gams.) producers often observe nutrient disorders among plants grown during warm periods (>18°C) of the growing season. These disorders typically are not seen when production temperatures are optimal (≥18°C) even though fertility regimes may remain the same. Our objectives were to assess the effects of temperature and nitrogen (N) fertility on growth and nutrition of pansy. Pansies cultivar ‘Crown White’ were grown until lateral branches had open flowers. Treatments consisted of two temperatures (12 and 22°C) and three NO3 ?:NH4 + molar % ratios (100:0, 62:38, and 25:75) with a total concentration of 100 mg N L?1. A modified Hoagland's solution was used with NO3 ?‐N supplied as Ca(NO3)2 and KNO3 and with NH4 +‐N as (NH4)2SO4. Cumulative nutrient absorption and foliar nutrient content were determined when plant lateral branches flowered. Root and shoot growth were limited when NH4 + was present in solutions at high ambient air temperature (22°C), but not at low temperature (12°C). Individual absorption and accumulation of plant nutrients varied with N regimes and temperatures. Overall, pansies absorbed more total N, NH4 +, NO3 ?, calcium (Ca), potassium (K), magnesium (Mg), phosphorus (P), zinc (Zn), and less iron (Fe) and manganese (Mn) at 12°C than at 22°C. In addition, absorption of NO3 ? by pansy was negligible if any NH4 + was present in solutions at 22°C. Results suggest that pansy growers should adjust fertility programs according to production temperatures to avoid possible nutritional disorders and maximize plant growth. If maximum growth is to be obtained in warm temperatures, the use of NH4 +‐containing fertilizers should be reduced or eliminated. However, the choice of NO3 ?:NH4 + ratio for nutrition may be less important under cool growing conditions.  相似文献   

13.
Two hydroponic experiments were carried out to investigate the effects of nitrogen (N) levels and forms on the oxalate concentrations of different form in edible parts of spinach. Nitrogen was supplied at five levels (4, 8, 12, 16, 20 mM) in Experiment 1 and five ratios of nitrate (NO3 ?) to ammonium (NH4 +) (100/0, 75/25, 50/50, 25/75, 0/100) at a total N of 8 mM in Experiment 2. Biomass of spinach increased markedly from 4 mM to 8 mM N and reached the flat with further increase in N. The total oxalate and soluble oxalate in leaves and shoots (edible parts) increased significantly with increasing N levels from 4 to 12 mM, while the total oxalate and insoluble oxalate decreased markedly when N level was further increased from 12 to 20 mM. Oxalates of different forms in petioles increased first and then decreased and elevated again with increasing nitrogen levels. In the second experiment, decreasing NO3 ?/NH4 + ratios markedly increased at first and then significantly decreased the biomass of spinach plants and the maximum biomass was recorded in the treatment of the NO3 ?/NH4 + ratio of 50:50. The oxalate concentrations of different form in leaves and shoots were all decreased obviously as the ratio of NO3 ?/NH4 + decreased from 100:0 to 0:100. Concentrations of total oxalate and soluble oxalate in petioles could be reduced by increasing ammonium proportion and were the lowest as the ratio of NO3 ?/NH4 + was 50:50 and insoluble oxalate decreased as nitrate/ammonium ratio decreased. The concentrations of oxalate forms in leaves were all higher than those in petioles and soluble oxalate was predominant form of oxalates in both trials. It is evident that high biomass of spinach can be achieved and oxalate concentrations of different forms can be reduced by modulating N levels and NO3 ?/NH4 + ratio, so this will benefit for human health especially for those people with a history of calcium oxalate kidney stones.  相似文献   

14.
Abstract

While it is known that superoptimal concentrations of the nitrate (NO3 ?) ion in solution culture do not increase NO3 ? uptake or dry matter accumulation, the same is not known for the ammonium (NH4 +) ion. An experiment was conducted utilizing flowing solution culture with pH control to investigate the influence of superoptimal NH4 + concentrations on dry matter, nitrogen (N), potassium (K), calcium (Ca), and magnesium (Mg) accumulation by nonnodulated soybean plants. Increasing the NH4 + concentration in solution from 1 to 10 mM did not affect dry matter or N accumulation. Accumulations of K, Ca, and Mg were slightly decreased with the increased NH4 + concentration. The NH4 + uptake system, which is saturated at less than 1 mM NH4 +, is able to regulate uptake of NH4 + at concentrations as high as 10 mM.  相似文献   

15.
The growth of sesame (Sesamum indicum L.) was studied at three root temperature regimes (25/25, 20/10 and 15/15°C day/night) factorially combined with three NO3 : NH4 + ratios (mM ratios, 10:0, 8:2, or 6:4), as a source of nitrogen (N), in the irrigation solution. The air temperature was kept constant at 30°C. Transpiration, nutrient composition, and level of root‐born cytokinins and gibberellins in the xylem exudate were monitored. The two low root temperature regimes, 15/15 and 20/10°C, restricted the growth of sesame, reduced transpiration and increased the accumulation of soluble carbohydrates in the shoot and in the roots compared to the 25/25°C regime. The NO3:NH4 + ratios had no effect on growth. Nutrient contents in the shoot at low root temperatures, particularly K+, NO3 , and H2PO4 were decreased markedly, but Na+ increased relative to it's content in the 25/25°C regime. Increasing NH4 + proportion in the irrigation solution raised total N concentration in the plant tissues at all root temperatures. The amounts of cytokinins and gibberellins in the xylem exudate decreased at the low root temperature regimes relative to the 25/25°C regime. Low root temperature reduced xylem transport of nutrients and root born‐phytohormones, most probably because of reduced water flow through the plant relative to the 25/25°C regime.  相似文献   

16.
Nitrogen (N) by form of nutrition, ammonium (NH4+) or nitrate (NO3?), affects metabolic and physiological processes of plants. In general, a high proportion of N in NH4+ form results in poor growth. Nonetheless, a number of species exhibit optimum growth when high levels of NH4+ are provided. In the present study, lisianthus [Eustoma grandiflorum (Raf.) Shinn] was grown in rockwool cultures and irrigated with nutrient solutions containing 15 mM N with varying proportions of NH4+ and NO3?. The results showed that an increase in NH4+-N form increased plant height, number of flowers and leaves, leaf area, and shoot, stem, and leaf dry weight. The proportion of NH4+ also affected leaf concentration of phosphorus, potassium (K), calcium (Ca), and magnesium (Mg), although leaf N concentration was unaffected. Potassium leaf concentration was higher when a low proportion of NH4+ was supplemented in the nutrient solution; however, plants exhibited a decrease in leaf K concentration and a decrease in leaf Ca as the proportion of NH4+-N increased. Shoot dry weight was higher with low leaf K whereas high leaf Ca was associated with high shoot dry weight. Net photosynthesis rate was higher in plants irrigated with solutions containing 75% of total N in NH4+ form than in those irrigated with solutions of 0 or 25%. The results suggest that lisianthus can tolerate high levels of NH4+, probably associated with a higher assimilation of Ca.  相似文献   

17.
《Journal of plant nutrition》2013,36(10):1561-1573
The interactions between NaCl and different NO3 ?NH4 + ratios were investigated. Tomato plants (Lycopersicon esculentum Mill.) were grown in a greenhouse, in 120L capacity containers filled with continuously aerated Hoagland nutrient solution. Treatments were added to observe the combined effect of two NaCl levels (30 and 60 mM) and three millimolar ratios of nitrate: ammonium (14:0, 12:2, 10:4) on growth, nutrition, and contents of chlorophyll and sugars. Saline treatments decreased growth, which was partly restored by NH4 + treatment. The leaf mineral composition showed a marked effect of nitrogen (N) source, while salinity only affected NO3 ? concentration. Changing the NO3 ?:NH4 + ratio from 14:0 to 12:2 and 10:4 produced progressive increases in the concentrations of iron (Fe), chlorophyll, and reducing sugars in leaves. Therefore, the deleterious effect of salinity on biomass production can be minimized by the use of nutrient solutions containing higher NH4 + concentrations, since this seemed to be correlated with increases in nitrogen assimilation and the levels of Fe and chlorophyll.  相似文献   

18.
Abstract

Very low recovery of NH4+‐N was observed in total N determination of (NH4)2SO4 in KC1 solutions by a semimicro Kjeldahl method using permanganate and reduced iron to recover NO3‐ and NO2‐, whereas complete recovery was obtained in analysis of NH4+‐N in water, and of NO3 ?‐N or NO2 ?‐N in either water or KC1 solutions. The loss of NH4 +‐N observed with KC1 was attributed to the formation of NCl3 upon reaction of NH4 + with Cl2 generated during oxidation of Cl? by MnO4 ?. This difficulty is avoided by using K2SO4 instead of KC1 for extraction of inorganic N from soil. Complete recovery was obtained by adding 15N‐labeled NH4+, NO3‐, or NO2‐ to 0.5 M K2SO4 soil extracts, and total 15N analyses of the labeled extracts were in good agreement with values calculated from the additions of 15N and the total N contents of the soil extracts.  相似文献   

19.
ABSTRACT

Impatiens (Impatiens wallerana Hook. f.) is the most important annual bedding plant in the United States, based on wholesale dollar volume. Production of high-quality plants requires optimization of the nutrition regimen during growth, especially the total nitrogen (N) concentration and the ratio of N sources. The objective was to determine the N concentration and the nitrate (NO3 ??N):ammonium (NH4 +?N) ratio of N source that optimized bedding-plant impatiens growth and flower development. Four N concentrations (3.5, 7, 10.5, and 14 mmol N · L?1) were used in factorial combination with four ratios of NO3 ??N:NH4 +?N (4:0, 3:1, 1:1, and 1:3). Application of treatments was made for 30 d. Then for 10 d only deionized water was applied to reduce salt buildup. Substrate pH was lowest (4.9) with the NH4 +?N source and electrical conductivity (EC) highest, but never > 2.4 dS m?1. Nitrogen concentration and N source displayed an interaction for most growth parameters. Shoot fresh and dry weights and flower bud number were maximized at the 1:3 NO3 ??N:NH4 +?N ratio with a N concentration of 10.5 mmol L?1. However, plant diameter, leaf number, and leaf chlorophyll content responded quadratically to N form ratio, with the 1:1 ratio optimum at a concentration of 10.5 mmol N· L?1.  相似文献   

20.
Extraction of soil nitrate nitrogen (NO3 ?-N) and ammonium nitrogen (NH4 +-N) by chemical reagents and their determinations by continuous flow analysis were used to ascertain factors affecting analysis of soil mineral N. In this study, six factors affecting extraction of soil NO3 ?-N and NH4 +-N were investigated in 10 soils sampled from five arable fields in autumn and spring in northwestern China, with three replications for each soil sample. The six factors were air drying, sieve size (1, 3, and 5 mm), extracting solution [0.01 mol L?1 calcium chloride (CaCl2), 1 mol L?1 potassium chloride (KCl), and 0.5 mol L?1 potassium sulfate (K2SO4)] and concentration (0.5, 1, and 2 mol L?1 KCl), solution-to-soil ratio (5:1, 10:1, and 20:1), shaking time (30, 60, and 120 min), storage time (2, 4, and 6 weeks), and storage temperature (?18 oC, 4 oC, and 25 oC) of extracted solution. The recovery of soil NO3 ?-N and NH4 +-N was also measured to compare the differences of three extracting reagents (CaCl2, KCl, and K2SO4) for NO3 ?-N and NH4 +-N extraction. Air drying decreased NO3 ?-N but increased NH4 +-N concentration in soil. Soil passed through a 3-mm sieve and shaken for 60 min yielded greater NO3 ?-N and NH4 +-N concentrations compared to other treatments. The concentrations of extracted NO3 ?-N and NH4 +-N in soil were significantly (P < 0.05) affected by extracting reagents. KCl was found to be most suitable for NO3 ?-N and NH4 +-N extraction, as it had better recovery for soil mineral N extraction, which averaged 113.3% for NO3 ?-N and 94.9% for NH4 +-N. K2SO4 was not found suitable for NO3 ?-N extraction in soil, with an average recovery as high as 137.0%, and the average recovery of CaCl2 was only 57.3% for NH4 +-N. For KCl, the concentration of extracting solution played an important role, and 0.5 mol L?1 KCl could fully extract NO3 ?-N. A ratio of 10:1 of solution to soil was adequate for NO3 ?-N extraction, whereas the NH4 +-N concentration was almost doubled when the solution-to-soil ratio was increased from 5:1 to 20:1. Storage of extracted solution at ?18 °C, 4 °C, and 25 °C had no significant effect (P < 0.05) on NO3 ?-N concentration, whereas the NH4 +-N concentration varied greatly with storage temperature. Storing the extracted solution at ?18 oC obtained significantly (P < 0.05) similar results with that determined immediately for both NO3 ?-N and NH4 +-N concentrations. Compared with the immediate extraction, the averaged NO3 ?-N concentration significantly (P < 0.05) increased after storing 2, 4, and 6 weeks, respectively, whereas NH4 +-N varied in the two seasons. In conclusion, using fresh soil passed through a 3-mm sieve and extracted by 0.5 mol L?1 KCl at a solution-to-soil ratio of 10:1 was suitable for extracting NO3 ?-N, whereas the concentration of extracted NH4 +-N varied with KCl concentration and increased with increasing solution-to-soil ratio. The findings also suggest that shaking for 60 min and immediate determination or storage of soil extract at ?18 oC could improve the reliability of NO3 ?-N and NH4 +-N results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号